首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The April 3, 1998 Mw = 5.1 Gualdo Tadino earthquake (central Italy) was the last significant event in the 6-month-long Umbria–Marche seismic crisis. This event and its aftershocks occurred in an area where active faulting produces no striking geological and geomorphological effects. In this study, we investigated the ruptured fault using detailed seismological data and a re-processed and re-interpreted seismic reflection profile. Aftershock location and focal mechanisms were used to constrain the geometry and kinematics of the ruptured fault and a comparison was made with the subsurface image provided by the seismic profile. We found that the 1998 Gualdo Tadino earthquake occurred on a WSW-dipping, normal fault, with a length of about 8 km and a relatively gentle dip (30°–40°), confined between 3.5 and 7 km in depth. Kinematics of the mainshock and aftershocks revealed a NE-trending extension, in agreement with the regional stress field active in the Northern Apennines belt. The Mw = 5.1 earthquake originated above the top of the basement and ruptured within the sedimentary cover, which consists of an evaporites–carbonates multilayer. We hypothesised that the active fault does not reach the surface (blind normal fault).  相似文献   

2.
玉树地震序列重新定位及其地震构造研究   总被引:3,自引:0,他引:3  
对玉树地震序列自2010年4月11日至9月15日由台网记录到的1 832个地震采用双差地震定位法进行重新定位,获得了1 670个地震重新定位的震源参数。重新定位后的震源深度主要分布在15 km以内。重新定位后的Ms 7.1级主震发生在无地表破裂段,余震活动向两侧破裂扩展。余震沿地表破裂带基本呈线性分布,剖面上显示为近垂直的结构面,在北西端无地表破裂出露处,出现近垂直于断裂方向较宽的北东向地震密集带。震源机制解显示的主压应力方向斜交地表破裂带,地表破裂与震源破裂都表现为纯左旋走滑的错动性质,而在北西端主压应力方向偏转为近垂直于断裂带的方向,此处较宽的北东向地震密集带可能由近东西与南北两个方向的共轭破裂所组成。余震的后期活动与发展并不局限于主震形成的破裂带内,更多的受局部应力调整被触发而产生新的破裂。  相似文献   

3.
M 《Tectonophysics》2004,387(1-4):65-79
Broadband data from the Greek National Seismological Network are used to study the moderate size (M5.5) earthquake, which occurred on 2 December 2002 near the town of Vartholomio, in western Peloponnese (Greece). Time domain moment tensor inversion applied to retrieve the focal mechanism of the mainshock and of three of the larger aftershocks of the sequence, revealed almost pure strike-slip faulting along NW–SE or NE–SW trending nodal planes. The relative source time functions for the mainshock, obtained from an empirical Green's function analysis, do not reveal any clear directivity to any of the stations. A careful observer might suggest directivity towards NW, if any. Optimum values are 0.4 s for the rise time and 2.7 km/s for the rupture velocity. The spatial and temporal distribution of fault slip showed that the major part of the resolved slip occurred beneath the mainshock's epicenter, 20 km underneath the western coast of Peloponnese. This probably accounts for the considerable damage observed to the nearby towns. The resolution between the two nodal planes does not permit an identification of the fault plane; however the statistics on the slip distribution model, the preliminary analysis of aftershock locations and macroseismic data favour the NW–SE trending plane as the fault plane, which is connected with sinistral strike-slip motions. These are the first implications for sinistral strike-slip motions in this area and more data are needed in the future to get more reliable resolution of the motions.  相似文献   

