首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When Pseudomonas aeruginosa PAO1 biofilms (attached to Sepharose surfaces) were subjected to dissolved Fe3+, most Fe was removed from solution within 25 h by surface complexation with negatively charged functional groups on the bacterial cell wall via a nucleation and mineralization process. Chemical formation of Fe-(hydr)oxides was partially responsible for dissolved Fe removal, which stemmed from a pH increase, facilitated by microbial activity. PAO1 used Fe3+ as an electron acceptor producing Fe2+ under localized anaerobic conditions over the first 50 h. The high ratio of Fe2+ to total Fe in solution produced a high proportion of Fe(II) in Fe precipitates; however, as the formation of Fe-(hydr)oxides started after 50 h, the Fe2+ content in solution began to diminish. Biofilms can so influence the local chemical conditions and metal speciation that the bulk solution phase is also affected, thereby mediating a wide-range (bio)geochemical cycling of iron. Long-term survival of natural biofilms, even under strict oligotrophic conditions, could have a broad lasting effect on the bulk geochemical environment.  相似文献   

2.
Marcasite precipitation from hydrothermal solutions   总被引:3,自引:0,他引:3  
Pyrite and marcasite were precipitated by both slow addition of aqueous Fe2+ and SiO32− to an H2S solution and by mixing aqueous Fe2+ and Na2S4 solutions at 75°C. H2S2 or HS2 and H2S4 or HS4 were formed in the S2O32− and Na2S4 experiments, respectively. Marcasite formed at pH < pK1 of the polysulfide species present (for H2S2, pK1 = 5.0; for H2S4, pK1 = 3.8 at 25°C). Marcasite forms when the neutral sulfane is the dominant polysulfide, whereas pyrite forms when mono-or divalent polysulfides are dominant. In natural solutions where H2S2 and HS2 are likely to be the dominant polysulfides, marcasite will form only below pH 5 at all temperatures.

The pH-dependent precipitation of pyrite and marcasite may be caused by electrostatic interactions between polysulfide species and pyrite or marcasite growth surfaces: the protonated ends of H2S2 and HS2 are repelled from pyrite growth sites but not from marcasite growth sites. The negative ions HS2 and S22− are strongly attracted to the positive pyrite growth sites. Masking of 1πg* electrons in the S2 group by the protons makes HS2 and H2S2 isoelectronic with AsS2− and As22−, respectively ( et al., 1981). Thus, the loellingitederivative structure (marcasite) results when both ends of the polysulfide are protonated.

Marcasite occurs abundantly only for conditions below pH 5 and where H2S2 was formed near the site of deposition by either partial oxidation of aqueous H2S by O2 or by the reaction of higher oxidation state sulfur species that are reactive with H2S at the conditions of formation e.g., S2O32− but not SO42−. The temperature of formation of natural marcasite may be as high as 240°C ( and , 1985), but preservation on a multimillion-year scale seems to require post-depositional temperatures of below about 160°C ( , 1973; and , 1985).  相似文献   


3.
Micro-X-ray absorption near-edge structure (XANES) analysis was employed to determine the content of ferric iron in minerals formed in ultrahigh-pressure (UHP) eclogites. It is observed that omphacite and phengite contain significant amounts of Fe3+/Fetot (0.2–0.6), whereas only very low contents are present in garnet (Fe3+/Fetot=0.0–0.03), the latter being consistent with results from stoichiometric charge-balance calculations. Furthermore, considerable variations in the Fe3+/Fetot ratios of omphacite and phengite are observed depending on the textural sites and local bulk chemistry (eclogite and calc-silicate matrix) within one thin section. The oxidation state of isofacial minerals is thus likely to depend on the local fluid composition, which, in the studied case, is controlled by calcareous and meta-basic mineral compositions. These first in-situ measurements of ferric iron in an eclogite sample from the Dabie Shan, E China, are used to recalculate geothermobarometric data. Calculations demonstrate that the temperature during UHP metamorphism was as high as 780 °C, about 80–100 °C higher than previously estimated. Temperatures based on charge balance calculations often give erroneous results. Pressure estimates are in good agreement with former results and confirm metamorphism in the stability field of diamond (43.7 kbar at 750 °C). These PT data result in a geothermal gradient of ca. 6 °C/km during UHP metamorphism in the Dabie Shan. However, accounting for ferric iron contents in geothermobarometry creates new difficulties inasmuch as calibrations of geothermometers may not be correctable for Fe3+ and the actual effect on Mg–Fe2+ partitioning is unknown. The present study further shows that micro-XANES is a promising technique for the in situ determination of ferric iron contents without destroying the textural context of the sample: a clear advantage compared to bulk methods.  相似文献   

