首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 439 毫秒
1.
In the Lesser Caucasus and NE Anatolia, three domains are distinguished from south to north: (1) Gondwanian-derived continental terranes represented by the South Armenian Block (SAB) and the Tauride–Anatolide Platform (TAP), (2) scattered outcrops of Mesozoic ophiolites, obducted during the Upper Cretaceous times, marking the northern Neotethys suture, and (3) the Eurasian plate, represented by the Eastern Pontides and the Somkheto-Karabagh Arc. At several locations along the northern Neotethyan suture, slivers of preserved unmetamorphozed relics of now-disappeared Northern Neotethys oceanic domain (ophiolite bodies) are obducted over the northern edge of the passive SAB and TAP margins to the south. There is evidence for thrusting of the suture zone ophiolites towards the north; however, we ascribe this to retro-thrusting and accretion onto the active Eurasian margin during the latter stages of obduction. Geodynamic reconstructions of the Lesser Caucasus feature two north dipping subduction zones: (1) one under the Eurasian margin and (2) farther south, an intra-oceanic subduction leading to ophiolite emplacement above the northern margin of SAB. We extend our model for the Lesser Caucasus to NE Anatolia by proposing that the ophiolites of these zones originate from the same oceanic domain, emplaced during a common obduction event. This would correspond to the obduction of non-metamorphic oceanic domain along a lateral distance of more than 500?km and overthrust up to 80?km of passive continental margin. We infer that the missing volcanic arc, formed above the intra-oceanic subduction, was dragged under the obducting ophiolite through scaling by faulting and tectonic erosion. In this scenario part of the blueschists of Stepanavan, the garnet amphibolites of Amasia and the metamorphic arc complex of Erzincan correspond to this missing volcanic arc. Distal outcrops of this exceptional object were preserved from latter collision, concentrated along the suture zones.  相似文献   

2.
The Anatolian peninsula is a key location to study the central portion of the Neotethys Ocean(s)and to understand how its western and eastern branches were connected.One of the lesser known branches of the Mesozoic ocean(s)is preserved in the northern ophiolite suture zone exposed in Turkey,namely,the Intra-Pontide suture zone.It is located between the Sakarya terrane and the Eurasian margin(i.e.,Istanbul-Zonguldak terrane)and consists of several metamorphic and non-metamorphic units containing ophiolites produced in supra-subduction settings from the Late Triassic to the Early Cretaceous.Ophiolites preserved in the metamorphic units recorded pervasive deformations and peak metamorphic conditions ranging from blueschist to eclogite facies.In the nonmetamorphic units,the complete oceanic crust sequence is preserved in tectonic units or as olistoliths in sedimentary melanges.Geochemical,structural,metamorphic and geochronological investigations performed on ophiolite-bearing units allowed the formulation of a new geodynamic model of the entire"life"of the IntraPontide oceanic basin(s).The reconstruction starts with the opening of the Intra-Pontide oceanic basins during the Late Triassic between the Sakarya and Istanbul-Zonguldak continental microplates and ends with its closure caused by two different subductions events that occurred during the upper Early Jurassic and Middle Jurassic.The continental collision between the Sakarya continental microplate and the Eurasian margin developed from the upper Early Cretaceous to the Palaeocene.The presented reconstruction is an alternative model to explain the complex and articulate geodynamic evolution that characterizes the southern margin of Eurasia during the Mesozoic era.  相似文献   

