首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The aim of this paper is to study a problem in which the intermediate layer is non-homogeneous, the rigidity varying exponentially with depth i.e. 2=2 v 0 2 e 2pz , the density being constant, velocity varies also exponentially with depth according to the law =v 0 e pz . The variability ofKH with the change of phase velocity is shown graphically.  相似文献   

2.
The conditions under which two magmas can become mixed within a rising magma batch are investigated by scaling analyses and fluid-dynamical experiments. The results of scaling analyses show that the fluid behaviours in a squeezed conduit are determined mainly by the dimensionless number where 1 is the viscosity of the fluid, U is the velocity, g is the acceleration due to gravity, is the density difference between the two fluids, and R is the radius of the tube. The parameter I represents a balance between the viscous effects in the uppermost magma which prevent it from being moved off the conduit walls, and the buoyancy forces which tend to keep the interface horizontal. The experiments are carried out using fluid pairs of various density and viscosity contrasts in a squeezed vinyl tube. They show that overturning of the initial density stratification and mixing occur when I>order 10-1; the two fluids remain stratified when I 10-3. Transitional states are observed when 10-3<I<10-1. These results are nearly independent of Reynolds number and viscosity ratio in the range of and Re 1<300. Applying these results to magmas shows that silicic to intermediate magmas overlying mafic magma will be prone to mixing in a rising magma batch. This mechanism can explain some occurrences of small-volume mixed lava flows.  相似文献   

3.
Résumé La formule de base, traduisant une propriété analytique d'une classe très générale de fonctions, est un corollaire du théorème fondamental démontré dans un mémoire précédent, d'après lequel, étant donnés une fonction continue,p(, ,t) des points (, ) d'une surface régulière fermée et du temps et le champ d'un vecteur vitesse de transfert ou d'advection tangent à et ayant des lignes de flux fermées et régulières, il existe un opérateur spatial, linéaire, non singulierA tel que la fonctionA(p+Const.) soit purement advective par rapport a (sans creusement ni comblement). Ce théorème peut être exprimé par l'équation , où est un opérateur spatial, linéaire et non singulier, fonction deA.La détermination de peut être faite, soit en comparant deux formes différentes de la solution générale de l'équation en , soit en utilisant un raisonnement a priori très simple. On arrive ainsi au résultat pour un certain scalaireu(, ).Dans le cas oùp(, ,t) est la perturbation de la pression sur la surface du géoïde l'équation résulte aussi, comme nous l'avons montré dans le mémoire précédent, de notre théorie hydrodynamique des perturbations. On montre ici que la même équation peut encore être déduite de l'équation de continuité associée à la condition d'équilibre quasi statique selon la verticale.Comme applications de la formule de base (solution générale de l'équation enM), on étudie les problèmes suivants: 1o creusement et comblement en général; 2o creusement et comblement des centres et des cols; 3o mouvement des centres et des cols; 4o instabilité d'un champ moyen; 5o propriétés spatiales des champsp(, ,t) et des vecteurs d'advection analytiques.Après une discussion des erreurs de la prévision d'un champp(, ,t) par la formule de base, du fait des erreurs des observations et du fonctionnement du calculateur, on examine quelques particularités du transfert ou advection d'un champf 0(, ) par le vecteur . Enfin, le dernier chapitre du mémoire donne des éclaircissements complémentaires sur la structure du calculateur électronique «Temp» (qui effectue automatiquement les opérations mathématiques de la formule de base) et expose l'état actuel de sa construction.
Summary The basic formula, expressing an analytical property of a very general class of functions, is a corollary of the fundamental theorem, proved in a previous paper, according to which, given a functionp(, ,t) of the points (, ) of a closed regular surface and of the time, and a transfer or advection velocity vector tangent to and having regular closed streamlines, there is a spatial, linear, non singular operatorA such thatA(p+const.) is a purely advective function in respect to (no deepening). This theorem can be expressed by the equation where is a spatial, linear, non singular operator depending onA.The determination of can be attained, either by the comparison of two different forms of the general solution of the -equation, or by a simple a priori reasonning. The conclusion is thus reached that for a certain scalaru(, ).Whenp(, ,t) is the pressure perturbation at sea level, it was shown, in the preceding paper, that the equation can also be derived from our hydrodynamical perturbation theory. We now show that for this particular case, the same equation is also a consequence of the equation of continuity together with the condition of quasi statical vertical equilibrium.The following problems are then analysed by means of the basic formula: 1o deepening and filling in general; 2o deepening and filling of the centres and cols; 3o motion of the centres and cols; 4o instability of a mean field; 5o spatial properties of the analytical fields and advection vectors .The errors in the forecast of a field,p(, ,t) by means of the basic formula, due to the observational and computational errors, are discussed, and some peculiarities of the transfer or advection of a fieldf 0(, ) by are examined. Finally, complementary points are disclosed on the structure of the electronic computer «Temp» which performs automatically the mathematical operations of the basic formula, and a brief report is given of the present state of its construction.
  相似文献   