4.
Dissolution rates of single calcite crystals were determined from sample weight loss using free-drift rotating disk techniques. Experiments were performed at 25 °C in aqueous HCl solutions over the bulk solution pH range −1 to 3 and in the presence of trace concentrations of aqueous NaPO3 and MgCl2. These salts were chosen for this study because aqueous magnesium and phosphate are known to strongly inhibit calcite dissolution at neutral to basic pH. Reactive solutions were undersaturated with respect to possible secondary phases. Neither an inhibition or enhancement of calcite dissolution rates was observed in the presence of aqueous MgCl2 at pH 1 and 3. The presence of trace quantities of NaPO3, which dissociates in solution to Na+ and H2PO4, decreased the overall calcite dissolution rate at pH≤2. This contrasting behavior could be attributed to the different adsorption behavior of these dissolved species. As calcite surfaces are positively charged in acidic solutions, aqueous Mg2+ may not adsorb, whereas aqueous phosphate, present as either the anion H2PO4 or the neutral species H3PO40, readily adsorbs on calcite surfaces leading to significant dissolution inhibition.  相似文献   

5.
This work focuses on sulfide mineral oxidation rates under oxic conditions in freshly processed pyrite-rich tailings from the ore concentrator in Boliden, northern Sweden. Freshly processed tailings are chemically treated in the plant to kill bacteria and to obtain increased metal yields, resulting in a high pH level of 10–12 in the process water. Different oxidation experiments (abiotic oxidation in untreated tailings, acid abiotic oxidation and acid microbial oxidation), containing the Boliden tailings, were performed at room temperature with dissolved oxygen (0.21 atm O2) for 3 months. The different pyrite oxidation rates given from the study were 2.4×10−10 mol m−2 s−1 for the microbial, 5.9×10−11 mol m−2 s−1 for the acidic abiotic and 3.6×10−11 mol m−2 s−1 for the untreated experiments. Because of the potential precipitation of gypsum in the batch solutions, these oxidation rates are considered minimum values. The release rates for copper and zinc from chalcopyrite and sphalerite in the acid experiments were also investigated. These rates were normalized to the metal concentration in the tailings, and then compared to the release rate for iron from pyrite. These normalized results indicated that metal release decreased in the order Cu>Zn>Fe, demonstrating that pyrite is more resistant to oxidation than sphalerite and chalcopyrite. Pyrite was also more resistant to acidic dissolution than to microbial dissolution, while a significant fraction of sphalerite and chalcopyrite dissolved in the acid abiotic solutions.  相似文献   

6.
硫化纳米铁(S-nZVI)是一种具有壳核结构的新型纳米铁(nZVI)改性材料,在多种污染物的去除上表现出超越nZVI的反应活性。本文采用两步合成法制备了S-nZVI,并采用透射电镜-能量色散X射线(TEM-EDX)、X射线衍射(XRD)和X射线光电子能谱分析(XPS)方法对S-nZVI和nZVI进行表征,探讨了不同硫铁摩尔比(n(S)/n(Fe))、初始pH值、试剂投加量和地下水化学成分对nZVI及S-nZVI去除Cr(Ⅵ)的影响。结果表明:S-nZVI具有明显的壳核结构,其Fe0核外层包覆着非晶的硫化亚铁和多硫化物;S-nZVI去除Cr(Ⅵ)的最佳n(S)/n(Fe)为0.14;增加S-nZVI投加量会提高其对Cr(Ⅵ)的去除率,投加量相同时,S-nZVI对Cr(Ⅵ)的去除率显著高于nZVI;提高初始pH值时,S-nZVI和nZVI对Cr(Ⅵ)的去除率均逐渐降低,但在相同pH值条件下,S-nZVI对Cr(Ⅵ)的去除率和去除速率始终高于nZVI,尤其是在pH=5时,S-nZVI仍能去除100%的Cr(Ⅵ),而nZVI只能去除85%;K+、Na+、Ca2+、Mg2+、SO42-、NO3-和Cl-对S-nZVI和nZVI去除Cr(Ⅵ)均有促进作用,但对S-nZVI体系的促进作用更强;HCO3-的存在会使溶液的pH值升高从而抑制S-nZVI和nZVI对Cr(Ⅵ)的去除,对nZVI的抑制作用强于S-nZVI。总体来说,S-nZVI对Cr(Ⅵ)的去除率在不同pH值和多种地下水化学组分影响条件下均高于nZVI,因此具有更广泛的应用前景。  相似文献   