4.
Papadimitriou  P.  Voulgaris  N.  Kassaras  I.  Kaviris  G.  Delibasis  N.  Makropoulos  K. 《Natural Hazards》2002,27(1-2):15-33
On 7 September 1999 at 11:56 GMT a destructive earthquake (Mw = 6.0) occurred close to Athens (Greece). The rupture process is examined using data from the Cornet local permanent network, as well as teleseismic recordings. Data recorded by a temporary seismological network were analyzed to study the aftershock sequence. The mainshock was relocated at 38.105°N, 23.565°E, about 20 km northwest of Athens. Four foreshocks were also relocated close to the mainshock. The modeling of teleseismic P and SH waves provides a well-constrained focal mechanism of the mainshock (strike = 105°, dip = 55° and rake = -80°) at a depth of 8 km and a seismic moment M0 = 1.01025 dyn·cm. The obtained fault plane solution represents normal faulting indicating an almost north-south extension. More than 3500 aftershocks were located, 1813 of which present RMS < 0.1 s and ERH, ERZ < 1.0 km. Two main clusters were distinguished, while the depth distribution is concentrated between 2 and 11 km. Over 1000 fault plane solutions of aftershocks were constrained, the majority of which also correspond to N–S extension. No surface breaks were observed but the fault plane solution of the mainshock is in agreement with the tectonics of the area and with the focal mechanisms obtained by aftershocks. The hypocenter of the mainshock is located on the deep western edge of the fault plane. The relocated epicenter coincides with the fringe that represents the highest deformation observed on the differential interferometric image. The calculated source duration is 5 sec, while the estimated dimensions of the fault are 15 km length and 10 km width. The source process is characterized by unilateral eastward rupture propagation, towards the city of Athens. An evident stop phase observed in the recordings of the Cornet local stations is interpreted as a barrier caused by the Aegaleo Mountain.  相似文献   

5.
The July 2003 sequence in the Gulf of Saros (Northeastern Aegean Sea) is investigated, in terms of accurate event locations and source properties of the largest events. The distribution of epicenters shows the activation of a 25-km long zone, which extends in depth between 9 and 20 km. The major slip patch of the 6 July 2003 Mw 5.7 mainshock is confined in a small area (45 km2), which coincides with the deeper (12–20 km) part of the activated zone. The epicenters of the sequence follow the northern margin of the Saros depression. This observation supports recent studies, according to which the continuation of the Ganos fault in the Gulf of Saros does not coincide with the fault along the northern coast of the Gelibolu peninsula, but it is located at the northern boundary of the Saros depression. This is further supported by the fact that the focal mechanisms of the mainshock and of the largest aftershocks of the 2003 sequence imply almost pure dextral strike-slip faulting, whereas the fault bounding the Gulf of Saros to the south appears as a normal fault on seismic sections. Thus, we infer that the principle deformation zone consists of a major strike-slip fault, which lies close to the northern margin of the Saros depression and this fault could be regarded as the continuation of the northern branch of the North Anatolian Fault into the Saros Gulf and North Aegean Trough as suggested by regional tectonic models. The northeastern extent of the 2003 sequence marks the western termination (at 26.3° E) of a long-term seismic quiescence observed in the period following the 1912 Ganos earthquake, which may be associated with the extend of the rupture of the particular earthquake.  相似文献   

6.
The evolution of the seismogenic process associated with the Ms 5.8 Sangro Valley earthquake of May 1984 (Abruzzo, central Italy) is closely controlled by the Quaternary extensional tectonic pattern of the area. This pattern is characterised by normal faults mainly NNW striking, whose length is controlled by pre-existing Mio–Pliocene N100±10° left-lateral strike-slip fault zones. These are partly re-activated as right-lateral normal-oblique faults under the Quaternary extensional regime and behave as transfer faults.Integration of re-located aftershocks, focal mechanisms and structural features are used to explain the divergence between the alignment of aftershocks (WSW–ENE) and the direction of seismogenic fault planes defined by the focal mechanisms (NNW–SSE) of the main shock and of the largest aftershock (Ms=5.3).The faults that appear to be involved in the seismogenic process are the NNW–SSE Barrea fault and the E–W M. Greco fault. There is field evidence of finite Quaternary deformation indicating that the normal Barrea fault re-activates the M. Greco fault as right-lateral transfer fault. No surface faulting was observed during the seismic sequence. The apparently incongruent divergence between aftershocks and nodal planes may be explained by interpreting the M. Greco fault as a barrier to the propagation of earthquake rupturing. The rupture would have nucleated on the Barrea fault, migrating along-strike towards NNW. The sharp variation in direction from the Barrea to the M. Greco fault segments would have represented a structural complexity sufficient to halt the rupture and subsequent concentration of post-seismic deformation as aftershocks around the line of intersection between the two fault planes.Fault complexities, similar to those observed in the Sangro Valley, are common features of the seismic zone of the Apennines. We suggest that the zones of interaction between NW–SE and NNW–SSE Plio-Quaternary faults and nearly E–W transfer faults, extending for several kilometres in the same way as M. Greco does, might act as barriers to the along-strike propagation of rupture processes during normal faulting earthquakes. This might have strong implications on seismic hazard, especially for the extent of the maximum magnitude expected on active faults during single rupture episodes.  相似文献   