4.
A generalized turbulent diffusion model has been developed which evaluates the time rate of growth of a simulated cloud of particles released into a turbulent (i.e. diffusive) atmosphere. The general model, in the form of second-order differential equations, computes the three-dimensional size of the cloud as a function of time. Parameters which influence the cloud growth, and which are accounted for in the model equations, are: (1) length scales and velocity magnitudes of the diffusive field, (2) rate of viscous dissipation , (3) vertical stability as characterized by the relative adiabatic lapse rate (1/T)(g/C p +T/z), and (4) vertical shear in the mean horizontal winds , and , for a given height and of spatial extent equal to that of the diffusing cloud. Sample results for near ground level and for upper stratospheric heights are given. For the atmospheric boundary layer case, the diffusive field is microscale turbulence. In the upper stratospheric case it is considered to be a field of highly interactive and dispersive gravity waves.  相似文献   

5.
Riassunto Data una variabile casuale X che segue la legge normale di probabilitl con valor medio a ed error medio y 1'A. considera un'altra variabile casuale che prende il valore intero r quando r–1/2
Summary Given a random variable X following the normal probability law, with expectation a and standard error p, the author considers another random variable , that takes the entire value r when r–1/2  相似文献   

6.
Zusammenfassung 1) Es werden Multipollösungen der skalaren Wellengleichung 2 f/t 2 – c2 div gradf=0 betrachtet. Einerseits kann man solche Lösungen direkt durch Kugelfunktionenn-ter Ordnung ausdrücken, anderseits aus der Einpollösungf=1/p F(t–p/c) durch Differentiation nachn Richtungen erhalten. Es wird der Zusammenhang zwischen den Ergebnissen der beiden Verfahren gezeigt. — 2) Für die Energiedichte und den Energiefluss durch Kugelflächen bei kleinen elastischen Verschiebungen werden Ausdrücke in Kugelkoordinaten angegeben. — 3) Für die Wellengleichung grad div –b 2 rot rot werden rotationsfreie Multipollösungen angegeben und Ausdrücke für Energiedichte und Energiefluss hergeleitet. — 4) Das gleiche wird für divergenzfreie Multipollösungen durchgeführt. — 5) Es werden Multipole betrachtet, die weder rotationsfrei noch divergenzfrei sind. Als Spezialfälle werden Multipole mit zeitlich begrenzter und solche mit periodischer Erregung gezeigt, ferner Lösungen der Wellengleichung, die sowohl rotationsfrei wie divergenzfrei sind. — 6) Es wird gezeigt, wie man die elastischen Wellen, die im Sinne vonStokes von einem Herdgebiet endlicher Ausdehnung ausgehen, näherungsweise durch elastische Multipole darstellen kann. — 7) Es wird angedeutet, wie man durch Messung von Komponenten von oder u.s.w. in Punkten im Innern des Mediums die Erregung und Energie von elastischen Multipolen bestimmen kann. Ferner wird auf den Fall hingewiesen, wo ein rotationsfreier Einpol sich im Innern eines Halbraumes befindet und die Messungen an seiner Oberfläche ausgeführt werden.
Summary (On foci of elastic waves in isotropic homogeneous media) — 1) Multiplets as solutions of the scalar wave equation 2 f/t 2 – c2 div gradf=0 are considered. Such solutions can be obtained either directly by aid of spherical harmonics of ordern, or by differentiating the single polef=1/p F(t–p/c) with respect ton directions. The relations between the results of those two procedures are shown. — 2) In the case of small elastic displacements , the density of energy and the flow of energy through spherical surfaces are expressed by spherical coordinates. — 3) Multiplets which satisfy the equation of motion =a 2 grad div b 2 curl curl and the equation curl = 0 are given, and expressions for the density and flow of energy are found. — 4) The same is done with multiplets satisfying the equation of motion and the equation div = 0. — 5) General multiplets which satisfy the equation of motion are treated. As special cases, multiplets with excitation of finite length and multiplets with periodic excitation are considered, furthermore solutions of the equation of motion and of the equations curl = 0 and div = 0 are given. — 6) It is shown how elastic waves whose origin is a region of finite extension in the sense given byStokes, can be approximated by elastic multiplets. — 7) Some indications are given on the problem of how to find the functions of excitation and the energy of an elastic multiplet by measuring components of or etc., at points in the interior of the medium. The same problem is considered in the case of the single elastic pole. = grad 1/p F (t–p/a), if the measurements are made at the surface of an elastic half space.
  相似文献   