3.
The Armutlu Peninsula and adjacent areas in NW Turkey play a critical role in tectonic reconstructions of the southern margin of Eurasia in NW Turkey. This region includes an inferred Intra-Pontide oceanic basin that rifted from Eurasia in Early Mesozoic time and closed by Late Cretaceous time. The Armutlu Peninsula is divisible into two metamorphic units. The first, the Armutlu Metamorphics, comprises a ?Precambrian high-grade metamorphic basement, unconformably overlain by a ?Palaeozoic low-grade, mixed siliciclastic/carbonate/volcanogenic succession, including bimodal volcanics of inferred extensional origin, with a possibly inherited subduction signature. The second unit, the low-grade znik Metamorphics, is interpreted as a Triassic rift infilled with terrigenous, calcareous and volcanogenic lithologies, including basalts of within-plate type. The Triassic rift was unconformably overlain by a subsiding Jurassic–Late Cretaceous (Cenomanian) passive margin including siliciclastic/carbonate turbidites, radiolarian cherts and manganese deposits. The margin later collapsed to form a flexural foredeep associated with the emplacement of ophiolitic rocks in Turonian time. Geochemical evidence from meta-basalt blocks within ophiolite-derived melange suggests a supra-subduction zone origin for the ophiolite. The above major tectonic units of the Armutlu Peninsula were sealed by a Maastrichtian unconformity. Comparative evidence comes from the separate Almacık Flake further east.Considering alternatives, it is concluded that a Mesozoic Intra-Pontide oceanic basin separated Eurasia from a Sakarya microcontinent, with a wider Northern Neotethys to the south. Lateral displacement of exotic terranes along the south-Eurasian continental margin probably also played a role, e.g. during Late Cretaceous suturing, in addition to overthrusting.  相似文献   

4.
This paper is a synthesis of structural and geochronological data from eastern Mediterranean ophiolitic metamorphic rocks and surrounding units to interpret the intra‐oceanic subduction and ophiolite emplacement mechanism.

Metamorphic rocks occur as discontinuous tectonic slices at the base of the ophiolites, generally between the peridotite tectonites and volcanic‐sedimentary units, and locally in fault zones in the overlying peridotites. They consist essentially of amphibolite, and in lesser quantities, micaschist, quartzite, epidotite and marble.

Geological and geochronological data indicate that recrystallization of the metamorphic rocks occurred in the oceanic environment. The contact between the metamorphic rocks and the hanging‐wall is parallel to the foliation of the metamorphic rocks, and is interpreted as the fossil plane of intra‐oceanic subduction. Structural relationships suggest that intra‐oceanic subduction was situated between two lithospheric blocks separated by an oceanic fracture zone. Therefore the Neotethyan ophiolites with metamorphic soles represent the remnants of the overriding oceanic lithosphere's training slices of the metamorphic rocks at the base.

In the Anatolian region, radiometric dating of metamorphic rocks from the Taurus and Izmir‐Ankara‐Erzincan zone ophiolites yield nearly identical ages. Besides, palaeontological and structural data indicate coeval opening and similar oceanic ridge orientation. Consequently it is highly probable that Taurus and Izmir‐Ankara‐Erzincan zone ophiolites represent fragments of the same oceanic lithosphere derived from a single spreading zone. Palaeontological data from underlying volcanic and sedimentary units point out that the opening of the Neotethyan ocean occurred during Late Permian‐Middle Triassic time in the Iranian‐Oman region, during Middle Triassic in Dinaro‐Hellenic area, and finally during Late Triassic in the Anatolian region.

Radiometric dating of the metamorphic rocks exhibit that the intra‐oceanic thrusting occurred during late Lower‐early Late Jurassic for Dinaro‐Hellenic ophiolites, late Lower‐early Late Cretaceous for Anatolian, Iranian and Oman ophiolites well before their obduction on the Gondwanian continent. Neotethyan ophiolites were obducted onto various sections of the Gondwanian continent from late Upper Jurassic to Palaeocene time, Dinaro‐Hellenic ophiolites during late Upper Jurassic‐early Lower Cretaceous onto the Adriatic promontory, Anatolian, Iranian and Oman ophiolites from late Lower Cretaceous to Palaeocene onto the Aegean, Anatolian and Arabic promontories.  相似文献   