7.
On December 9, 2007, a 4.9 mb earthquake occurred in the middle of the São Francisco Craton, in a region with no known previous activity larger than 4 mb. This event reached intensity VII MM (Modified Mercalli) causing the first fatal victim in Brazil. The activity had started in May 25, 2007 with a 3.5 magnitude event and continued for several months, motivating the deployment of a local 6-station network. A three week seismic quiescence was observed before the mainshock. Initial absolute hypocenters were calculated with best fitting velocity models and then relative locations were determined with hypoDD. The aftershock distribution indicates a 3 km long rupture for the mainshock. The fault plane solution, based on P-wave polarities and hypocentral trend, indicates a reverse faulting mechanism on a N30°Ε striking plane dipping about 40° to the SE. The rupture depth extends from about 0.3 to 1.2 km only. Despite the shallow depth of the mainshock, no surface feature could be correlated with the fault plane. Aeromagnetic data in the epicentral area show short-wavelength lineaments trending NNE–SSW to NE–SW which we interpret as faults and fractures in the craton basement beneath the surface limestone layer. We propose that the Caraíbas–Itacarambi seismicity is probably associated with reactivation of these basement fractures and faults under the present E–W compressional stress field in this region of the South American Plate.  相似文献   

8.
This article is to review results from scientific drilling and fault-zone trapped waves(FZTWs) at the south Longman-Shan fault(LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan, China. Immediately after the mainshock, two Wenchuan Fault Scientific Drilling(WFSD) boreholes were drilled at WFSD-1 and WFSD-2 sites approximately 400 m and 1 km west of the surface rupture along the Yinxiu-Beichuan fault(YBF), the middle fault strand of the south LSF zone. Two boreholes met the principal slip of Wenchuan earthquake along the YBF at depths of 589-m and 1230-m, respectively. The slip is accompanied with a 100-200-m-wide zone consisting of fault gouge, breccia, cataclasite and fractures. Close to WFSD-1 site, the nearly-vertical slip of ~4.3-m with a 190-m wide zone of highly fractured rocks restricted to the hanging wall of the YBF was found at the ground surface after the Wenchuan earthquake. A dense linear seismic array was deployed across the surface rupture at this venue to record FZTWs generated by aftershocks. Observations and 3-D finite-difference simulations of FZTWs recorded at this cross-fault array and network stations close to the YBF show a distinct low-velocity zone composed by severely damaged rocks along the south LSF at seismogenic depths. The zone is several hundred meters wide along the principal slip, within which seismic velocities are reduced by ~30–55% from wall-rock velocities and with the maximum velocity reduction in the ~200-m-wide rupture core zone at shallow depth. The FZTW-inferred geometry and physical properties of the south LSF rupture zone at shallow depth are in general consistent with the results from petrological and structural analyses of cores and well log at WFSD boreholes. We interpret this remarkable low-velocity zone as being a break-down zone during dynamic rupture in the 2008 M8 earthquake. We examined the FZTWS generated by similar earthquakes before and after the 2008 mainshock and observed that seismic velocities within fault core zone was reduced by ~10% due to severe damage of fault rocks during the M8 mainshock. Scientific drilling and locations of aftershocks generating prominent FZTWs also indicate rupture bifurcation along the YBF and the Anxian-Guangxian fault(AGF), two strands of the south LSF at shallow depth. A combination of seismic, petrologic and geologic study at the south LSF leads to further understand the relationship between the fault-zone structure and rupture dynamics, and the amplification of ground shaking strength along the low-velocity fault zone due to its waveguide effect.  相似文献   

