首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly efficient, low-density sampling strategy was employed to study the geochemical expression of geological bodies and the mineral potential on the county scale in Central Norway. Soil O and C horizon samples (N = 752) were collected in Nord-Trøndelag and parts of Sør-Trøndelag, and analysed for 53 chemical elements (Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Pd, Pt, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, and Zr) and Pb isotopes in an aqua regia extraction. At the sample density of one site/36 km2 the four metal deposits, which have been mined in the area within the last 50 years were all detected as geochemical anomalies. In addition, a number of new anomalies that may warrant follow-up surveys were found. In terms of geology the Grong–Olden Culmination is marked by a distinct 206Pb/207Pb isotope anomaly. Geochemical differences distinguish the most important belts of mafic metavolcanic lithologies in the area. Though the Fosdalen iron ore deposit is only marked in the soil O horizon, the C horizon outlines the more prominent anomalies of possibly economic interest. Climatic factors like the input of marine aerosols along the coast are clearly visible in the soil O horizon. Low-density geochemical mapping of two sample materials provides important complementing information for the interpretation of the geochemical variation in Nord-Trøndelag county.  相似文献   

2.
A fundamentally distinct, sulfide-poor variant of intense acid (advanced argillic) alteration occurs at the highest structural levels in iron oxide-rich hydrothermal systems. Understanding the mineralogy, and geochemical conditions of formation in these sulfide-poor mineral assemblages have both genetic and environmental implications. New field observations and compilation of global occurrences of low-sulfur advanced argillic alteration demonstrates that in common with the sulfide-rich variants of advanced argillic alteration, sulfide-poor examples exhibit nearly complete removal of alkalis, leaving a residuum of aluminum-silicate + quartz. In contrast, the sulfur-poor variants lack the abundant pyrite ± other sulfides, hypogene alunite, Al-leached rocks (residual “vuggy” quartz) as well as the Au-Cu-Ag ± As-rich mineralization of some sulfur-rich occurrences. Associated mineralization is dominated by magnetite and/or hematite with accessory elements such as Cu, Au, REE, and P. These observations presented here indicate there must be distinct geologic processes that result in the formation of low-sulfur advanced argillic styles of alteration.Hydrolysis of magmatic SO2 to sulfuric acid is the most commonly recognized mechanism for generating hypogene advanced argillic alteration, but is not requisite for its formation. Low sulfur iron-oxide copper-gold systems are known to contain abundant acid-styles of alteration (e.g. sericitic, chloritic), which locally reaches advanced argillic assemblages. A compilation of mapping in four districts in northern Chile and reconnaissance observations elsewhere show systematic zoning from near surface low-sulfide advanced argillic alteration through chlorite-sericite-albite and locally potassic alteration. The latter is commonly associated with specular hematite-chalcopyrite mineralization. Present at deeper structural levels are higher-temperature styles of sodic-calcic (oligoclase/scapolite – actinolite) alteration associated with magnetite ± chalcopyrite mineralization. These patterns are in contrast to the more sulfur-rich examples which generally zone to higher pyrite and locally alunite-bearing alteration.Fluid inclusion evidence from the systems in northern Chile shows that many fluids contain 25 to >50 wt% NaCleq with appreciable Ca, Fe, and K contents with trapping temperatures >300 °C. These geological and geochemical observations are consistent with the origin of the low-sulfur advanced argillic assemblages from HCl generated by precipitation of iron oxides from iron chloride complexes from a high-salinity fluid by reactions such as 3FeCl2 + 4H2O = Fe3O4 + 6HCl + H2. Such HCl-rich (and relatively HSO4=-poor) fluids can then account for the intense acid, Al-silicate-rich styles of alteration observed at high levels in some iron-oxide-coppe-gold (IOCG) systems. The geochemical differences between the presence of sulfide-rich and sulfur-poor examples of advanced argillic alteration are important to distinguishing between system types and the acid-producing capacity of the system, including in the modern weathering environment. They have fundamental implications for effective mineral exploration in low-sulfur systems and provide yet another vector of exposed alteration in the enigmatic IOCG clan of mineral deposits. Furthermore, understanding the geochemistry and mineralogy of this distinct geologic environment has applications to understanding the acid generating capacity and deleterious heavy metals associated with advanced argillic alteration.  相似文献   