7.
We present a database and a graphical analysis of published experimental results for dissolution rates of olivine, quartz plagioclase, clinopyroxene, orthopyroxene, spinel, and garnet in basaltic and andesitic melts covering a range of experimental temperatures (1100–1500°C) and pressures (105 Pa-3.0 GPa). The published datasets of Donaldson (1985, 1990) and Brearly and Scarfe (1986) are the most complete. Experimental dissolution rates from all datasets are recalculated and normalized to a constant oxygen basis to allow for direct comparison of dissolution rates between different minerals. Dissolution rates (ν) range from 5·10−10 oxygen equivalent moles (o.e.m.) cm−2 s−1 for olivine in a basaltic melt to 1.3·10−5 o.e.m. cm−2 s−1 for garnet in a basaltic melt. Values of ln ν are Arthenian for the experiments examined and activation energies range from 118 to 1800 kJ/o.e.m. for quartz and clinopyroxene, respectively.

The relationship between calculated A/RT for the dissolution reactions, where A is the thermodynamic potential affinity, and values of ν is linear for olivine, plagioclase, and quartz. We interpret this as strong evidence in support of using calculated A as a predictor of ν for, at least, superliquidus melt conditions.  相似文献   


8.
碳酸盐岩的Fe/Mn元素比值,作为一项新的地球化学指标,可以用于恢复海洋的氧化还原状态.在氧化条件下,Fe3+和Mn4+均不可溶,因此氧化海水中的溶解Fe和Mn的含量均很低.Fe3+和Mn4+在还原条件下可以被细菌还原为可溶的Fe2+和Mn2+,而氧化还原电位的计算表明,Mn4+的还原要早于Fe3+的还原,因此细菌的Mn还原过程发生在沉积物的更浅层.可溶的Fe2+和Mn2+向上扩散到海水中,替代碳酸盐岩晶格里的Ca2+,因此碳酸盐岩晶格中的Fe2+和Mn2+的含量受控于来自沉积物孔隙水的扩散,而后者又与水岩界面的氧化还原状态相关.因此可以预测,随着海水变得逐渐缺氧,碳酸盐岩中的Fe/Mn比值会逐渐增高.为了验证这一假说,我们分析了中元古代高于庄组白云岩的Fe/Mn比值.研究发现,几乎所有的样品的Fe/Mn比值介于20~30之间,显著高于泥盆纪末期深水碳酸盐岩和浅水台地碳酸盐岩的Fe/Mn比值.高于庄组碳酸盐岩高的Fe/Mn比值一方面可能指示了中元古代低的大气氧气浓度和海洋的广泛缺氧,也可能反映了白云岩形成于缺氧的沉积物空隙水里.  相似文献   

9.
As a result of the collapse of a mine tailing dam, a large extension of the Guadiamar valley was covered with a layer of pyritic sludge. Despite the removal of most of the sludge, a small amount remained in the soil, constituting a potential risk of water contamination. The kinetics of the sludge oxidation was studied by means of laboratory flow-through experiments at different pH and oxygen pressures. The sludge is composed mainly of pyrite (76%), together with quartz, gypsum, clays, and sulphides of zinc, copper, and lead. Trace elements, such as arsenic and cadmium, also constitute a potential source of pollution. The sludge is fine grained (median of 12 μm) and exhibits a large surface (BET area of 1.4±0.2 m2 g−1).