7.
Summary Characteristics of the piezo-remanent magnetization (PRM) of lunar rocks are particularly interesting in comparison with the PRM of terrestrial rocks, because ferromagnetic constituents in lunar materials are metallic iron grains whose average magnetostriction coefficient is negative. Experimentally observed characteristics of the PRM of lunar rocks are substantially the same as those of the PRM of terrestrial rocks and magnetites, in which is positive. These experimental results indicate that the acquisition mechanism of PRM is due to a non-linear superposition of the magnetoelastic pressure upon the magnetostatic pressure on both sides of the 90° domain walls in ferromagnetic particles, as suggested by Nagata and Carleton.
Zusammenfassung Die Eigenschaften der piezo-remanenten Magnetisierung (PRM) der Mondgesteine sind besonders interessant im Vergleich mit der PRM der Erdgesteine, weil die ferromagnetischen Bestandteile der Mondmaterien die metallischen Eisenkörnchen sind, derer durchschnittliche Magnetostriktion-Koeffizient negativ ist. Die experimentelle gemessenen Eigenschaften von PRM der Mondgesteine sind wesentlich dieselbe der Erdgesteine und Magnetite, derer positive ist. Solche experimentaren Ergebnisse zeigen an, dass die Erwerbung von PRM durch eine nonlineare Übereinanderwirkung des magnetoelastischen Druckes und des magnetostatischen Druckes gegen die beiden Seiten der 90° Gebietwände der ferromagnetischen Teilchen ist, wie Nagata und Carleton vorgeschlagen haben.
  相似文献   

8.
Zusammenfassung Unter der Voraussetzung, dass die Frontgeschwindigkeitc eine stetige und monoton wachsende Funktion von der Tiefez ist, wird dargelegt, wie man aus einer gemessenen Laufzeitkurve () die zuc inverse Funktionz=z (c) auf einfache Weise berechnen kann. Weiter wird die Eindringtiefez m in Funktion von ermittelt und abschliessend ein Beispiel gegeben.
Summary Based on a recorded travel-time curve (), a simple direct method is developed for calculating the functionz=z (c), under the asumption that the wave velocityc is a regularly monotone increasing function of the depthz. Finally a rumerical example is given.
  相似文献   

9.
Zusammenfassung Für ein Beobachtungsbeispiel (Stromgeschwindigkeit, Dichte) aus der Kieler Bucht wird eine Deutung ausgeprägter Maxima der zugehörigen Spektren zwischen 0,3 und 60 Minuten durch interne Wellen gegeben. Mit einer beobachteten Periode von zwei Minuten durchgeführte Rechnungen ergeben eine starke Abhängigkeit der Wellenlänge von der mittleren Strömung . Im Falle erhält man bei 23,5 m Wassertiefe eine Wellenlänge von etwa 70 m, im Falle von etwa 85 m. Die berechneten Schwingungen stellen uneigentliche interne Wellen dar (W. Krauß [1966]). Die Interpretation durch eine Grenzflächenwelle führt auf eine Wellenlänge von 86 m, die nur geringfügig von denen der internen Wellen 1. Ordnung in stetig sich ändernder Strömung abweicht.In einer theoretischen Untersuchung werden kleinräumige Anfangsstörungen (z. B. momentane Druckänderungen an der Meeresoberfläche) als mögliche Ursache für die Entstehung kurzperiodischer interner Wellen erkannt. Es zeigt sich, daß kurzzeitig wirksame Anfangsbeschleunigungen in ihrem Einwirkungsbereich stehende, allmählich abklingende interne Wellen erzeugen, während in der Umgebung gleichzeitig fortschreitende Wellen entstehen, deren Amplituden mit wachsender Entfernung vom Erregungsgebiet abnehmen. Die Perioden der Schwingungen haben größere Werte als die zu einer exponentiellen Schichtung gehörige Väisäläperiode und verändern sich in Abhängigkeit von der Größe des Anregungsgebietes wie die zellularer Stabilitätsschwingungen.
The powerspectrum of internal motions in the western baltic between the periods 0.3 and 60 minutes. Part 1: Interpretation of the wavelike component of the internal unrest in the sea
Summary The powerspectra of the internal unrest in the sea show marked peaks in the range of periods between 0.3 and 60 minutes. An interpretation of these phenomena is given in terms of internal waves for a specific example obtained from short periodic current and density variations in the Kieler Bucht. The numerical calculations for an observed period of two minutes show an important influence of the vertical distribution of the current on the wavelength. In the case of the wavelength amounts to about 70 m, where as in the case of the length is about 85 m, assuming a depth of the sea of 23.5 m. The computed oscillations represent improper internal waves (W. Krauß [1966]). Interpretation by internal boundary waves yields a wavelength of 86 m, which is slightly different only from those of the first mode of internal waves in the case of continuously varying .By a theoretical investigation it is shown that short periodic internal waves may be caused by local initial perturbations (for instance by sudden variations of pressure at the surface). The solution of the problem describes slowly decreasing standing internal waves, which are generated within the area upon which short-dated initial accelerations have acted. At the same time a train of progressive waves is developed in the environment travelling away from the centre of the excitation. The amplitudes of these waves diminish with increasing distance from the origin. The periods of the computed oscillations yield higher values than the Väisäläperiod belonging to an exponential stratification. The variability in these periods is caused by variations in depth, by variations in stability, and by changes in the horizontal dimensions of the area of initial perturbation. This dependence is similar to that of cellular oscillations of stability.