3.
Zircon U–Pb ages, geochemical and Sr–Nd isotopic data are presented for the late Carboniferous Baoligaomiao Formation (BG Fm.) and Delewula Formation (DW Fm.) volcanic rocks, widely distributed in northern Inner Mongolia, in the northern part of the Xing'an–Mongolia Orogenic Belt (XMOB). The BG Fm. rocks mainly consist of basaltic andesites and andesites while the DW Fm. rocks include dacites, trachytes, rhyolites, pyroclastic rocks and minor andesites. New LA-ICPMS zircon U–Pb analyses constrain their eruption to late Carboniferous (317–322 Ma and 300–310 Ma, respectively). The BG Fm. volcanic rocks are characterized by enriched large ion lithophile elements (LILE) and depleted high field strength elements (HFSE), with initial 87Sr/86Sr ratios of 0.70854–0.70869 and negative εNd(t) (− 2.1 to − 2.4) values. They have low La/Ba (0.03–0.05), high La/Nb (2.05–3.70) ratios and variable Ba/Th (59.5–211) ratios. Such features suggest that they are derived from melting of heterogeneous sources including a metasomatized mantle wedge and Precambrian crustal material. The DW Fm. volcanic rocks are more depleted in HFSE with significant Nb, Ta, P, Ti anomalies. They have high initial 87Sr/86Sr ratios (0.72037–0.72234) and strong negative εNd(t) (− 11 to − 11.6) values which indicate those igneous rocks were mainly derived from reworking of the Paleoproterozoic crust. The late Carboniferous volcanic rocks have geochemical characteristics similar to those of the continental arc rocks which indicate the northward subduction of the Paleo Asian Ocean may have continued to the late Carboniferous. The volcanic association of this study together with the early Permian post-collisional magmatic rocks suggests that a tectonic transition from subduction-related continental margin arc volcanism to post-collisional magmatism occurred in the northern XMOB between the late Carboniferous and the early Permian.  相似文献   

4.
Agricultural (Ap, Ap-horizon, 0–20 cm) and grazing land soil samples (Gr, 0–10 cm) were collected from a large part of Europe (33 countries, 5.6 million km2) at an average density of 1 sample site/2500 km2. The resulting more than 2 × 2000 soil samples were air dried, sieved to <2 mm and analysed for their Hg concentrations following an aqua regia extraction. Median concentrations for Hg are 0.030 mg/kg (range: <0.003–1.56 mg/kg) for the Ap samples and 0.035 mg/kg (range: <0.003–3.12 mg/kg) for the Gr samples. Only 5 Ap and 10 Gr samples returned Hg concentrations above 1 mg/kg. In the geochemical maps the continental-scale distribution of the element is clearly dominated by geology. Climate exerts an important influence. Mercury accumulates in those areas of northern Europe where a wet and cold climate favours the build-up of soil organic material. Typical anthropogenic sources like coal-fired power plants, waste incinerators, chlor-alkali plants, metal smelters and urban agglomerations are hardly visible at continental scales but can have a major impact at the local-scale.  相似文献   

5.
Arsenic concentrations are reported for the <2 mm fraction of ca. 2200 soil samples each from agricultural (Ap horizon, 0–20 cm) and grazing land (Gr, 0–10 cm), covering western Europe at a sample density of 1 site/2500 km2. Median As concentrations in an aqua regia extraction determined by inductively coupled plasma emission mass spectrometer (ICP-MS) were 5.7 mg/kg for the Ap samples and 5.8 mg/kg for the Gr samples. The median for the total As concentration as determined by X-ray fluorescence spectrometry (XRF) was 7 mg/kg in both soil materials. Maps of the As distribution for both land-use types (Ap and Gr) show a very similar geographical distribution. The dominant feature in both maps is the southern margin of the former glacial cover seen in the form of a sharp boundary between northern and southern European As concentrations. In fact, the median As concentration in the agricultural soils of southern Europe was found to be more than 3-fold higher than in those of northern Europe (Ap: aqua regia: 2.5 vs. 8.0 mg/kg; total: 3 vs. 10 mg/kg). Most of the As anomalies on the maps can be directly linked to geology (ore occurrences, As-rich rock types). However, some features have an anthropogenic origin. The new data define the geochemical background of As in agricultural soils at the European scale.  相似文献   

