首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Anita L Cochran  Faith Vilas 《Icarus》2004,167(2):360-368
We present spectral observations of Minor Planet 4 Vesta, of five V-type asteroids which are physically near Vesta, and of two V-type NEAs. We use these spectra to determine the presence or absence of a weak feature at 506.5 nm which is indicative of the presence of spin-forbidden Fe2+ in sixfold coordination. As with our earlier observations [Cochran and Vilas, Icarus 134 (1998) 207-212], we find this feature at all observed rotational phases of Vesta and again see the trend that spectra at longitudes between 240° and 360° have a smaller 506.5 nm feature equivalent width than spectra obtained at other longitudes. Additionally, we searched for this feature in V-class main-belt and NEA asteroids and positively detected the feature in main-belt Asteroid 2579 Spartacus and possibly in 3376 Armandhammer. The other objects lacked the feature. Our results are compared with previous observations of this feature by Vilas et al. [Icarus 147 (2000) 119-128]. The spatial distribution of the bodies as a function of the presence of this feature was investigated. We discuss the implication of the presence of this feature and the depth of the 0.9 μm pyroxene band for the scenario that pieces of Vesta were transported, via the 3:1 and ν6 resonances, to the NEAs, and thence to inclusion in our meteorite collections as HED meteorites.  相似文献   

2.
V-type asteroids in the inner Main Belt (a < 2.5 AU) and the HED meteorites are thought to be genetically related to one another as collisional fragments from the surface of the large basaltic Asteroid 4 Vesta. We investigate this relationship by comparing the near-infrared (0.7-2.5 μm) spectra of 39 V-type asteroids to laboratory spectra of HED meteorites. The central wavelengths and areas spanned by the 1 and 2 μm pyroxene-olivine absorption bands that are characteristic of planetary basalts are measured for both the asteroidal and meteoritic data. The band centers are shown to be well correlated, however the ratio of areas spanned by the 1 and 2 μm absorption bands are much larger for the asteroids than for the meteorites. We argue that this offset in band area ratio is consistent with our currently limited understanding of the effects of space weathering, however we cannot rule out the possibility that this offset is due to compositional differences. Several other possible causes of this offset are discussed.Amongst these inner Main Belt asteroids we do not find evidence for non-Vestoid mineralogies. Instead, these asteroids seem to represent a continuum of compositions, consistent with an origin from a single differentiated parent body. In addition, our analysis shows that V-type asteroids with low inclinations (i < 6°) tend to have band centers slightly shifted towards long wavelengths. This may imply that more than one collision on Vesta’s surface was responsible for producing the observed population of inner belt V-type asteroids. Finally, we offer several predictions that can be tested when the Dawn spacecraft enters into orbit around Vesta in the summer of 2011.  相似文献   

3.
本文采用了合理的力学模型和可靠的计算方法,研究了近地小行星轨道运动,揭示了共振(轨道共振和长期共振)在其轨道演化中的作用,并初步探讨了近地小行星的起源问题。  相似文献   

4.
Abstract— The compelling petrographic link (Consolmagno and Drake, 1977; Gaffey, 1983) between basaltic achondrite meteorites and the ~530 km diameter asteroid 4 Vesta has been tempered by a perceived difficulty in launching rocks from this asteroid's surface at speeds sufficient to bring them to Earth (Wasson and Wetherill, 1979) without obliterating Vesta's signature crust. I address this impasse in response to recent imaging (Zellner et al, 1996; Dumas and Hainaut, 1996) of a ~450 km impact basin across Vesta's southern hemisphere (Thomas et al., 1997) and model the basin-forming collision using a detailed two-dimensional hydrocode with brittle fracture including self-gravitational compression (cf., Asphaug and Melosh, 1993). A ~42 km diameter asteroid striking Vesta's basaltic crust (atop a denser mantle and iron core) at 5.4 km/s launches multikilometer fragments up to ~600 m/s without inverting distal stratigraphy, according to the code. This modeling, together with collisional, dynamical, rheological and exposure-age timescales (Marzari et al., 1996; Welten et al., 1996), and observations of V-type asteroids (Binzel and Xu, 1993) suggests a recent (<~1 Ga) impact origin for the Vesta family and a possible Vesta origin for Earth-approaching V-type asteroids (Cruik-shank et al., 1991).  相似文献   