Spectre des oscillations internes de la mer Baltique Ouest pour des périodes comprises entre 0,3 et 60 minutes. 1ère Partie: Interprétation des éléments ondulatoires de mouvement
Résumé Pour un cas d'observation (vitesse de courant, densité) en baie de Kiel, des maximums bien marqués des spectres correspondants entre 0,3 et 60 minutes s'expliquent par des ondes internes. Des calculs effectués avec une période de deux minutes montrent que la longueur d'onde dépend beaucoup du courant moyen, . Pour , par 23,5 m de profondeur, on obtient une longueur d'onde environ 70 m; pour , une longueur d'environ 85 m. Les oscillations calculées représentent des ondes internes qui ne sont pas des ondes propres. L'interprétation par une onde de surface limite conduit à une longueur d'onde de 86 m très peu différente de celles des ondes internes du premier ordre dans un courant constamment variable.Une étude théorique montre que des perturbations initiales peu étendues (par exemple variations momentanées de la pression à la surface de la mer) peuvent être à l'origine d'ondes internes à courte période. Il apparaît que des accélérations initiales, agissant brièvement, font naître dans leur zone d'action des ondes internes stationnaires qui s'amortissent peu à peu, tandis qu'en même temps aux alentours se produisent des ondes progressives dont l'amplitude décroît à mesure qu'elles s'éloignent de la région où elles ont pris naissance. Les périodes des oscillations ont des valeurs plus grandes que celle de la période de Väisälä rapportée à une stratification exponentielle, et elles varient suivant la grandeur de la zone où elles ont pris naissance comme les oscillations de stabilité cellulaire.
  相似文献   

10.
The Drude law (molecular refraction) for the temperature radiation in a monoatomic model of the Earth's mantle is derived. The considerations are based on the Lorentz electron theory of solids. The characteristic frequency (or eigenfrequency) of independent electron oscillators (in energy units, ) is identified with the band gapE G of a solid. The only assumption is that solid material related to the Earth's mantle has the mean atomic weight A21 g/mole, and its energy gap (E G) is about 9 eV. In this case the value of molecular refraction (in cm3/g) is (n 2–1)/=0.5160.52, where andn are the density and the refractive index at wavelength D=0.5893 m (sodium light), respectively. The average molecular refraction of important silicate and oxide minerals with A21, obtained byAnderson andSchreiber (1965) from laboratory data, is , where denotes the mean arithmetic value calculated from three principal refractive indices of crystal. For the rock-forming minerals with 19A<24 g/mole the new relation was found byAnderson (1975).  相似文献   

11.
We extend to Love waves the concept of the mantle magnitudeM mintroduced recently for Rayleigh waves. Spectral amplitudesX() of Love waves in the 50–300 s period range are measured on broad-band records from major events. A distance correctionC D, regionalized to reflect the influence of different tectonic paths, and a source correctionC S, compensating for the variation of excitation with period are effected; the exact geometry and depth of the event are however ignored. The resulting expression
  相似文献   