5.
Abstract The Nadanhada terrane, a Jurassic disrupted terrane in Heilongjiang Province of China, is principally composed of Permo- Carboniferous limestone and greenstone, Triassic bedded chert and middle Jurassic siliceous shale, all enclosed within younger (presumably Late Jurassic- Early Cretaceous) clastics. Palaeontological and lithological characteristics and structural features of these formations are entirely identical to those of the Mino terrane of the Japanese Islands. Prior to opening of the Sea of Japan, these terranes formed a single superterrane together with the Western Sikhote-Alin terrane. Tectono-stratigraphic terranes very similar to the Nadanhada and Mino terranes are also found in the Ryukyu are, the Philippines and probably in Borneo. All these terranes constituted a belt of accretionary complexes during Late Jurassic and / or Early Cretaceous time along the eastern continental margin of Asia after completion of the Triassic collage of the Chinese continent.  相似文献   

6.
《International Geology Review》2012,54(10):1244-1269
ABSTRACT

Western Anatolia is a complex assemblage of terranes, including the Sakarya Terrane and the Tauride-Anatolide Platform that collided during the late Cretaceous and Palaeogene (80–25 Ma) after the closure of the Izmir-Ankara Ocean. Determining the precise timing at which this ocean closed is particularly important to test kinematic reconstructions and geodynamic models of the Mediterranean region, and the chronology of suturing and its mechanisms remain controversial. Here, we document the Cretaceous-Eocene sedimentary history of the Central Sakarya Basin, along the northern margin of the Neotethys Ocean, via various approaches including biostratigraphy, geochronology, and sedimentology. Two high-resolution sections from the Central Sakarya Basin show that pelagic carbonate sedimentation shifted to rapid siliciclastic deposition in the early Campanian (~ 79.6 Ma), interpreted to be a result of the build-up of the accretionary prism at the southern margin of the Sakarya Terrane. Rapid onset of deltaic progradation and an increase in accumulation rates in the late Danian (~ 61 Ma), as well as a local angular unconformity are attributed to the onset of collision between the Sakarya Terrane and the Tauride-Anatolide Platform. Thus, our results indicate that though deformation of the subduction margin in Western Anatolia started as early as the Campanian, the closure of the ?zmir-Ankara Ocean was only achieved by the early Palaeocene.  相似文献   

7.
Northwestern Anatolia contains three main tectonic units: (a) the Pontide Zone in the north which consists mainly of the Gstanbul-Zonguldak Unit in the west and the BallLda<-Küre Unit in the east; (b) the Sakarya Zone (or Continent) in the south, which is juxtaposed against the Pontide Zone due to the closure of Paleo-Tethys prior to Late Jurassic time; and (c) the Armutlu-OvacLk Zone which appears to represent a tectonic mixture of both zones. These three major tectonic zones are presently bounded by the two branches of the North Anatolian Transform Fault. The two tectonic contacts follow older tectonic lineaments (the Western Pontide Fault) which formed during the development of the Armutlu-OvacLk Zone. Since the earliest Cretaceous, an overall extensional regime dominated the region. A transpressional tectonic regime of Coniacian/Santonian to Campanian age caused the welding of the Gstanbul-Zonguldak Unit to the Sakarya Zone by an oblique collision. In the Late Campanian, a transtensional tectonic regime developed, forming a new basin within the amalgamated tectonic mosaic. The different tectonic regimes in the region were caused by activity of the Western Pontide Fault. Most of the ophiolites within the Armutlu-OvacLk Zone belong to the Paleo-Tethyan and/or pre-Ordovician ophiolitic core of the Gstanbul-Zonguldak Unit. The Late Cretaceous ophiolites in the eastern parts of the Armutlu-OvacLk Zone were transported from Neo-Tethyan ophiolites farther east by left-lateral strike-slip faults along the Western Pontide Fault. There is insufficient evidence to indicate the presence of an ocean (Intra-Pontide Ocean) between the Gstanbul-Zonguldak Unit and the Sakarya Zone during Late Cretaceous time.  相似文献   

8.
The paleogeography of the Eastern Pontides was defined by the Paleotethys ocean to the north and a continental assemblage to the south, prior to Carboniferous time. The S-dipping subduction of Paleotethys beneath Gondwana caused the development of arc magmatism, mostly active in the Early Carboniferous. Cessation of magmatism during Late Carboniferous-Early Permian time was accompanied by the deposition of platform carbonates, which were rifted to open a back-arc oceanic basin (Karakaya ocean) during the Triassic.