5.
The howardite‐eucrite‐diogenite (HED) clan of meteorites, which most likely originate from the asteroid Vesta, provide an opportunity to combine in‐depth sample analysis with the comprehensive remote‐sensing data set from NASA's recent Dawn mission. Miller Range (MIL) 11100, an Antarctic howardite, contains diverse rock and mineral fragments from common HED lithologies (diogenites, cumulate eucrites, and basaltic eucrites). It also contains a rare pyroxferroite‐bearing lithology—not recognized in HED until recently—and rare Mg‐rich (Fo86‐91) olivine crystals that possibly represent material excavated from the Vestan mantle. Clast components underwent different histories of thermal and impact metamorphism before being incorporated into this sample, reflecting the diversity in geological histories experienced by different parts of Vesta. The bulk chemical composition and petrography of MIL 11100 suggest that it is akin to the fragmental howardite meteorites. The strong lithological heterogeneity across this sample suggests that at least some parts of the Vestan regolith show heterogeneity on the mm‐scale. We combine the outcomes of this study with data from NASA's Dawn mission and hypothesize on possible source regions for this meteorite on the surface of Vesta.  相似文献   

6.
We have numerically integrated the orbits of 18 fictitious fragments ejected from the asteroid 6 Hebe, an S-type object about 200km across which is located very close to theg=g 6 (orv 6) secular resonance at a semimajor axis of 2.425AU and a (proper) inclination of 15° .0. A realistic ejection velocity distribution, with most fragments escaping at relative speeds of a few hundredsm/s, has been assumed. In four cases we have found that the resonance pumps up the orbital eccentricity of the fragments to values >0.6, which result into Earth-crossing, within a time span of 1Myr; subsequent close encounters with the Earth cause strongly chaotic orbital evolution. The closest Earth and Mars encounters recorded in our integration occur at miss distances of a few thousandths ofAU, implying collision lifetimes <109 yr. Some other fragments affected by the secular resonance become Mars-crossers but not Earth-crossers over the integration time span. Two bodies are injected into the 3 : 1 mean motion resonance with Jupiter, and also display macroscopically chaotic behaviour leading to Earth-crossing. 6 Hebe is the first asteroid for which a realistic collisional/dynamical evolutionroute to generate meteorites has been fully demonstrated. It may be the parent body of one of the ordinary chondrite classes.  相似文献   

7.
In the last three years we have carried out numerical and semi-analytical studies on the secular dynamical mechanisms in the region (semimajor axis a < 2 AU) where the NEA orbits evolve. Our numerical integrations (over a time span of a few Myr) have shown that: (i) the linear secular resonances with both the inner and the outer planets may play an important role in the dynamical evolution of NEAs; (ii) the apsidal secular resonance with Mars could provide an important dynamical transport mechanism by which asteroids in the Mars-crossing region eventually achieve Earth-crossing orbits; (iii) in this region, due to the interaction with the terrestrial planets, the Kozai resonance can occur at small inclinations, with the argument of perihelion ω librating around 0° or 180°, providing a temporary protection mechanism against close approaches to the planets. The location of the linear secular resonances in this zone has also been obtained by an automatic procedure using a semi-numerical method valid for all values of the inclinations and eccentricities of the small bodies, and also in the case of libration of the argument of perihelion. A map of the secular resonances in the (a, i) plane shows — in agreement with the numerical integrations — that all the resonances with the terrestrial and giant planets are present, and also that some of them overlap. Thus the way is now open to fully take into account secular resonances in modelling the dynamical evolution of NEAs. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
In this paper, we present the first correlation of derived mineral abundances of V-class Asteroid 1929 Kollaa, 4 Vesta, and the HED meteorites. We demonstrate that 1929 Kollaa has a basaltic composition consistent with an origin within the crustal layer of 4 Vesta, and show a plausible genetic connection between Kollaa and the cumulate eucrite meteorites. These data support the proposed delivery mechanism of HED meteorites to the Earth from Vesta, and provide the first mineralogical constraint derived from the observation of a small V-class, Vesta family asteroid on the crustal thickness of 4 Vesta.  相似文献   