6.
Ten gravity springs from the slopes of the Biokovo Mt, Adriatic coast of Croatia were investigated. Three of them are included in the regional water supply system. The aim of this study was to investigate hydrogeological and geochemical characteristics of watershed, presenting one of the most typical karstic areas in the world.Hydrogeological investigations were performed during two seasons with dye tracing, using Na-fluoresceine which was poured into two pits, observing springs at distances of 1.82–8.8 km. Apparent velocities were 0.21–0.51 cm s?1. Dye tracing was first time partially effective and second time ineffective, what could be due to immanent ore mineralization, which presents a natural barrier and was discovered by geochemical and mineralogical methods.Concentrations of 17 dissolved and total trace elements were determined first time in groundwater samples. Their concentrations were extremely low, more than 3 orders of magnitude less than allowed by the Croatian directives for the first category of groundwater and drinking water. The mass fractions of 60 elements were determined in 3 representative spring sediments. Highest concentrations of some metals in sediments (mg kg?1) are: lead 5440, chromium 118, manganese 935, zinc 116 and barium 238. Origin of some elements and mineralogy is discussed.  相似文献   

7.
The unadjusted 72-h gross alpha activities in water from two wells completed in marine and alluvial deposits in a coastal southern California aquifer 40 km north of San Diego were 15 and 25 picoCuries per liter (pCi/L). Although activities were below the Maximum Contaminant Level (MCL) of 15 pCi/L, when adjusted for uranium activity; there is concern that new wells in the area may exceed MCLs, or that future regulations may limit water use from the wells. Coupled well-bore flow and depth-dependent water-quality data collected from the wells in 2011 (with analyses for isotopes within the uranium, actinium, and thorium decay-chains) show gross alpha activity in marine deposits is associated with decay of naturally-occurring 238U and its daughter 234U. Radon activities in marine deposits were as high as 2230 pCi/L. In contrast, gross alpha activities in overlying alluvium within the Piedra de Lumbre watershed, eroded from the nearby San Onofre Hills, were associated with decay of 232Th, including its daughter 224Ra. Radon activities in alluvium from Piedra de Lumbre of 450 pCi/L were lower than in marine deposits. Chromium VI concentrations in marine deposits were less than the California MCL of 10 μg/L (effective July 1, 2014) but δ53Cr compositions were near zero and within reported ranges for anthropogenic chromium. Alluvial deposits from the nearby Las Flores watershed, which drains a larger area having diverse geology, has low alpha activities and chromium as a result of geologic and geochemical conditions and may be more promising for future water-supply development.  相似文献   

8.
Zircon U–Pb, mica 40Ar/39Ar ages and geochemistry of the Permo-Triassic mafic to intermediate dyke swarms at the south-western margin of the Indochina Terrane, central Thailand, are reported here and used to decipher the timing of the Sukhothai-Indochina & Sibumasu-Indochina collisions during the Permo-Triassic stages of the Indosinian Orogeny. The mafic dyke swarms in the folded layers of the Khao Khwang Fold–Thrust Belt (KKFTB) were emplaced between the Late Permian and the Late Triassic. The volcanic rocks range from slightly tholeiitic to mostly calc-alkalic, but can be subdivided into three different volcanic groups on the basis of trace and incompatible element abundances such as Ni, Cr, P, Co, and Th. However, all the groups present similar chemical footprints and are enriched in large ion lithophile elements (LILEs) (Rb, Ba, Sr, Pb) and light rare earth elements (LREEs), and depleted in HFSE such as Nb, and Ti highlighting the volcanic arc nature of the system. Isotopically, the three groups are characterized by subtle differences in εNd(t) values (from + 3.2 to + 5.2) and initial 87Sr/86Sr ratios (from 0.7056 to 0.7067). The KKFTB mafic dykes share a few geochemical characteristics of the mafic dykes from the Chiang Khong volcanic suite in the Sukhothai terrane, and from the Loei volcanic belt in northern Indochina. These geochemical features suggest that the KKFTB mafic dykes, and the volcanic rocks in central-northern Thailand, were likely emplaced in a similar orogenic setting. The rocks of Group III are interpreted to have intruded from the Early Triassic (255 ± 6 Ma) to the Late Triassic (207 ± 2 Ma), and were probably sourced from a more crustally contaminated magma.  相似文献   