9.
据中国地震台网测定,2021年5月21日21时48分在云南省大理州漾濞县发生MS6.4地震,及时查明此次地震的发震构造及震源破裂特征,可为认识该区孕震条件和判别未来强震危险性提供关键依据。采用双差定位方法对漾濞地震序列进行重新定位,得到3863次地震事件的精确震源位置。结果显示:漾濞地震序列整体呈北西—南东向分布,长约25 km;整体走向135°;MS6.4主震震中位置为25.688°N,99.877°E;震源深度约9.6 km。综合地震序列深度剖面和震源机制解结果可知,发震断层应为北西走向、整体向西南方向陡倾的右旋走滑断层,倾角具有自北西向南东逐渐变缓的趋势。进一步分析地震序列的时空演化过程发现,该地震具有典型的"前震-主震-余震型"地震序列活动特点,其破裂过程主要包括3个阶段。破裂成核阶段:首先在发震断层10~12 km深度处相对脆弱部位产生小尺度破裂,之后失稳加速破裂,发生MS5.6地震;主震破裂阶段:在构造应力场持续加载和周围小尺度破裂的共同影响下,促使浅部较高强度断层闭锁区破裂,形成MS6.4主震;尾端拉张破裂阶段:主震破裂向东南扩展过程中,在东南端形成与之呈马尾状斜交的、具有正断性质的次级破裂,并产生MS5.2余震。而且此次地震还在源区北东侧触发了北北东向的左旋走滑破裂。综合分析认为,漾濞地震是兰坪-思茅地块内部北西向草坪断裂在近南北向区域应力挤压作用下发生右旋走滑运动的结果,具有明显的新生断裂特征。近年来兰坪-思茅地块内部一系列中强地震的发生表明,青藏高原物质向东南持续挤出的过程中,遇到该地块的阻挡,正在导致地块内部早期断层贯通形成新的活动断裂。因此,川滇地块西南边界带上或相邻地块内部老断层的复活和新生断裂的产生是区域中强地震危险性分析评价中值得关注的重要课题,同时建议需重视未来该区中强地震进一步向东南和向北的迁移或扩展的可能性。   相似文献   

10.
In the southern South–North Seismic Zone, China, seismic activity in the Yingjiang area of western Yunnan increased from December 2010, and eventually a destructive earthquake of Ms5.9 occurred near Yingjiang town on 10 March 2011. The focal mechanism and hypocenter location of the mainshock suggest that the Dayingjiang Fault was the site of the mainshock rupture. However, most of foreshocks and all aftershocks recorded by a portable seismic array located close to the mainshock occurred along the N–S-striking Sudian Fault, indicating that this fault had an important influence on these shocks. Coulomb stress calculations show that three strong(magnitude ≥5.0) earthquakes that occurred in the study region in 2008 increased the coulomb stress along the plane parallel to the Dayingjiang Fault. This supports the Dayingjiang Fault, and not the Sudian Fault, as the seismogenic fault of the 2011 Ms5.9 Yingjiang earthquake. The strong earthquakes in 2008 also increased the Coulomb stress at depths of ≤5 km along the entire Sudian Fault, and by doing so increased the shallow seismic activity along the fault. This explains why the foreshocks and aftershocks of the 2011 Yingjiang earthquake were located mostly on the Sudian Fault where it cuts the shallow crust. The earthquakes at the intersection of the Sudian and Dayingjiang faults are distributed mainly along a belt that dips to the southeast at ~40°, suggesting that the Dayingjiang Fault in the mainshock area also dips to the southeast at ~40°.  相似文献   