9.
Establishing connections between meteorites and their parent asteroids is an important goal of planetary science. Several links have been proposed in the past, including a spectroscopic match between basaltic meteorites and (4) Vesta, that are helping scientists understand the formation and evolution of the Solar System bodies. Here we show that the shocked L chondrite meteorites, which represent about two thirds of all L chondrite falls, may be fragments of a disrupted asteroid with orbital semimajor axis a=2.8 AU. This breakup left behind thousands of identified 1–15 km asteroid fragments known as the Gefion family. Fossil L chondrite meteorites and iridium enrichment found in an ≈467 Ma old marine limestone quarry in southern Sweden, and perhaps also ∼5 large terrestrial craters with corresponding radiometric ages, may be tracing the immediate aftermath of the family-forming collision when numerous Gefion fragments evolved into the Earth-crossing orbits by the 5:2 resonance with Jupiter. This work has major implications for our understanding of the source regions of ordinary chondrite meteorites because it implies that they can sample more distant asteroid material than was previously thought possible.  相似文献   

10.
Abstract— We give a nonmathematical review of recent work regarding the Yarkovsky effect on asteroidal fragments. This effect may play a critical, but underappreciated, role in delivering meteorites to Earth. Two variants of the effect cause drifts in orbital elements, notably semimajor axes. The “classic” or “diurnal” Yarkovsky effect is associated with diurnal rotation at low obliquity. More recently, a “seasonal” effect has also been described, associated with high obliquity. Studies of these Yarkovsky effects are combined with studies of resonance effects to clarify meteorite delivery. If there were no Yarkovsky drift, asteroid fragments could reach a resonance only if produced very near that resonance. However, objects in resonances typically reach Earth-crossing orbits within a few million years, which is inconsistent with stone meteorites' cosmic-ray exposure (CRE) ages (5–50 Ma) and iron meteorites' CRE ages (100–1000 Ma). In the new view, on the other hand, large objects in the asteroid belt are “fixed” in semimajor axis, but bodies up to 100 m in diameter are in a constant state of mixing and flow, especially if the thermal conductivity of their surface layers is low. Thus, small asteroid fragments may reach the resonances after long periods of drift in the main belt. Yarkovsky drift effects, combined with resonance effects, appear to explain many meteorite properties, including: (1) the long CRE ages of iron meteorites (due to extensive drift lifetimes in the belt); (2) iron meteorites' sampling of numerous parent bodies; (3) the shorter CRE ages of most stone meteorites (due to faster drift, coupled with weaker strength and more rapid collisional erosion); and (4) the abundance of falls from discrete impact events near resonances, such as the 8 Ma CRE age of H chondrites. Other consequences include: the delivery of meteorite parent bodies to resonances is enhanced; proportions of stone and iron meteorites delivered to Earth may be different from the proportions at the same sizes left in the belt, which in turn may differ from the ratio produced in asteroidal collisions; Rabinowitz's 10–100 m objects may be preferentially delivered to near-Earth space; and the delivery of C-class fragments from the outer belt may be inhibited, compared to classes in other parts of the belt. Thus, Yarkovsky effects may have important consequences in meteoritics and asteroid science.  相似文献   

11.
Spectroscopic observations of Asteroid (4) Vesta and numerous members of the Vesta family located in the inner asteroid belt have determined that these objects have reflectance properties of basaltic material. A plausible hypothesis is that the surface of Vesta was punctured by large impacts in the past which dispersed fragments of its basaltic crust into space and produced one of the most prominent asteroid families ever created in the belt. Until recently, Vesta was the only known object in the asteroid belt which underwent differentiation and survived to the present epoch. Since 2000, many new small basaltic asteroids have been discovered in the inner and outer parts of the asteroid belt, possibly representing fragments from distinct differentiated bodies. These discoveries may help us to better understand the number and nature of objects in the inner Solar System that underwent geological differentiation. To investigate these issues we performed extensive numerical simulations whose aim was to reproduce, as precisely as possible, the dynamical evolution of Vesta's ejected fragments over timescales comparable to the family's age. Specifically, we numerically integrated the orbital evolution of 6600 test bodies with orbits that started within the Vesta family and dynamically evolved over 2 Gy. Our model included gravitational perturbation of all planets (except Mercury) and the Yarkovsky effect. The results show that a relatively large fraction of the original Vesta family members may have evolved out of the family borders defined by clustering algorithms and are now dispersed over the inner asteroid belt. We compared the orbital distribution of our model fragments with the orbital locations of known basaltic asteroids in various parts of the inner main belt to find that: (i) Most basaltic asteroids with semimajor axis located outside the Vesta family's borders in the inner main belt, including (809) Lundia and (956) Elisa, are most likely fugitives from the Vesta family that have evolved to their current orbits via various identified dynamical pathways. Our results also suggest that the Vesta family is at least ∼1 Gy old. (ii) Interestingly, orbits of many basaltic asteroids with , like those of (4796) Lewis and (5379) Abehiroshi, are displaced from the Vesta family to low inclinations and are not obtained in our simulations with sufficient efficiency. We propose that: (i) these small basaltic asteroids may be fragments of differentiated bodies other than (4) Vesta; or (ii) they were liberated from the Vesta's surface before (or during) the Late Heavy Bombardment epoch ∼3.8 Gy ago and their orbital inclinations separated from that of Vesta when secular resonances swept through the region.  相似文献   