9.
10.
The Meso-Cenozoic geodynamic evolution of the eastern Pontides orogenic belt provides a key to evaluate the volcanogenic massive sulfide (VMS) deposits associated with convergent margin tectonics in a Cordilleran-type orogenic belt. Here we present new geological, geochemical and zircon U–Pb geochronological data, and attempt to characterize the metallogeny through a comprehensive overview of the important VMS mineralizations in the belt. The VMS deposits in the northern part of the eastern Pontides orogenic belt occur in two different stratigraphic horizons consisting mainly of felsic volcanic rocks within the late Cretaceous sequence. SHRIMP zircon U–Pb analyses from ore-bearing dacites yield weighted mean 206Pb/238U ages ranging between 91.1 ± 1.3 and 82.6 ± 1 Ma. The felsic rocks of first and second horizons reveal geochemical characteristics of subduction-related calc-alkaline and shoshonitic magmas, respectively, in continental arcs and represent the immature and mature stages of a late Cretaceous magmatic arc. The nature of the late Cretaceous magmatism in the northern part of the eastern Pontides orogenic belt and the various lithological associations including volcaniclastics, mudstones and sedimentary facies indicate a rift-related environment where dacitic volcanism was predominant. The eastern Pontides VMS deposits are located within the caldera-like depressions and are closely associated with dome-like structures of felsic magmas, with their distribution controlled by fracture systems. Based on a detailed analyses of the geological, geophysical and geodynamic information, we propose that the VMS deposits were generated either in intra arc or near arc region of the eastern Pontides orogenic belt during the southward subduction of the Tethys oceanic lithosphere.  相似文献   

11.
We present first LA-ICP-MS U–Pb zircon ages as well as geochemical and Sr–Nd–Pb isotope data for 14 magmatic rocks collected along ca. 400 km profile across the Chatkal-Kurama terrane in the Mogol-Tau and Kurama ranges and the Gissar Segment of the Tien Shan orogen in Tajikistan. These new data from supra-subduction and post-collisional magmatic rocks of two Late Paleozoic active margins constrain a tectonic model for terrane motions across two paleo-subduction zones: (1) The 425 Ma old Muzbulak granite of the Mogol-Tau range formed in a supra-subduction setting at the northern margin of the Turkestan Ocean. The north-dipping plate was subducted from the Early Silurian to the earliest Middle Devonian. Thereafter the northern side of the Turkestan Ocean remained a passive margin until the Early Carboniferous. (2) In the Early Carboniferous, subduction under the northern margin of the Turkestan Ocean resumed and the 315 to 305 Ma old Kara-Kiya, Muzbek, and Karamazar intrusions formed in a supra-subduction setting in the Mogol-Tau and Kurama ranges. (3) At the same time, in the Early Carboniferous, rifting of the southern passive margin of the Turkestan Ocean formed the short-lived Gissar Basin, separated from the Turkestan Ocean by the Gissar micro-continent. North-dipping subduction in the Gissar Basin is documented by the 315 Ma Kharangon plagiogranite and the voluminous ca. 321–312 Ma Andean-type supra-subduction Gissar batholith. The Kharangon and Khanaka gabbro-plagiogranite intrusions of the southern Gissar range have geochemical and Sr–Nd isotopic compositions (87Sr/86Sr(t) 0.7047–0.7056, εNd of + 1.5 to + 2.3) compatible with mantle-derived origin typical for plagiogranites associated with ophiolites. The supra-subduction rocks from the Gissar batholith and from the Mogol-Tau Kurama ranges have variably mixed Sr–Nd–Pb isotopic signatures (87Sr/86Sr(t) 0.7057–0.7064, εNd of − 2.1 to − 5.0) typical for continental arcs where mantle-derived magmas interact with continental crust. (4) In the latest Carboniferous, the Turkestan Ocean and the Gissar Basin were closed. The Early Permian Chinorsay (288 Ma) and Dara-i-pioz (267 Ma) post-collisional intrusions, emplaced in the northern part of the Gissar micro-continent after a long period of amagmatic evolution, have intraplate geochemical affinities and isotopic Sr–Nd–Pb isotopic compositions (87Sr/86Sr(t) 0.7074–0.7086, εNd of − 5.5 to − 7.4) indicating derivation from Precambrian continental crust which is supported by old Nd model ages (1.5 and 1.7 Ga), and by the presence of inherited zircon grains with ages 850–500 Ma in the Chinorsay granodiorite. The post-collisional intrusions in the southern Gissar and in the Mogol-Tau and Kurama ranges (297–286 Ma), emplaced directly after supra-subduction magmatic series, have geochemical and isotopic signatures of arc-related magmas. The distinct shoshonitic affinities of post-collisional intrusions in the Mogol-Tau and Kurama ranges are explained by the interaction of hot asthenospheric material with subduction-enriched wedge of lithospheric mantle due to slab break-off at post-collisional stage. Despite origination from different tectonic environments, all magmatic rocks have relatively old Nd model ages (1.7–1.0 Ga) indicating a significant proportion of Paleoproterozoic or older crustal material in their sources and their model ages are similar to those of post-collisional intrusions from the Alai and Kokshaal Segments of the South Tien Shan.  相似文献   