The dissolution rate law of sludge obtained is r=10−6.1(±0.3) [O2(aq)]0.41(±0.04) aH+0.09(±0.06) gsludge m−2 s−1 (22 °C, pH=2.5–4.7). The dissolution rate law of pyrite obtained is r=10−7.8(±0.3) [O2(aq)]0.50(±0.04) aH+0.10(±0.08) mol m−2 s−1 (22 °C, pH=2.5–4.7). Under the same experimental conditions, sphalerite dissolved faster than pyrite but chalcopyrite dissolves at a rate similar to that of pyrite. No clear dependence on pH or oxygen pressure was observed. Only galena dissolution seemed to be promoted by proton activity. Arsenic and antimony were released consistently with sulphate, except at low pH conditions under which they were released faster, suggesting that additional sources other than pyrite such as arsenopyrite could be present in the sludge. Cobalt dissolved congruently with pyrite, but Tl and Cd seemed to be related to galena and sphalerite, respectively.

A mechanism for pyrite dissolution where the rate-limiting step is the surface oxidation of sulphide to sulphate after the adsorption of O2 onto pyrite surface is proposed.  相似文献   


10.
Dissolution experiments of a tholeiite basalt glass carried out at different pH and T (up to 300°C) using a rotatingdisc apparatus show that, depending on pH and T, dissolution can be controlled by one of the following steps: (1) surface reaction; (2) transport of reactants in solution; and (3) mixed reaction. The activation energies of these different processes were found to be 60, 9 and 15–50 kJ mol−1, respectively. Taking account of these results, it appears likely that surface reactions are not rate limiting for the hydrolysis of most crystalline silicate minerals in hydrothermal and metamorphic processes, and that caution should be exercised when predicting rate of reactions at high temperatures solely on the basis of activation energies measured at low temperatures.

Comparison of experimental and theoretical potentiometric titrations of the basalt glass and its constituent oxides indicates that the adsorption of H+ and OH ions at the basalt surface is metal cation specific and that the net adsorption can be predicted from the sole knowledge of the acidity constants of the network-forming constituent oxides. We found that in the acidic pH region dissolution is promoted by the adsorption of H+ on al and Fe surface sites while in the basic region, dissolution is promoted by the adsorption of OH on Si sites. The combination of the two distinct types of surface sites, Al and Fe on the one hand, and Si on the other hand, results in a dissolution rate minimum at a pH-value between the pHzpc of the two groups of oxide components. Linear regressions with a slope n=3.8 are observed both in acid and alkaline solutions in logarithmic plots of the rate of dissolution vs. the surface charge. The value of n, which represents the number of protonation or hydroxylation steps prior to metal detachment, has been found equal to the mean valence of the network-forming metals.

Combining concepts of surface coordination chemistry with transition state theory afforded characterisation of the activated complexes involved in basalt dissolution processes. From the values obtained for the thermodynamic properties of activation for basalt dissolution it is assumed that the activated complexes formed during the H2O-promoted dissolution of the basalt glass are more tightly bonded than those formed during H+- or OH-promoted dissolution.  相似文献   


11.
鱼骨状方解石是一种特殊的碳酸盐沉积,由锯齿状亮暗交互的亚毫米级条带组成,主要见于太古宙。以往认为,鱼骨状方解石属无机化学沉淀成因,形成于水体缺氧、碳酸盐过饱和、富Fe2+、Mn2+等碳酸盐沉淀抑制剂的环境条件;在地质记录中其丰度随时间的减少反映了海洋的长期氧化趋势。文中首次在华北地台中元古界高于庄组四段微生物礁内发现了大量鱼骨状方解石。宏观观察表明,这些鱼骨状方解石主要以微生物礁孔洞充填物形式产出,明显区别于太古宙以海底沉淀形式直接产出在海底的鱼骨状方解石。显微研究发现,鱼骨状方解石晶体纤维具有沿晶体生长方向旋转消光特征,证明其内部亚晶的光学C轴从纤维底部的随机排列逐步旋转至上部垂直纤维生长方向。这符合球状晶体生长模式,需要方解石沉淀抑制剂的参与。鱼骨状方解石产出具有丰度随时间减少以及产出形式由海底沉淀向孔洞胶结物转变的特征。这些特征与海洋氧化逐渐增强以及具氧化还原敏感属性的碳酸盐沉淀抑制剂逐渐从水体中移除相吻合。笔者认为鱼骨状方解石的沉淀抑制剂为Fe2+和Mn2+,这与微生物岩无明显Ce异常和Fe2+极强的抑制能力相一致。因此,鱼骨状方解石可用于指示缺氧环境条件。此外,显微和超微研究也表明鱼骨状方解石晶体内存在有大量与其生长方向一致的菌丝体残余和与之密切伴生的有机矿物,表明微生物为鱼骨状方解石成核和初始沉淀提供了重要垫板。  相似文献   