12.
A search for the most likely parent bodies of multi-km near-Earth asteroids (NEAs) is attempted, in the framework of a scenario based on a few simple assumptions. (1) Multi-km NEAs are produced by collisional fragmentation of single parent bodies. (2) The fragments are injected into either the 3/1 mean-motion resonance with Jupiter or the ν6 secular resonance, or they achieve Mars-crossing orbits. (3) The collisional events responsible for the production of multi-km NEAs do not produce observable dynamical families. We show that a limited number of potential parent bodies of multi-km NEAs compatible with the above assumptions do exist in the asteroid Main Belt. It is not clear whether these objects can likely explain the current inventory of known NEAs having sizes around 1-2 km. Our results seem to indicate that the assumed scenario is not completely adequate to justify the number of observed NEAs larger than 2 km. This preliminary analysis must be complemented by a more precise analysis of the rates of occurrence of NEA-feeding events. If present results are confirmed, the conclusion that the origin of multi-km NEAs must be explained by different models, based on long-term dynamical diffusion produced by the interplay of collisional, gravitational, and nongravitational mechanisms in the Main Belt, plus a possible cometary contribution, will be strengthened.  相似文献   

13.
In Wisdom (2017), I presented new simulations of meteorite transport from the chaotic zones associated with major resonances in the asteroid belt: the ν6 secular resonance, the 3:1 mean motion resonance with Jupiter, and the 5:2 mean motion resonance with Jupiter. I found that the observed afternoon excess (the fact that approximately twice as many meteorites fall in the afternoon as in the morning) of the ordinary chondrites is consistent with chaotic transport from the 3:1 resonance, contradicting prior reports. Here I report an additional study of the transport of meteorites from ν6 secular resonance and the 3:1 mean motion resonance. I use an improved integration algorithm, and study the evolution of more particles. I confirm that the afternoon excess of the ordinary chondrites is consistent with transport from the 3:1 resonance.  相似文献   

14.
Abstract— Many lines of evidence indicate that meteorites are derived from the asteroid belt but, in general, identifying any meteorite class with a particular asteroid has been problematical. One exception is asteroid 4 Vesta, where a strong case can be made that it is the ultimate source of the howardite‐eucrite‐diogenite (HED) family of basaltic achondrites. Visible and near‐infrared reflectance spectra first suggested a connection between Vesta and the basaltic achondrites. Experimental petrology demonstrated that the eucrites (the relatively unaltered and unmixed basaltic achondrites) were the product of approximately a 10% melt. Studies of siderophile element partitioning suggested that this melt was the residue of an asteroidal‐scale magma ocean. Mass balance considerations point to a parent body that had its surface excavated, but remains intact. Modern telescopic spectroscopy has identified kilometer‐scale “Vestoids” between Vesta and the 3:1 orbit‐orbit resonance with Jupiter. Dynamical simulations of impact into Vesta demonstrate the plausibility of ejecting relatively unshocked material at velocities consistent with these astronomical observations. Hubble Space Telescope images show a 460 km diameter impact basin at the south pole of Vesta. It seems that nature has provided multiple free sample return missions to a unique asteroid. Major challenges are to establish the geologic context of the HED meteorites on the surface of Vesta and to connect the remaining meteorites to specific asteroids.  相似文献   