Accompanying closure of this Triassic basin, the Ladinian-Late Triassic products of Neotethys, opening in the south, transgressively overlay the basement in the Keban continent to the south. However, transgression reached the northern region (Pontide continent) during Liassic time, because of a topographic high created by southward subduction of the Paleotethys ocean as well as closure of the Karakaya ocean.

During the late Cenomanian/Turonian to Eocene, an island arc evolved as a result of N-dipping subduction of Neotethys. The ophiolite-melange association was obducted onto the Pontide continent as a retrocharriage process in the Turonian-Maastrichtian, Paleocene, and the end of the early Eocene, and onto the Keban continent in Campanian-Maastrichtian and pre-late Lutetian time.

A continental-lacustrine environment developed, and partial melting of the thickened crust initiated the development of volcanic units in the Miocene. The region was affected by right-lateral strike-slip faulting (the North Anatolian fault) and a NE-SW-trending left-lateral strike-slip fault system (the Northeast Anatolian fault).  相似文献   

9.
East and Southeast Asia is a complex assembly of allochthonous continental terranes, island arcs, accretionary complexes and small ocean basins. The boundaries between continental terranes are marked by major fault zones or by sutures recognized by the presence of ophiolites, mélanges and accretionary complexes. Stratigraphical, sedimentological, paleobiogeographical and paleomagnetic data suggest that all of the East and Southeast Asian continental terranes were derived directly or indirectly from the Iran-Himalaya-Australia margin of Gondwanaland. The evolution of the terranes is one of rifting from Gondwanaland, northwards drift and amalgamation/accretion to form present day East Asia. Three continental silvers were rifted from the northeast margin of Gondwanaland in the Silurian-Early Devonian (North China, South China, Indochina/East Malaya, Qamdo-Simao and Tarim terranes), Early-Middle Permian (Sibumasu, Lhasa and Qiangtang terranes) and Late Jurassic (West Burma terrane, Woyla terranes). The northwards drift of these terranes was effected by the opening and closing of three successive Tethys oceans, the Paleo-Tethys, Meso-Tethys and Ceno-Tethys. Terrane assembly took place between the Late Paleozoic and Cenozoic, but the precise timings of amalgamation and accretion are still contentious. Amalgamation of South China and Indochina/East Malaya occurred during the Early Carboniferous along the Song Ma Suture to form “Cathaysialand”. Cathaysialand, together with North China, formed a large continental region within the Paleotethys during the Late Carboniferous and Permian. Paleomagnetic data indicate that this continental region was in equatorial to low northern paleolatitudes which is consistent with the tropical Cathaysian flora developed on these terranes. The Tarim terrane (together with the Kunlun, Qaidam and Ala Shan terranes) accreted to Kazakhstan/Siberia in the Permian. This was followed by the suturing of Sibumasu and Qiangtang to Cathaysialand in the Late Permian-Early Triassic, largely closing the Paleo-Tethys. North and South China were amalgamated in the Late Triassic-Early Jurassic and finally welded to Laurasia around the same time. The Lhasa terrane accreted to the Sibumasu-Qiangtang terrane in the Late Jurassic and the Kurosegawa terrane of Japan, interpreted to be derived from Australian Gondwanaland, accreted to Japanese Eurasia, also in the Late Jurassic. The West Burma and Woyla terranes drifted northwards during the Late Jurassic and Early Cretaceous as the Ceno-Tethys opened and the Meso-Tethys was destroyed by subduction beneath Eurasia and were accreted to proto-Southeast Asia in the Early to Late Cretaceous. The Southwest Borneo and Semitau terranes amalgamated to each other and accreted to Indochina/East Malaya in the Late Cretaceous and the Hainanese terranes probably accreted to South China sometime in the Cretaceous.  相似文献   