12.
With the aim of constraining the Early Mesozoic tectonic evolution of the eastern section of the Central Asian Orogenic Belt (CAOB), we undertook zircon U–Pb dating and geochemical analyses (major and trace elements, Sr–Nd isotopes) of volcanic rocks of the Luoquanzhan Formation and Daxinggou Group in eastern Heilongjiang and Jilin provinces, China. The analyzed rocks consist mainly of dacite and rhyolite, with SiO2 contents of 68.52–76.65 wt%. Three samples from the Luoquanzhan Formation and one from the Daxinggou Group were analyzed using laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) U–Pb zircon techniques. Three zircons with well-defined oscillatory zoning yielded weighted mean 206Pb/238U ages of 217 ± 1, 214 ± 2, and 208 ± 1 Ma, and one zircon with oscillatory zoning yielded a weighted mean 206Pb/238U age of 201 ± 1 Ma. These ages are interpreted to represent the timing of eruption of the volcanic rocks. The Triassic volcanic rocks are characterized by high SiO2 and low MgO concentrations, enrichment in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), depletion in high field strength elements (HFSEs) and heavy rare earth elements (HREEs), (87Sr/86Sr)i = 0.7040–0.7050 (Luoquanzhan Formation) and 0.7163–0.7381 (Daxinggou Group), and εNd (t) = 1.89–3.94 (Luoquanzhan Formation) and 3.42–3.68 (Daxinggou Group). These geochemical features indicate an origin involving the partial melting of juvenile lower crust (Nd model ages (TDM2) of 651–821 Ma) and that compositional variation among the volcanic rocks arose from mineral fractionation and minor assimilation. These volcanic rocks formed within an extensional environment following collision of the NCC and Jiamusi-Khanka Massif during the Late Paleozoic–Early Triassic.  相似文献   

13.
A comparison of geochemical and Sr–Nd–Pb isotopic compositions for Deccan Continental Flood Basalts (CFBs) and Central Indian Ridge (CIR) Basalts is presented: these data permit assessment of possible parental linkages between the two regions, and comparison of their respective magmatic evolutionary trends in relation to rift-related tectonic events during Gondwana break-up. The present study reveals that Mid-Ocean Ridge Basalt (MORB) from the northern CIR and basalts of Deccan CFB are geochemically dissimilar because of: (1) the Deccan CFB basalts typically show a greater iron-enrichment as compared to the northern CIR MORB, (2) a multi-element spiderdiagram reveals that the Deccan CFBs reveal a more fractionated slope (Ba/YbN > 1), as compared to relatively flat northern CIR MORB (Ba/YbN < 1), (3) there is greater REE fractionation for Deccan CFB than for the northern CIR MORB (i.e., La/YbN  2.3 and 1 respectively) and (4) substantial variation of compatible–incompatible trace elements and their ratios among the two basalt groups suggests that partial melting is a dominant process for northern CIR MORB, while fractional crystallization was a more important control to the geochemical variation for Deccan CFB. Further, incompatible trace element ratios (Nb/U and Nb/Pb) and radiogenic isotopic data (Sr–Pb–Nd) indicate that the northern CIR MORBs are similar to depleted mantle [and/or normal (N)-MORB], and often lie on a mixing line between depleted mantle and upper continental crust. By contrast, Deccan CFB compositions lie between the lower continental crust and Ocean island basalt. Accordingly, we conclude that the basaltic suites of the northern CIR MORB and Deccan CFB do not share common parentage, and are therefore genetically unrelated to each other. Instead, we infer that the northern CIR MORB were derived from a depleted mantle source contaminated by upper continental crust, probably during the break up of Gondwanaland; the Deccan CFB are more similar to Ocean island basalt (Reunion-like) composition, and perhaps contaminated by lower continental crust during their evolution.  相似文献   