11.
Active faulting and seismic properties are re-investigated in the eastern precinct of the city of Thessaloniki (Northern Greece), which was seriously affected by two large earthquakes during the 20th century and severe damage was done by the 1759 event. It is suggested that the earthquake fault associated with the occurrence of the latest destructive 1978 Thessaloniki earthquake continues westwards to the 20-km-long Thessaloniki–Gerakarou Fault Zone (TGFZ), which extends from the Gerakarou village to the city of Thessaloniki. This fault zone exhibits a constant dip to the N and is characterised by a complicated geometry comprised of inherited 100°-trending faults that form multi-level branching (tree-like fault geometry) along with NNE- to NE-trending faults. The TGFZ is compatible with the contemporary regional N–S extensional stress field that tends to modify the pre-existing NW–SE tectonic fabric prevailing in the mountainous region of Thessaloniki. Both the 1978 earthquake fault and TGFZ belong to a ca. 65-km-long E–W-trending rupture fault system that runs through the southern part of the Mygdonia graben from the Strymonikos gulf to Thessaloniki. This fault system, here called Thessaloniki–Rentina Fault System (TRFS), consists of two 17–20-km-long left-stepping 100°-trending main fault strands that form underlapping steps bridged by 8–10-km-long ENE–WSW faults. The occurrence of large (M6.0) historical earthquakes (in 620, 677 and 700 A.D.) demonstrates repeated activation, and therefore the possible reactivation of the westernmost segment, the TGFZ, could be a major threat to the city of Thessaloniki. Changes in the Coulomb failure function (ΔCFF) due to the occurrence of the 1978 earthquake calculated out in this paper indicate that the TGFZ has been brought closer to failure, a convincing argument for future seismic hazard along the TGFZ.  相似文献   

12.
The Killari earthquake of September 29, 1993 (Mw=6.2) in peninsular India triggered several aftershocks that were recorded by a network of 21 stations. We computed the change in regional static stress caused by coseismic slip on the earthquake rupture and correlated it with the aftershocks with a view to constrain some of the rupture parameters of this earthquake. We evaluated the six available estimates of fault plane solutions for this earthquake and concluded that reverse slip on a 42° dipping, N112° trending fault, which extends up to the surface from a depth of 7 km, produces maximum correlation between the increased static stress and aftershock distribution. Our analysis suggests that the majority of coseismic slip occurred on the part of the rupture that lies in the depth range of 3–6.5 km.  相似文献   

13.
Eyidogan  Nalbant  Barka  & King 《地学学报》1999,11(1):38-44
The 1924 Pasinler & 1983 Horasan-Narman earthquakes which struck the Erzurum region occurred on the NE–SW-trending Horasan fault zone about 60 km east of Erzurum basin. The inversion of teleseismic seismograms, the aftershock pattern and the surface faulting of the 30 October 1983 ( M s = 6.8) Horasan-Narman earthquake indicate that it had dominantly left-lateral motion. One moderately sized aftershock occurred 8 h after the main event and two others a year later on the NE extension of the fault zone. The aftershock distribution dominantly overlapped with the Horasan fault zone, and the aftershocks also migrated from south-west to north-east within the year following the mainshock. The results obtained from modelling of static stress changes caused by the 1983 earthquake are consistent with the spatial distribution of aftershocks. Macroseismic observations of the 1924 earthquake ( M s = 6.8) indicated that this event occurred on the SW extension of the Horasan fault zone. Static stress modelling of the 1924 earthquake, by using the same input parameters of the 1983 event, has shown that its occurrence increased the stress in the region of the 1983 rupture zone. The static stress changes caused both by the 1924 and the 1983 earthquakes has increased the failure stress at the NE and SW extensions of the Horasan fault zone and in Narman area. Furthermore, the stress has decreased in the vicinity of the Erzurum fault zone, east of the city of Erzurum, the largest city in eastern Turkey, and in the populated Sarikamis area. This might delay the occurrence of a future probable damaging earthquake in these areas.  相似文献   