10.
青藏高原主要地体地壳短缩作用研究现状及存在的问题   总被引:1,自引:0,他引:1  
施美凤  李亚林  黄继钧 《地质通报》2010,29(203):286-296
在对喜马拉雅、拉萨和羌塘3个地体已有的有关地壳短缩研究成果系统分析的基础上,对3个地体进行了平衡剖面恢复:北羌塘侏罗系短缩率为25.18%,南羌塘短缩率为33.57%;对拉萨地体南段(措勤盆地南部坳褶带)上白垩统恢复得出其短缩率为20.68%,北段中部坳褶带到班公湖-怒江缝合带南缘短缩率为25.3%;地处特提斯喜马拉雅地体东段的郎杰学地体三叠系短缩率达75%,大于前人研究的特提斯喜马拉雅56%~60%的短缩率。通过对比,对3个地体短缩变形的规律进行了分析,认为各地体内部短缩作用并不是一个连续均匀的过程,陆内变形主要是通过稳定地体边界和大型逆冲构造带来吸收的;拉萨地体和羌塘地体新生代内部变形较小。  相似文献   

11.
班公湖-怒江洋的形成演化是认识班公湖-怒江成矿带成矿地质背景的关键,近几年中国地质调查局在青藏高原部署了大量1∶50000区域地质调查工作,取得了很多重要发现。对班公湖-怒江结合带两侧关键性海陆沉积地层对比研究,认为南羌塘地块与拉萨地块晚古生代-晚三叠世地层沉积特征及岩石组合基本一致,二者在班公湖-怒江中生代洋盆形成以前是一个整体,为冈瓦纳大陆北缘被动陆缘环境。班公湖-怒江洋在早中侏罗世裂解形成,至中侏罗世趋于稳定且范围最大;向北俯冲消减作用始于中晚侏罗世,晚侏罗世-早白垩世演化为残留海,早白垩世中晚期出现短暂的裂解,致使海水重新灌入;晚白垩世班公湖-怒江洋盆进入闭合后的隆升造山阶段,发生了残留盆地迁移,形成了磨拉石建造。班公湖-怒江洋类似古加勒比海(现今墨西哥湾地区)的形成机制,并与大西洋、太平洋的形成过程关系密切。对于班公湖-怒江洋的闭合和冈底斯弧的形成,本文提出了另一种可能解释,即,新特提斯洋向北俯冲下,岩浆弧逐步南迁,在弧后形成了一系列伸展性质的弧后盆地,两者组成微陆块由北向南逐渐增生形成了现今的拉萨地体,持续向北俯冲也导致了班公湖-怒江洋最终闭合。  相似文献   

12.
The Malay Peninsula is characterised by three north–south belts, the Western, Central, and Eastern belts based on distinct differences in stratigraphy, structure, magmatism, geophysical signatures and geological evolution. The Western Belt forms part of the Sibumasu Terrane, derived from the NW Australian Gondwana margin in the late Early Permian. The Central and Eastern Belts represent the Sukhothai Arc constructed in the Late Carboniferous–Early Permian on the margin of the Indochina Block (derived from the Gondwana margin in the Early Devonian). This arc was then separated from Indochina by back-arc spreading in the Permian. The Bentong-Raub suture zone forms the boundary between the Sibumasu Terrane (Western Belt) and Sukhothai Arc (Central and Eastern Belts) and preserves remnants of the Devonian–Permian main Palaeo-Tethys ocean basin destroyed by subduction beneath the Indochina Block/Sukhothai Arc, which produced the Permian–Triassic andesitic volcanism and I-Type granitoids observed in the Central and Eastern Belts of the Malay Peninsula. The collision between Sibumasu and the Sukhothai Arc began in Early Triassic times and was completed by the Late Triassic. Triassic cherts, turbidites and conglomerates of the Semanggol “Formation” were deposited in a fore-deep basin constructed on the leading edge of Sibumasu and the uplifted accretionary complex. Collisional crustal thickening, coupled with slab break off and rising hot asthenosphere produced the Main Range Late Triassic-earliest Jurassic S-Type granitoids that intrude the Western Belt and Bentong-Raub suture zone. The Sukhothai back-arc basin opened in the Early Permian and collapsed and closed in the Middle–Late Triassic. Marine sedimentation ceased in the Late Triassic in the Malay Peninsula due to tectonic and isostatic uplift, and Jurassic–Cretaceous continental red beds form a cover sequence. A significant Late Cretaceous tectono-thermal event affected the Peninsula with major faulting, granitoid intrusion and re-setting of palaeomagnetic signatures.  相似文献   