12.
Summary Seven optimal networks consisting of 4 to 10 stations are compared for a given region, where velocity-depth profiles and the distribution of seismic intensity are known. Assuming that the standard error of arrival time is t =0.05 s and the standard errors of the parameters of velocity-depth profiles are equal to 5% of their values, the average standard errors of the origin time and focus coordinates are estimated. The application of optimum methods to the planning of seismic networks in the Lublin Coal Basin is presented, and maps of standard errors of origin time , depth and epicenter ( xy ) for the case of an optimum network of 6 seismic stations are given.  相似文献   

13.
Résumé On commence par définir le creusement et le comblement d'une fonctionp(, t) du tempst et des points (, ) d'une surface régulière fermée en se donnant, sur cette surface, un vecteur vitesse d'advection ou de transfert tangent à . Le creusement (ou le comblement) est la variation dep sur les particules fictives se déplaçant constamment et partout à la vitesse , A chaque vecteur et pour un mêmep(, ,t) correspond naturellement une fonction creusementC (, ,t) admissible a priori; mais une condition analytique très générale (l'intégrale du creusement sur toute la surface fermée du champ est nulle à chaque instant), à laquelle satisfont les fonctions de perturbation sur les surfaces géopotentielles, permet de restreindre beaucoup la généralité des vecteurs d'advection admissibles a priori et conduit à des vecteurs de la forme: , oùT est un scalaire régulier, () une fonction régulière de la latitude , le vecteur unitaire des verticales ascendantes etR/2 une constante. Ces vecteurs sont donc une généralisation naturelle des vitesses géostrophiques attachées à tout scalaire régulier. Dans le cas oùp(, ,t) est la perturbation de la pression sur la surface du géoïde, le vecteur d'advection par rapport auquel on doit définir le creusement est précisément une vitesse géostrophique: on a alors ()=sin etT un certain champ bien défini de température moyenne.On déduit ensuite une formule générale de géométrie et de cinématique différentielles reliant la vitesse de déplacement d'un centre ou d'un col d'un champp(, ,t) à son champ de creusementC (, ,t) et au vecteur d'advection correspondant. Cette formule peut être transformée et prend la forme d'une relation générale entre le creusement (ou le comblement) d'un centre ou d'un col et la vitesse de son déplacement, sans que le vecteur d'advection intervienne explicitement. On analyse alors les conséquences de ces formules dans les cas suivants: 1o) perturbations circulaires dans le voisinage du centre; 2o) perturbations ayant, dans le voisinage du centre, un axe de symétrie normal ou tangent à la vitesse du centre; 3o) évolution normale des cyclones tropicaux.Finalement, on examine les relations qui existent entre le creusement ou le comblement d'un champ, le vecteur d'advection et la configuration des iso-lignes du champ dans le voisinage d'un centre.Ces considérations permettent d'expliquer plusieurs propriétés bien connues du comportement des perturbations dans différentes régions.
Summary The deepening and filling (development) of a functionp(, ,t) of the timet and the points (, ) of a regular closed surface is first of all defined, in respect to a given advection or transfer velocity field tangent to , as the variation ofp on any fictitious particle moving constantly and everywhere with the velocity . For a givenp(, ,t) and to any there corresponds a well defined development fieldC (, ,t). All theseC fields are a priori admissible, but a very general analytical condition of the perturbation fields in synoptic meteorology (the integral of the development fieldC (, ,t) on any geopotential surface vanishes at any moment), leads to an important restriction to advection vectors of the form: , whereT is any regular scalar, () any regular function of latitude, the unit vector of the ascending verticals andR/2 a constant. These vectors are a natural generalisation of the geostrophic velocities attached to any regular scalar. Whenp(, ,t) is the pressure perturbation at sea level, its development must be defined in respect to a geostrophic advection vector belonging to the above defined class of vectors with ()=sin andT a well defined mean temperature field.A general formula of the differential geometry and kinematics ofp(, ,t) is then derived, giving the velocity of any centre and col of ap(, ,t) as a function of the advection vector and the corresponding development fieldC (, ,t). This formula can be transformed and takes the form of a general relation between the deepening (and filling) of a centre (or a col) of ap(, ,t) and its displament velocity, the advection vector appearing no more explicitly. A detailed analysis of the consequences of these formulae is then given for the following cases: 1o) circular perturbations in the vicinity of a centre; 2o) perturbations having, in the vicinity of a centre, an axis of symmetry normal or tangent to the velocity of the centre; 3o) normal evolution of the tropical cyclones.Finally, the relations between the developmentC (, ,t) of a fieldp(, ,t), the advection velocity vector and the configuration of the iso-lines in the vicinity of a centre are analysed.These theoretical results give a rational explanation of several well known properties of the behaviour of the perturbations in different geographical regions.