14.
The Jiashian earthquake (ML 6.4) occurred on 4 March 2010. It was the largest inland event in southern Taiwan of 2010. The mainshock location was unexpected since it occurred in an area with relatively low background seismicity. In addition, reports of earthquake focal mechanisms do not fit with any known active fault geometry. In order to understand the origin of this earthquake, especially its rupture process, we perform a joint source inversion by using teleseismic body wave, GPS coseismic displacements and near field ground motion data. In this study, we considered a northwest–southeast trending fault with a northeast dip retrieved from GPS coseismic data and aftershocks distribution. To analyze the detailed slip distribution in space and time, we used near field 3D Green’s functions provided by spectral-element method and a full time–space inversion technique. We find a complex rupture process with several slip patches distributed inside two main asperities. The slip map reveals a mean slip of 12.9 cm for a maximum slip of 27.3 cm leading to a Mw 6.47 for this event. The rupture initiates in the deepest portion of the fault at 20 km depth, and propagated upward up to 2 km depth to form the two asperities. The source time function of this event revealed two pulses corresponding to the two asperities, for a total duration time of about 16 s. Most aftershocks occurred near the upper boundary of the deepest asperity while no aftershocks are located close to the shallowest one. We infer that the locations of these slip patches are related to the surrounding fault systems that may have restricted the rupture propagation during the earthquake.  相似文献   

15.
The Dinar earthquake (Ms= 6.1, USGS-PDE) of 1 October 1995 occurred on the NWSE-trending Dinar Fault. The earthquake is associated with a 10-km-long surface rupture with predominantly normal faulting. The mainshock was preceded by a series of foreshocks that started 6 days before the mainshock and included two Md = 4.5 events. The mainshock source mechanism derived from the inversion of broad-band P waves revealed that two sub-events occurred on a NW-SE trending normal fault with a small strike-slip component. According to the source model estimated in this study, the first rupture started at a depth of about 8 km and reached to a depth of about 12 km propagating north-west. The total seismic moment found from the inversion of P waveforms is 2.0 times 10 18 Nm. The seismic moment of the second sub-event was about four times larger than the first one. Field observations, GPS measurements and slip vector obtained from the inversion of broad-band P waveforms suggest that the NW-SE trending Dinar Fault is due to the internal deformation of SW Anatolia moving south-westwards.  相似文献   

16.
We observe the spatial distributions of the magnitude of aftershocks following the six earthquakes of focal depth shallower than 20 km with magnitude more than 5.0 from 1983 to 1987 in Japan. The upper limit of the aftershock magnitude is examined as a function of the distance from mainshock hypocentre. The observed spatial distributions of the upper limit are bimodal, with a tendency of the upper limit to decrease as the distance from mainshock hypocentre increases. Moreover, we observe the correlations between the aftershock spatial distribution and earthquake fault length. We focus on the largest aftershocks in each of two aftershock sequences constituting the bimodal distribution. The distances of the two largest aftershocks from the mainshock hypocentre are equal to the fault lengths of shallow earthquakes in Japan and to the maximum earthquake fault lengths.  相似文献   

17.
Data recorded by a seismic network deployed the day after the 2004 Mid Niigata Prefecture Earthquake (M6.8) in central Japan are used to determine the major source faults responsible for the mainshock and major aftershocks. Using this high-resolution seismic data, three major source faults are identified: two parallel faults dipping steeply to the west located 5 km apart, and the other dipping eastward and oriented perpendicular to the west-dipping faults. The analysis also reveals that the lateral variation in seismic velocity observed at the surface extends to a depth of 15 km, encompassing the source area of the mainshock. This strong heterogeneity of the crust, related to the complex geological and tectonic evolution of the area, is considered to be responsible for the prominent aftershock activity following the 2004 Niigata event.  相似文献   