14.
Numerous intrusive rocks of varying ages and compositions exist in the Paleozoic to Tertiary periods in the Eastern Pontides. Carboniferous intrusive rocks are commonly observed in the southern part of the Eastern Pontides. The nature of the rocks in the northern part of the region has not been determined because of Upper Cretaceous and Tertiary volcano-sedimentary units. Whole-rock geochemical, isotopic and geochronological data obtained from five different mapped granitoid bodies located in the northern part of the Eastern Pontides allow for the proper reconstruction of Carboniferous magmatism and the geodynamic evolution of the region.According to laser ablation ICP-MS U–Pb zircon dating, the Özdil, Soğuksu, Seslikaya, Kızılağaç and Şahmetlik plutons have similar 206Pb/238U vs. 207Pb/235U concordia ages of 340.7 ± 1.8 Ma and 323.1 ± 1.5 Ma, 348.4 ± 1.6 Ma, 335.4 ± 1.4 Ma, 337.2 ± 0.6 Ma and 334.5 ± 1.4 Ma, respectively. The aluminium saturation index (ASI) values of all of the samples from the plutons are between 1.0 and 1.32, which indicate peraluminous melt compositions. The plutons have SiO2 contents between 59 and 79 wt.% and show low- to high-K calc-alkaline characteristics. The plutons are enriched in large-ion lithophile and light rare earth elements and are depleted in high-field strength elements. Chondrite-normalized rare earth element patterns are characterized by concave-upward shapes and pronounced negative Eu anomalies, with LaCN/YbCN = 1.9–46.8 and EuCN/Eu* = 0.19–1.76. The studied plutons show considerable variations in 87Sr/86Sr(i) (0.70255 to 0.71006) and εNd(i) values (− 4.8 to − 7.1), as well as Nd model ages (1.15 to 2.47 Ga). The Pb-isotopic ratios are 206Pb/204Pb = 17.11–18.60, 207Pb/204Pb = 15.58–15.64 and 208Pb/204Pb = 36.95–38.62. The crystallization temperatures of the melts range from 676 to 993 °C, as determined by zircon and apatite saturation thermometry.These data suggest that the Carboniferous granitic magmas were produced by the partial melting of meta-mafic to meta-felsic lower crustal source rocks, with minor contributions from the mantle. Collectively, these rocks represent a late stage of Hercynian magmatism in the northern part of the Eastern Pontides.  相似文献   

15.
We have studied the hydrolytic behavior of Y3 + and trivalent ions of rare earth elements in aqueous solutions at 25 ºC. The stepwise stability constants of hydroxide complexes were measured by spectrophotometry, using m-cresol purple and 1-(2-pyridylazo)-2-naphthol as pH indicators at an ionic strength no more than 0.0005. The results showed that at pH ranging between 6.0 and 11.0 in freshly prepared solutions of REE trichlorides, lanthanides are presented as Ln3 +, Ln(OH)2 +, Ln(OH)2, and Ln(OH)3. The plots of the formation constants of + 0 monohydroxo complexes of 4f n ions M3 + versus atomic number Z deviate from smooth ones and consist of four convex curves. This phenomenon is also observed in normalized spectra of REE concentrations in natural objects and is known as the tetrad effect. The obtained data give an insight into the relationship between REE complex formation and REE fractionation in geochemical processes and can be used for physicochemical modeling of geochemical systems.  相似文献   