15.
F. Roig  D. Nesvorný  R. Gil-Hutton 《Icarus》2008,194(1):125-136
V-type asteroids are bodies whose surfaces are constituted of basalt. In the Main Asteroid Belt, most of these asteroids are assumed to come from the basaltic crust of Asteroid (4) Vesta. This idea is mainly supported by (i) the fact that almost all the known V-type asteroids are in the same region of the belt as (4) Vesta, i.e., the inner belt (semi-major axis 2.1<a<2.5 AU), (ii) the existence of a dynamical asteroid family associated to (4) Vesta, and (iii) the observational evidence of at least one large craterization event on Vesta's surface. One V-type asteroid that is difficult to fit in this scenario is (1459) Magnya, located in the outer asteroid belt, i.e., too far away from (4) Vesta as to have a real possibility of coming from it. The recent discovery of the first V-type asteroid in the middle belt (2.5<a<2.8 AU), (21238) 1995WV7 [Binzel, R.P., Masi, G., Foglia, S., 2006. Bull. Am. Astron. Soc. 38, 627; Hammergren, M., Gyuk, G., Puckett, A., 2006. ArXiv e-print, astro-ph/0609420], located at ∼2.54 AU, raises the question of whether it came from (4) Vesta or not. In this paper, we present spectroscopic observations indicating the existence of another V-type asteroid at ∼2.53 AU, (40521) 1999RL95, and we investigate the possibility that these two asteroids evolved from the Vesta family to their present orbits by a semi-major axis drift due to the Yarkovsky effect. The main problem with this scenario is that the asteroids need to cross the 3/1 mean motion resonance with Jupiter, which is highly unstable. Combining N-body numerical simulations of the orbital evolution, that include the Yarkovsky effect, with Monte Carlo models, we compute the probability that an asteroid of a given diameter D evolves from the Vesta family and crosses over the 3/1 resonance, reaching a stable orbit in the middle belt. Our results indicate that an asteroid like (21238) 1995WV7 has a low probability (∼1%) of having evolved through this mechanism due to its large size (D∼5 km), because the Yarkovsky effect is not sufficiently efficient for such large asteroids. However, the mechanism might explain the orbits of smaller bodies like (40521) 1999RL95 (D∼3 km) with ∼70-100% probability, provided that we assume that the Vesta family formed ?3.5 Gy ago. We estimate the debiased population of V-type asteroids that might exist in the same region as (21238) and (40521) (2.5<a?2.62 AU) and conclude that about 10 to 30% of the V-type bodies with D>1 km may come from the Vesta family by crossing over the 3/1 resonance. The remaining 70-90% must have a different origin.  相似文献   

16.
We present the observational results of a survey designed to target and detect asteroids whose photometric colors are similar to those of Vesta family members and thus may be considered as candidates for having a basaltic composition. Fifty basaltic candidates were selected with orbital elements that lie outside of the Vesta dynamical family. Optical and near-infrared spectra were used to assign a taxonomic type to 11 of the 50 candidates. Ten of these were spectroscopically confirmed as V-type asteroids, suggesting that most of the candidates are basaltic and can be used to constrain the distribution of basaltic material in the Main Belt. Using our catalog of V-type candidates and the success rate of the survey, we calculate unbiased size-frequency and semi-major axis distributions of V-type asteroids. These distributions, in addition to an estimate for the total mass of basaltic material, suggest that Vesta was the predominant contributor to the basaltic asteroid inventory of the Main Belt, however scattered planetesimals from the inner Solar System (a<2.0 AU) and other partially/fully differentiated bodies likely contributed to this inventory. In particular, we infer the presence of basaltic fragments in the vicinity of Asteroid 15 Eunomia, which may be derived from a differentiated parent body in the middle Main Belt (2.5<a<2.8). We find no asteroidal evidence for a large number of previously undiscovered basaltic asteroids, which agrees with previous theories suggesting that basaltic fragments from the ∼100 differentiated parent bodies represented in meteorite collections have been “battered to bits” [Burbine, T.H., Meibom, A., Binzel, R.P., 1996. Meteorit. Planet. Sci. 31, 607-620].  相似文献   