18.
Seismogenesis of aftershocks occurring in the Kachchh seismic zone for more than last 10?years is investigated through modeling of fractal dimensions, b-value, seismic velocities, stress inversion, and Coulomb failure stresses, using aftershock data of the 2001 Bhuj earthquake. Three-dimensional mapping of b-values, fractal dimensions, and seismic velocities clearly delineate an area of high b-, D-, and Vp/Vs ratio values at 15?C35?km depth below the main rupture zone (MRZ) of the 2001 mainshock, which is attributed to higher material heterogeneities in the vicinity of the MRZ or deep fluid enrichment due to the release of aqueous fluid/volatile CO2 from the eclogitisation of the olivine-rich lower crustal rocks. We notice that several aftershocks are occurred near the contacts between high (mafic brittle rocks) and low velocity regions while many of the aftershocks including the 2001 Bhuj mainshock are occurred in the zones of low velocity (low dVp, low dVs and large Vp/Vs) in the 15?C35?km depth range, which are inferred to be the fractured rock matrixes filled with aqueous fluid or volatiles containing CO2. Further support for this model comes from the presence of hydrous eclogitic layer at sub-lithospheric depths (34?C42?km). The depth-wise stress inversions using the P- and T-axes data of the focal mechanisms reveal an increase in heterogeneity (i.e., misfit) with an almost N?CS ??1 orientation up to 30?km depth. Then, the misfit decreases to a minimum value in the 30?C40?km depth range, where a 60o rotation in the ??1 orientation is also noticed that can be explained in terms of the fluid enrichment in that particular layer. The modeling of Coulomb failure stress changes (??CFS) considering three tectonic faults [i.e., NWF, GF, and Allah bund fault (ABF)] and the slip distribution of the 2001 mainshock on NWF could successfully explain the occurrences of moderate size events (during 2006?C2008) in terms of increase in positive ??CFS on GF and ABF. In a nutshell, we propose that the fluid-filled mafic intrusives are acting as stress accentuators below the Kachchh seismic zone, which generate crustal earthquakes while the uninterrupted occurrence of aftershocks is triggered by stress transfer and aqueous fluid or volatile CO2 flow mechanisms. Further, our results on the 3-D crustal seismic velocity structure, focal mechanisms, and b-value mapping will form key inputs for understanding wave propagation and earthquake hazard-related risk associated with the Kachchh basin.  相似文献   

19.
The aftershock process induced by the Ms = 7.0 Uureg Nuur earthquake, one of the largest events in the Altai, has been studied comprehensively. As an additional experiment, a temporary local network of seismic stations was deployed in 2006 in the epicentral area of the earthquake to gain more insights into the current tectonic activity. The aftershocks of the Uureg Nuur event were restricted to small faults in the interior of fault blocks rather than those being localized along border faults. Seismic activity across the directions of large faults has apparently been generated by a fault (in the Tsagaan Shuvuut Range) reactivated during the Uureg Nuur earthquake. The aftershock process, at its final phase, involved an adjacent crust block.  相似文献   

20.
A large earthquake, by British standards, occurred near Bishop's Castle in the Welsh Borders on 2 April 1990 at 13:46 GMT. This magnitude 5.1 ML event was felt over a wide area of Britain, from Ayrshire in the north to Cornwall in the south, Kent in the east and Dublin in the west. The epicentre was near the village of Clun, 7 km SSW of Bishop's Castle. Damage was minor and limited to the epicentral area, north to Wrexham and in particular Shrewsbury, which suffered most. Results from a macroseismic survey by BGS revealed that the maximum intensity in the epicentral area was 6 MSK. The mainshock had a focal depth of 14.3±4.7 km; however, better located aftershocks further constrained the mid-crustal seismicity to 15±0.2 km in the best cases. The marked lack of aftershocks contrasts with some previous similar magnitude events for intraplate earthquakes in Britain and throughout the world and may represent a large stress drop due to almost total relief of strain energy by the mainshock. The aftershock epicentral distribution shows a preference for an approximately N-S orientation which is consistent with one of the focal planes of the mainshock focal mechanism and suggests that this is the fault plane. Movement on this plane was predominantly strike-slip with a component of thrust and was consistent with a maximum compressive stress axis orientated NW-SE. The NE striking Welsh Borderland Fault System dominates the epicentral area; however, there is no surface fault which can clearly be related to the seismicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号