16.
《Applied Geochemistry》2006,21(3):492-514
Geochemical mapping of northern Honshu in the Northeast Japan Arc was carried out using stream sediments at a sampling density of one sample per 130 km2. More than 50 elements were determined in 395 stream sediment samples (<0.18 mm fraction). In geochemical maps, areas with especially low concentrations of large ion lithophile elements (LILE), Be and Li widely overlap with the distribution of Quaternary volcanic rocks along the volcanic front. The areas rich in mafic elements are associated with mafic rocks in many cases. On a regional scale, Ni, Cr and Cu contents are higher in the eastern Paleozoic–Mesozoic basement zone, Pb and Tl tend to be higher on the western zones, and Zn and Cd are high in the western back-arc zone. The areas especially rich in Cu, Zn, Cd, Pb, Bi and Tl coincide with the distribution of large mineral deposits. High concentrations related to Kuroko, hydrothermal-vein, and skarn-type deposits are recognized. High values of As and Sb are related to active geothermal areas near volcanoes and ore deposits. Chemical variations of K, Ce, Th and Sn in the stream sediments are concordant with chemical variations in major rocks. The median and mean concentrations for the stream sediments in northern Honshu, showing arc signatures, are lower in Rb, Cs, Th, Li, K, Be, Ta, LREE, Ni, Hg and Sn, and higher in Sc, Ca and Cd relative to the whole area of Japan, largely because of the contribution of Cenozoic island-arc volcanic rocks that are generally poor in incompatible elements. The averaged chemical compositions of the stream sediments for the geologic zones show systematic variations of many elements. The contrasting variations of LREE and Th contents, which are lower in the zones of Cenozoic rocks relative to the zones of pre-Neogene basements, reflect the regional variations in the main rocks, and also reflect the change of geological settings of the studied area from the continental margin to an island arc during the Cenozoic.  相似文献   

17.
Geogenic nickel (Ni), vanadium (V) and chromium (Cr) are present at elevated levels in soils in Northern Ireland. Whilst Ni, V and Cr total soil concentrations share common geological origins, their respective levels of oral bioaccessibility are influenced by different soil-geochemical factors. Oral bioaccessibility extractions were carried out on 145 soil samples overlying 9 different bedrock types to measure the bioaccessible portions of Ni, V and Cr. Principal component analysis identified two components (PC1 and PC2) accounting for 69% of variance across 13 variables from the Northern Ireland Tellus Survey geochemical data. PC1 was associated with underlying basalt bedrock, higher bioaccessible Cr concentrations and lower Ni bioaccessibility. PC2 was associated with regional variance in soil chemistry and hosted factors accounting for higher Ni and V bioaccessibility. Eight percent of total V was solubilised by gastric extraction on average across the study area. High median proportions of bioaccessible Ni were observed in soils overlying sedimentary rock types. Whilst Cr bioaccessible fractions were low (max = 5.4%), the highest measured bioaccessible Cr concentration reached 10.0 mg kg−1, explained by factors linked to PC1 including high total Cr concentrations in soils overlying basalt bedrock.  相似文献   

18.
《Gondwana Research》2014,26(4):1690-1699
The continental collision between the Indian and Asian plates plays a key role in the geologic and tectonic evolution of the Tibetan plateau. In this article we present high-resolution tomographic images of the crust and upper mantle derived from a large number of high-quality seismic data from the ANTILOPE project in western Tibet. Both local and distant earthquakes were used in this study and 35,115 P-wave arrival times were manually picked from the original seismograms. Geological and geochemical results suggested that the subducting Indian plate has reached northward to the Lhasa terrane, whereas our new tomography shows that the Indian plate is currently sub-horizontal and underthrusting to the Jinsha river suture at depths of ~ 100 to ~ 250 km, suggesting that the subduction process has evolved over time. The Asian plate is also imaged clearly from the surface to a depth of ~ 100 km by our tomography, and it is located under the Tarim Basin north of the Altyn Tagh Fault. There is no obvious evidence to show that the Asian plate has subducted beneath western Tibet. The Indian and Asian plates are separated by a prominent low-velocity zone under northern Tibet. We attribute the low-velocity zone to mantle upwelling, which may account for the warm crust and upper mantle beneath that region, and thus explain the different features of magmatism between southern and northern Tibet. But the upwelling may not penetrate through the whole crust. We propose a revised geodynamic model and suggest that the high-velocity zones under Lhasa terrane may reflect a cold crust which has interrupted the crustal flow under the westernmost Tibetan plateau.  相似文献   