12.
Ferric iron solid solution in synthetic orthopyroxene has been studied along the joins MgSiO3-Al2O3 · Fe2O3 and MgSiO3-Fe2O3. The partially reduced synthetic orthopyroxenes showed that major incorporation of ferric iron can only occur together with a concomitant incorporation of Al. Maximum solid solution of ferric iron along the join MgSiO3-Fe2O3 was found to be only 0.63 wt% Fe2O3 at 1000°C and 2 kb total pressure. From the observed Mössbauer parameters octahedral ferric iron can be assigned to the MI position in orthopyroxene. Incorporation of Fe3+ and/or Al will increase the disorder of Fe2+ and Mg between the M1 and M2 sites, which is also observed in a ferric iron-containing aluminous orthopyroxene of metamorphic origin. In the assemblage orthopyroxene + sillimanite + quartz the ferric iron content of orthopyroxene is directly related to oxygen fugacity.  相似文献   

13.
Erling Krogh Ravna 《Lithos》2000,53(3-4):265-277
Multiple regression analysis of a compilation of the Fe2+–Mg distribution between garnet and hornblende from experimental runs on basaltic to intermediate compositions (n=22) and coexisting garnet–clinopyroxene–hornblende from natural (intermediate to basaltic) rocks (n=43) has been performed to define ln KD(Fe2+/Mg)Grt–Hbl as a function of temperature and garnet composition. The regression of data covering a large span in pressure (5–16 kbar), temperature (515–1025°C) and composition yields the ln KD(Fe2+/Mg)Grt–HblPT compositional relationship (r2=0.93):
where

Application of this expression to natural garnet–hornblende pairs in intermediate to basaltic and semipelitic rock types from various settings gives temperatures that are consistent with other methods.  相似文献   


14.
A decrease in temperature (ΔT up to 45.5 °C) and chloride concentration (ΔCl up to 4.65 mol/l) characterises the brine–seawater boundary in the Atlantis-II, Discovery, and Kebrit Deeps of the Red Sea, where redox conditions change from anoxic to oxic over a boundary layer several meters thick. High-resolution (100 cm) profiles of the methane concentration, stable carbon isotope ratio of methane, and redox-sensitive tracers (O2, Mn4+/Mn2+, Fe3+/Fe2+, and SO42−) were measured across the brine–seawater boundary layer to investigate methane fluxes and secondary methane oxidation processes.

Substantial amounts of thermogenic hydrocarbons are found in the deep brines (mostly methane, with a maximum concentration up to 4.8×105 nmol/l), and steep methane concentration gradients mainly controlled by diffusive flow characterize the brine–seawater boundary (maximum of 2×105 nmol/l/m in Kebrit Deep). However, locally the actual methane concentration profiles deviate from theoretical diffusion-controlled concentration profiles and extremely positive δ13C–CH4 values can be found (up to +49‰ PDB in the Discovery Deep). Both, the actual CH4 concentration profiles and the carbon-13 enrichment in the residual CH4 of the Atlantis-II and Discovery Deeps indicate consumption (oxidation) of 12C-rich CH4 under suboxic conditions (probably utilizing readily available—up to 2000 μmol/l—Mn(IV)-oxihydroxides as electron acceptor). Thus, a combined diffusion–oxidation model was used to calculate methane fluxes of 0.3–393 kg/year across the brine–seawater boundary layer. Assuming steady-state conditions, this slow loss of methane from the brines into the Red Sea bottom water reflects a low thermogenic hydrocarbon input into the deep brines.  相似文献   