13.
The Black Sea region comprises Gondwana-derived continental blocks and oceanic subduction complexes accreted to Laurasia. The core of Laurasia is made up of an Archaean–Palaeoproterozoic shield, whereas the Gondwana-derived blocks are characterized by a Neoproterozoic basement. In the early Palaeozoic, a Pontide terrane collided and amalgamated to the core of Laurasia, as part of the Avalonia–Laurasia collision. From the Silurian to Carboniferous, the southern margin of Laurasia was a passive margin. In the late Carboniferous, a magmatic arc, represented by part of the Pontides and the Caucasus, collided with this passive margin with the Carboniferous eclogites marking the zone of collision. This Variscan orogeny was followed by uplift and erosion during the Permian and subsequently by Early Triassic rifting. Northward subduction under Laurussia during the Late Triassic resulted in the accretion of an oceanic plateau, whose remnants are preserved in the Pontides and include Upper Triassic eclogites. The Cimmeride orogeny ended in the Early Jurassic, and in the Middle Jurassic the subduction jumped south of the accreted complexes, and a magmatic arc was established along the southern margin of Laurasia. There is little evidence for subduction during the latest Jurassic–Early Cretaceous in the eastern part of the Black Sea region, which was an area of carbonate sedimentation. In contrast, in the Balkans there was continental collision during this period. Subduction erosion in the Early Cretaceous removed a large crustal slice south of the Jurassic magmatic arc. Subduction in the second half of the Early Cretaceous is evidenced by eclogites and blueschists in the Central Pontides and by a now buried magmatic arc. A continuous extensional arc was established only in the Late Cretaceous, coeval with the opening of the Black Sea as a back-arc basin.  相似文献   

14.
15.
The Cordilleran orogen in south-eastern Alaska includes 14 distinct metamorphic belts that make up three major metamorphic complexes, from east to west: the Coast plutonic–metamorphic complex in the Coast Mountains; the Glacier Bay–Chichagof plutonic–metamorphic complex in the central part of the Alexander Archipelago; and the Chugach plutonic–metamorphic complex in the northern outer islands. Each of these complexes is related to a major subduction event. The metamorphic history of the Coast plutonic–metamorphic complex is lengthy and is related to the Late Cretaceous collision of the Alexander and Wrangellia terranes and the Gravina overlap assemblage to the west against the Stikine terrane to the east. The metamorphic history of the Glacier Bay–Chichagof plutonic–metamorphic complex is relatively simple and is related to the roots of a Late Jurassic to late Early Cretaceous island arc. The metamorphic history of the Chugach plutonic–metamorphic complex is complicated and developed during and after the Late Cretaceous collision of the Chugach terrane with the Wrangellia and Alexander terranes. The Coast plutonic–metamorphic complex records both dynamothermal and regional contact metamorphic events related to widespread plutonism within several juxtaposed terranes. Widespread moderate-P/T dynamothermal metamorphism affected most of this complex during the early Late Cretaceous, and local high-P/T metamorphism affected some parts during the middle Late Cretaceous. These events were contemporaneous with low- to moderate-P, high-T metamorphism elsewhere in the complex. Finally, widespread high-P–T conditions affected most of the western part of the complex in a culminating late Late Cretaceous event. The eastern part of the complex contains an older, pre-Late Triassic metamorphic belt that has been locally overprinted by a widespread middle Tertiary thermal event. The Glacier Bay–Chichagof plutonic–metamorphic complex records dominantly regional contact-metamorphic events that affected rocks of the Alexander and Wrangellia terranes. Widespread low-P, high-T assemblages occur adjacent to regionally extensive foliated granitic, dioritic and gabbroic rocks. Two closely related plutonic events are recognized, one of Late Jurassic age and another of late Early and early Late Cretaceous age; the associated metamorphic events are indistinguishable. A small Late Devonian or Early Mississippian dynamothermal belt occurs just north-east of the complex. Two older low-grade regional metamorphic belts on strike with the complex to the south are related to a Cambrian to Ordovician orogeny and to a widespread Middle Silurian to Early Devonian orogeny. The Chugach plutonic–metamorphic complex records a widespread late Late Cretaceous low- to medium/high-P, moderate- T metamorphic event and a local transitional or superposed early Tertiary low-P, high-T regional metamorphic event associated with mesozonal granitic intrusions that affected regionally deformed and metamorphosed rocks of the Chugach terrane. The Chugach complex also includes a post-Late Triassic to pre-Late Jurassic belt with uncertain relations to the younger belts.  相似文献   