19.
The stable carbon isotopic compositions of light hydrocarbon gases adsorbed in near-surface soil and sediments from the Saurashtra basin were characterized for their origin and maturity. Saurashtra is considered geologically prospective for oil and gas reserves; however, a major part of the basin is covered by the Deccan Traps, hindering the exploration of Mesozoic hydrocarbon targets. Surface geochemical prospecting, based on micro-seepage of hydrocarbons from subsurface accumulations, could be advantageous in such areas. In light of this, 150 soil samples were collected from the northwestern part of Saurashtra, around the Jamnagar area, where a thick sedimentary sequence of about 2–3 km exists under 1–1.5 km of Deccan basalt. The concentration of acid desorbed alkane gases from soil samples was found to vary (in ppb) as: methane (C1) = 3–518; ethane (C2) = 0–430; propane (C3) = 0–331; i-butane (iC4) = 0–297; n-butane (nC4) = 2–116; i-pentane (iC5) = 0–31 and n-pentane (nC5) = 0–23, respectively.Fifteen samples with high concentrations of alkane gases were measured for their δ13C1; δ13C2 and δ13C3 compositions using gas chromatography–combustion-isotope ratio mass spectrometry (GC–C-IRMS). The values for methane varied from ? 27 to ? 45.4‰, ethane from ? 20.9 to ? 27.6‰, and propane from ? 20.4 to ? 29.1‰ versus the Vienna PeeDee Belemnite (VPDB). The carbon isotope ratio distribution pattern represents isotopic characteristics pertaining to hydrocarbon gases derived from thermogenic sources. Comparisons of carbon isotopic signatures and compositional variations with the standard carbon isotopic models suggest that hydrocarbon gases found in the shallow depths of the study area are not of bacterial origin but are formed thermally from deeply buried organic matter, likely to be mainly a terrestrial source rock with a partial contribution from a marine source. These gases may have migrated to the near-surface environment, where they represent an admixture of thermally generated hydrocarbon gases from mixed sources and maturity. The maturity scale (δ13C versus Log Ro %) applied to the surface sediment samples of the Jamnagar area indicated the source material to be capable of generating oil and gas. The detection of thermogenic alkane gases in near-surface sediments offers the possibility of hydrocarbons at depth in Saurashtra.  相似文献   

20.
Neoproterozoic igneous rocks are widely distributed in the Kuluketage block along the northern margin of the Tarim Craton. However, the published literature mainly focuses on the ca. 800 Ma adakitic granitoids in the area, with the granites that intrude the 735–760 Ma mafic–ultramafic rocks poorly studied. Here we report the ages, petrography and geochemistry of two granites in the Xingdi mafic–ultramafic rocks, in order to construct a new view of the non-adakitic younger granites. LA-ICP-MS zircon U–Pb dating provided weighted mean 206Pb/238U ages of 743.0 ± 2.5 Ma for the No.I granite (G1) and 739.0 ± 3.5 Ma for the No.II granite (G2). A clear core-rim texture of similar age and a high zircon saturation temperature of ca. 849 ± 14 °C were observed for the No.I granite; in contrast, G2 has no apparent core-rim texture but rather inherited older zircons and a lower zircon saturation temperature of ca. 763 ± 17 °C. Geochemical analysis revealed that G1 is an alkaline A-type granite and G2 is a high-K calc-alkaline I-type granite. Both granites share similar geochemical characteristics of arc-related magmatic rocks and enriched Sr–Nd–Hf isotopes, likely due to their enriched sources or mixing with enriched magma. Whereas G1 and its host mafic rocks form typical bimodal intrusions of the same age and similar Sr–Nd–Hf isotope compositions, G2 is younger than its host mafic rocks and its Sr–Nd–Hf isotope composition indicates a lower crust origin. Although they exhibit arc-related geochemical features, the two granites likely formed in a rift setting, as inferred from thier petrology, Sr–Nd–Hf isotopes and regional tectonic evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号