15.
Cordierite samples from pegmatites and metamorphic rocks have been analysed for major [electron microprobe analysis (EMPA)] and trace elements [inductively coupled plasma mass spectrometry (ICP-MS), secondary ion mass spectrometry analyses (SIMS)] as well as for H2O and CO2 (coulometric titration), and the results evaluated in conjunction with published data in order to determine which exchange mechanisms are significant. Apart from the homovalent substitutions FeMg−1 and MnMg−1 on the octahedral site, some minor KNa−1 on the Ch0 channel site, and Fe3+Al−1 on the T11 tetrahedral site, the three most important substitution mechanisms are those for the incorporation of Li on the octahedral sites (NaLi□−1Mg−1), and of Be and other divalent cations on the tetrahedral T11 site (NaBe□−1Al−1 and Na(Mg,Fe2+)□−1Al−1). The dominant role of the last vector is clearly demonstrated. We propose a new generalized formula for cordierite: Ch(Na,K)0–1 VI(Mg,Fe2+,Mn,Li)2 IVSi5 IVAl3 IV(Al, Be, Mg, Fe2+, Fe3+)O18 *xCh(H2O, CO2…). Our results show that the population of (Mg, Fe2+) on the T11-site is limited to about 0.08 a.p.f.u. Other exchange mechanisms that were encountered in experiments operate only under PT conditions or in bulk compositions that are rarely realized in nature. Routine analyses by electron microprobe in which Li and Be are not determined can be plotted as (Mg+Fe+Mn) versus (Si+Al) to assess whether significant amounts of Li and Be could be present. These amounts can be calculated as Li (a.p.f.u.)=Al+Na–4 and Be (a.p.f.u.)=10–2Al–M2+–Na.  相似文献   

16.
The exchange of Fe2+ and Mg2+ between orthopyroxene and sapphirine has been investigated at pressures 7-16 kbar and temperatures 850-1300°C using a piston cylinder apparatus for the synthetic and natural systems. This reaction is temperature-dependent and would be a good geothermometer. The equilibration temperature T is approximately expressed by the distribution coefficient as follows: T(°C)=1515/(ln KD+0.943)-273.

This empirical equation was applied to some Antarctic granulites and associated rocks. The new orthopyroxene-sapphirine geothermometer gives consistent results with those estimated from the Fe-Mg orthopyroxene-garnet geothermometer.  相似文献   


17.
为探析长江口沉积物-水界面砷的迁移转化机制,本文分析了2019年夏季长江口4个站位上覆水和间隙水中总As浓度及形态的剖面变化特征,耦合氧化还原敏感元素(Fe、Mn和S)的剖面变化剖析了沉积物-水界面砷循环的Fe-Mn-S控制机制,同时结合砷相关功能基因探讨了沉积物-水界面砷迁移转化的微生物调控过程,估算了沉积物-水界面总As的扩散通量。结果表明,除A7-4站位外,长江口其他3个站位间隙水总As以As3+为主要存在形态,且总As浓度均在上覆水中为最低值(0.748~1.57 μg·L-1),而在间隙水中随着深度增加而逐渐增加并在6~9 cm深度达到峰值(7.14~26.9 μg·L-1)。间隙水总As及As3+浓度的剖面变化趋势与溶解态Fe2+、Mn2+相似,其均在中间层出现高值,说明沉积物Fe/Mn还原带砷的释放可能是随固相Fe(Ⅲ)或Mn(Ⅳ)的还原而转移到间隙水中的。氧化层和Fe/Mn还原带过渡区间隙水砷浓度与砷异化还原菌功能基因arrAarsC丰度存在对应关系(除A1-3站外),说明砷异化还原菌将溶解As5+或固相As5+还原为溶解As3+可能是该过渡层砷迁移转化的另一重要过程。硫酸盐还原带的间隙水总As和As3+浓度降低,但由于间隙水的低S2-浓度不利于砷硫化物生成,因此深层间隙水砷可能与铁硫矿物结合而被移除。底层环境氧化还原条件是影响沉积物-水界面砷迁移转化的重要因素,随底层水DO浓度的降低,砷迁移转化更倾向于微生物还原控制。长江口沉积物-水界面总As的扩散通量为1.18×10-7~2.07×10-7 μmol·cm-2·s-1,均表现为沉积物间隙水中总As向上覆水释放,即沉积物是研究区域水体总As的来源之一。  相似文献   