16.
Magmatic rocks of variable age and composition crop out extensively in Western and Northwestern Anatolia. In the present study we subdivide these granitoids according to their ages. The young granitoids (Late Cretaceous to Late Miocene) develop high-temperature metamorphic aureoles. Six isochronous belts are defined, which become progressively younger from north to south. The late Eocene to late Miocene granitoid belts are curved and open to the southwest. The old granitoids (Cambrian to Middle Jurassic) are present in the northwestern and northern parts of Anatolia. Many of their radiometric ages are disturbed as a result of later tectonic events responsible for the present-day structure of Western Turkey. Except for Cambrian granitoids, these rocks result from a series of northward-dipping subduction zones of Hercynian to Late Carboniferous age, along the Karakaya trench up to the Late Triassic, along and north of the Izmir-Ankara zone during the Middle Jurassic to the Late Cretaceous, and possibly north of the Hellenic subduction zone since the Paleogene.  相似文献   

17.
The Southeast Anatolian orogen is a part of the eastern Mediterranean-Himalayan orogenic belt. Development of the Southeast Anatolian orogen began with the first ophiolite obduction onto the Arabian platform during the Late Cretaceous, and it continued until the Miocene. Its lingering effects continue to be discernible at present. During the Late Cretaceous-Miocene interval, three major deformational phases occurred, related to Late Cretaceous, Eocene, and Miocene nappe emplacements. The Miocene nappes are composed of ophiolites and metamorphic massifs.

For a decade, field studies in the region have shown that strike-slip tectonics played a role complementary to the major horizontal effects of the nappe movement, as indicated by: (1) fault systems active during the Eocene; (2) different Eocene rock units composed of coeval continental and deep-sea deposits and presently tectonically juxtaposed; and (3) other stratigraphic and structural data obtained across the present strike-slip fault zones.

These strike-slip faults possibly resulted from oblique subduction of the mid-oceanic ridge underneath the northerly situated Yuksekova ensimatic island-arc complex, causing a gradual cessation of the island-arc system. The subduction also led to the development of a back-arc pull-apart basin, i.e., the Maden basin, which opened on the upper plate. The geologic history in Southeast Anatolia resembles the development of the San Andreas fault system and subsequent tectonic evolution.  相似文献   