17.
We discuss the main mechanisms affecting the dynamical evolution of Near-Earth Asteroids (NEAs) by analyzing the results of three numerical integrations over 1 Myr of the NEA (4179) Toutatis. In the first integration the only perturbing planet is the Earth. So the evolution is dominated by close encounters and looks like a random walk in semimajor axis and a correlated random walk in eccentricity, keeping almost constant the perihelion distance and the Tisserand invariant. In the second integration Jupiter and Saturn are present instead of the Earth, and the 3/1 (mean motion) and v 6 (secular) resonances substantially change the eccentricity but not the semimajor axis. The third, most realistic, integration including all the three planets together shows a complex interplay of effects, with close encounters switching the orbit between different resonant states and no approximate conservation of the Tisserand invariant. This shows that simplified 3-body or 4-body models cannot be used to predict the typical evolution patterns and time scales of NEAs, and in particular that resonances provide some “fast-track” dynamical routes from low-eccentricity to very eccentric, planet-crossing orbits.  相似文献   

18.
S. Marchi  M. Lazzarin  S. Magrin 《Icarus》2005,175(1):170-174
We present new visible and near-infrared spectroscopic observations of 4 small, previously unclassified, near-Earth objects (NEOs). They appear to have basaltic surfaces, and hence they can be classified as V-types. Their visible spectra exhibit a closer spectral match with the Main-Belt (MB) Asteroid (4) Vesta than the other, presently known, V-type NEOs and MB asteroids. The near-infrared spectrum of Asteroid 2003 FT3 shows—for the first time among NEOs—a peculiar shape of the 1 μm band, maybe suggesting an overabundance of olivine compared to the other V-types and to (4) Vesta. The presence of V-type objects among NEOs may be a consequence of the delivery processes connecting the inner MB to the near-Earth region. On the basis of the orbital parameters of the NEOs presented here, both the resonances (3:1 and ν6), usually considered as the most relevant gateways for the production of near-Earth asteroids, should have been active to transfer the bodies from the MB region.  相似文献   

19.
We review theoretical and numerical results obtained for secular resonant motion in the asteroidal belt. William's theory (1969) yields the locations of the principal secular resonances 5, 6, and 16 in the asteroidal belt. Theories by Nakai and Kinoshita (1985) and by Yoshikawa (1987) allow us to model the basic features of orbital evolution at the secular resonances 16 and 6, respectively. No theory is available for the secular resonance v5. Numerical experiments by Froeschlé and Scholl yield quantitative and new qualitative results for orbital evolutions at the three principal secular resonances 5, 6, and 16. These experiments indicate possible chaotic motion due to overlapping resonances. A secular resonance may overlap with another secular resonance or with a mean motion resonance. The role of the secular resonances as possible sources of meteorites is discussed.  相似文献   

20.
The orbital evolution of asteroidal fragments with diameters ranging from 10 cm to 20 km, injected into the 3:1 Kirkwood gap at 2.50 A.U., has been investigated using Monte Carlo techniques. It is assumed that this material can become Earth-crossing on a time scale of 106 years, as a result of a chaotic zone discovered by Wisdom, associated with the 3:1 resonance. This phenomenon, as well as close encounter planetary perturbations, the v6 secular resonance, and the ablative effects of the Earth's atmosphere are included in the determination of the orbital characteristics of meteorites impacting the Earth derived by fragmentation of this asteroidal material. It is found that the predicted meteorite orbits closely match those found for observed ordinary chondrites, and the total flux is in approximate agreement with the observed fall rate of ordinary chondrites. About 10% of the predicted impacting bodies are meteorite-size bodies originating directly from the asteroid belt. The remainder are obtained by subsequent fragmentation of larger (~1 m to 20 km diameter) Earth-crossing asteroidal fragments. The largest of these fragments are observable as Apollo-Amor objects. Thus the apparent paradox between the orbital characteristics of observed ordinary chondrites and those predicted from Apollo object sources is reconciled. Both appear to be complementary aspects of the same phenomena. No other asteroidal resonance is found to be satisfactory as a source of ordinary chondrites. These meteorites are therefore most likely to be derived from S asteroids in this limited region of the asteroidal belt, the largest of which are 11 Parthenope, 17 Thetis, and 29 Amphitrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号