18.
Deformed rocks of the Itabira Iron Formation (itabirites) in Brazil show microstructural evidence of pressure solution of quartz and iron oxides; it appears that magnetite was dissolved and hematite precipitated. The dissolution of magnetite seems to be related to its transformation to hematite by oxidation of Fe2+ to Fe3+. The transformation of magnetite to hematite occurs along {111} planes, and results in the development of hematite domains along {111} that are parallel to the foliation. The difference in volume created by the transformation of magnetite to hematite and the shear stress acting on the interphase boundaries allow fluids to migrate along these planes. The dissolution of magnetite involves the hydrolyzation of the Fe2+—O bonds at interphase boundaries of high normal stress. The high fugacity of oxygen in the fluid phase promotes the reaction of Fe2+ (in solution) with oxygen. Fe2+ ions oxidize to Fe3+ and precipitate as hematite platelets with their longest axes oriented parallel to the direction of maximum stretching. The transformation of magnetite to hematite during deformation plays an important role in the fabric evolution of the iron formation rocks. The transformation along {111} creates planes of weakness that facilitate fracturing. The fracturing plus the dissolution result in a reduction of magnetite grain size, and the oriented precipitation results in layers of hematite platelets. These processes produce a new fabric characterized by a penetrative foliation and lineation.  相似文献   

19.
骆少勇  周跃飞  刘星 《地学前缘》2020,27(5):218-226
通过在滇池开展原位实验,研究探讨了湖泊沉积物中磷灰石制约水铁矿分解和转化的机制,以及二者共存时的环境效应。结果表明:将水铁矿放置到沉积物中1个月,矿物保持稳定;放置时间达到3个月时,添加磷灰石实验中水铁矿发生了显著物相转变。冬天(12—2月)实验中,转化产物随深度的变化趋势为针铁矿+磁(赤)铁矿→针铁矿+纤铁矿→针铁矿;夏天(6—9月)实验中,转化产物随深度的变化趋势为针铁矿+纤铁矿+磁(赤)铁矿→针铁矿+纤铁矿→未转化。透射电镜分析结果显示冬天实验中生成的磁性铁氧化物为纳米磁铁矿和磁赤铁矿,夏天实验中产生的则主要为纳米磁铁矿。X射线光电子能谱分析结果显示冬天表层实验样品具有较高P含量。分析表明的湖泊沉积物中磷灰石促进水铁矿转化的过程为:(1)微生物促进磷灰石溶解;(2)磷灰石溶解释放的P促进铁还原菌生长;(3)铁还原菌促进水铁矿还原;(4)水铁矿还原产生的溶解态Fe2+催化水铁矿向针铁矿、纤铁矿和磁铁矿转化。冬天及沉积氧化-还原界面最适宜磷灰石分解菌和铁还原菌生长,水铁矿的转化和P释放能力也更强,相应地内源磷释放的风险也更大。  相似文献   

20.
青海省东昆仑造山带洪水河铁矿床为一中型铁矿床,其含铁建造产于狼牙山组千枚岩中,矿石类型主要为块状磁铁石英岩型,少量为条带状磁铁石英岩型,前人一般认为其属于沉积变质型铁矿床。本文在前人研究基础上,对洪水河铁矿区含铁建造中块状铁矿石进行了铁同位素、主量元素、稀土元素和微量元素分析。结果显示:除1件样品外,其余含铁建造样品的铁同位素δ56FeIRMM014均介于0.97‰~1.97‰之间,和全球典型新元古代含铁建造的Fe同位素特征基本一致;铁矿石的SiO2+Fe2O3质量分数高达78.56%~98.06%,具有极低的Al/(Al+Fe+Mn)值(0.00~0.06),为典型的化学沉积岩;总稀土元素(w (∑REE))变化范围为(16.49~80.89)×10-6,没有明显的Ce异常(Ce/Ce*为0.93~1.05),轻稀土元素轻微亏损,显示出类似新元古代含铁建造型的特点。综合对比洪水河铁矿区含铁建造的Fe同位素组成、沉积时代和地球化学特征,推断洪水河铁矿区含铁建造的沉积环境为新元古代柴达木—东昆北陆块的被动大陆边缘构造环境,铁等成矿物质主要来源于海相热液流体;富含Fe2+的海相热液流体上涌并逐渐演变为低温热液后在亚氧化水体环境中与含氧海水混合,最后导致Fe2+被部分氧化并形成氢氧化铁,氢氧化铁逐渐沉积在大陆斜坡上最终形成含铁建造。洪水河铁矿的成因类型可划归为拉皮坦型新元古代含铁建造。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号