18.
East and Southeast Asia comprises a complex assembly of allochthonous continental lithospheric crustal fragments (terranes) together with volcanic arcs, and other terranes of oceanic and accretionary complex origins located at the zone of convergence between the Eurasian, Indo-Australian and Pacific Plates. The former wide separation of Asian terranes is indicated by contrasting faunas and floras developed on adjacent terranes due to their prior geographic separation, different palaeoclimates, and biogeographic isolation. The boundaries between Asian terranes are marked by major geological discontinuities (suture zones) that represent former ocean basins that once separated them. In some cases, the ocean basins have been completely destroyed, and terrane boundaries are marked by major fault zones. In other cases, remnants of the ocean basins and of subduction/accretion complexes remain and provide valuable information on the tectonic history of the terranes, the oceans that once separated them, and timings of amalgamation and accretion. The various allochthonous crustal fragments of East Asia have been brought into close juxtaposition by geological convergent plate tectonic processes. The Gondwana-derived East Asia crustal fragments successively rifted and separated from the margin of eastern Gondwana as three elongate continental slivers in the Devonian, Early Permian and Late Triassic–Late Jurassic. As these three continental slivers separated from Gondwana, three successive ocean basins, the Palaeo-Tethys,. Meso-Tethys and Ceno-Tethys, opened between these and Gondwana. Asian terranes progressively sutured to one another during the Palaeozoic to Cenozoic. South China and Indochina probably amalgamated in the Early Carboniferous but alternative scenarios with collision in the Permo–Triassic have been suggested. The Tarim terrane accreted to Eurasia in the Early Permian. The Sibumasu and Qiangtang terranes collided and sutured with Simao/Indochina/East Malaya in the Early–Middle Triassic and the West Sumatra terrane was transported westwards to a position outboard of Sibumasu during this collisional process. The Permo–Triassic also saw the progressive collision between South and North China (with possible extension of this collision being recognised in the Korean Peninsula) culminating in the Late Triassic. North China did not finally weld to Asia until the Late Jurassic. The Lhasa and West Burma terranes accreted to Eurasia in the Late Jurassic–Early Cretaceous and proto East and Southeast Asia had formed. Palaeogeographic reconstructions illustrating the evolution and assembly of Asian crustal fragments during the Phanerozoic are presented.  相似文献   

19.
青藏高原主要地体地壳短缩作用研究现状及存在的问题   总被引:1,自引:0,他引:1  
在对喜马拉雅、拉萨和羌塘3个地体已有的有关地壳短缩研究成果系统分析的基础上,对3个地体进行了平衡剖面恢复:北羌塘侏罗系短缩率为25.18%.南羌塘短缩率为33.57%;对拉萨地体南段(措勤盆地南部坳褶带)上白垩统恢复得出其短缩率为20.68%北段中部坳褶带到班公湖一怒江缝合带南缘短缩率为25.3%;地处特提斯喜马拉雅地体东段的郎杰学地体三叠系短缩率达75%.大于前人研究的特提斯喜马拉雅56%~6O%的短缩率.通过对比,对3个地体短缩变形的规律进行了分析,认为各地体内部短缩作用并不是一个连续均匀的过程,陆内变形主要是通过稳定地体边界和大型逆冲构造带来吸收的;拉萨地体和羌塘地体新生代内部变形较小.  相似文献   

20.
In NW Himalayas, the suture zone between the collided Indian and the Karakoram plates is occupied by crust of the Cretaceous Kohistan Island\|Arc Terrane [1] . Late Cretaceous (about 90Ma) accretion with the southern margin of the Karakoram Plate at the site of the Shyok Suture Zone turned Kohistan to become an Andean\|type margin. The Neotethys was completely subducted at the southern margin of Kohistan by Early Tertiary, leading to collision between Kohistan and continental crust of the Indian plate at the site of the Main mantle thrust.More than 80% of the Kohistan terrane comprises plutonic rocks of (1) ultramafic to gabbroic composition forming the basal crust of the intra\|oceanic stage of the island arc, and (2) tonalite\|granodiorite\|granite composition belong to the Kohistan Batholith occupying much of the intermediate to shallow crust of the terrane mostly intruded in the Andean\|type margin stage [2] . Both these stages of subduction\|related magmatism were associated with volcanic and sedimentary rocks formed in Late Cretaceous and Early Tertiary basins. This study addresses tectonic configuration of Early Tertiary Drosh basin exposed in NW parts of the Kohistan terrane, immediately to the south of the Shyok Suture Zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号