Communication à la 2ème Assemblée de la «Società Italiana di Geofisica e Meteorologia» (Gênes, 23–25 Avril 1954).  相似文献   

14.
Zusammenfassung Die Kinematik der magnetischen Feldlinien im Plasma kann mit denselben mathematischen Hilfsmitteln studiert werden, welche sich in der Kinematik der Wirbel bewährt haben. Ausgehend vom Faradayschen Induktionsgesetz für bewegte Medien können gefolgert werden: eine notwenige und hinreichende bedingung dafür, dass die magnetischen Feldlinien mit materiellen Kurven zusammenfallen; ein Analogon zuC. Truesdells «basic vorticity formula», welches die Mitführung und Diffusion der magnetischen Feldlinien im Plasma beschreibt; Sätze zur Kinematik der Feldlinien, welche eine frei wählbare tensorielle Feldfunktion beliebiger Stufe enthalten und den vonH. Ertel formulierten «allgemeinen Wirbelsätzen» entsprechen, insbesondere Analoga zuErtels «Vertauschungsrelationen». In einem isentropen idealen Plasma ist das mit dem spezifischen Volumen multiplizierte Skalar-produkt aus der magnetischen Induktion und dem Gradienten der Entropiedichte zeitlich individuell konstant.
Summary The kinematics of magnetic field lines in a plasma can be studies by means of the mathematical methods used in the kinematics of vorticity. Starting withFaraday's law of induction for moving circuits the following results can be derived: a necessary and sufficient condition that the magnetic field lines remain material lines; a formula describing the convection and diffusion of the magnetic field lines in a plasma, which is analogous to the «basic vorticity formula» ofC. Truesdell; general theorems containing an arbitrary tensor field of any order, which are analogous to general vorticity theorems ofH. Ertel, especially a «commutation formula» corresponding to the «Euler-Ertel commutation formula» for circulation preserving motions. Given an isentropic ideal plasma it follows that ( denoting the density, the magnetic induction,s the specific entropy, andd/dt the material time derivative).


Herrn ProfessorDr. Hans Ertel zum 60. Geburtstag in Dankbarkeit gewidmet.  相似文献   

15.
Summary The basic concept of synoptic statistical methods for construction of prognostic charts was outlined by the author in a previous paper. As a result of these investigations it was found that a high correlation exists between time and space means of contourheights of an isobaric surface (850 mb surface). As it has been shown later byPichler this result may be interpreted by assuming that the geopotential fields obeys a numerical solution of the second order homogenous differential equation for wave propagation (hyperbolic equation) provided the phase velocity is given by . SinceReuter has used for s=666 km and for t=24 hours the conclusion may be drawn that the phase velocity of the wave propagation has an order of magnitude of 5 m/sec. Actually for long waves in the westerlies such a value can be found on an average. The same method can be used for extended forecast procedures if the wave equation is set down for 5 days mean values. Theoretical considerations lead then to a prognostic formula for a 5 days mean chart (8a). This formula can be applied for a sufficient number of grid points in order to construct prognostic charts. The underlying assumption, namely that the mean geopotential field satisfies also a solution of the wave equation turns out to be quite accurate even if only average values of the phase velocity were used for the computation. The usefullness of the method is illustrated for two cases.

Vortrag gehalten am 7. April 1961 auf der 9. Allgemeinversammlung der «Società Italiana di Geofisica e Meteorologia» (Genova, 6.8. April 1961).  相似文献   

16.
An electrically conducting viscous fluid-filled spherical shell is permeated by an axisymmetric strong potential magnetic field with large Elssaser number 2 1. We describe analytically the steady flow driven by a slightly faster rotation of the conducting inner boundary of the shell. The main flow is controlled by Ekman-Hartmann boundary layers with a small thickness /, where 2 is the Ekman number. Asymptotics based on small –1 1 reveal the nature of a free shear layer O((/)1/2) and a super-rotation that allows a part of the fluid to rotate faster than the inner sphere. The free shear is following an imposed field line that is tangent to the inner or outer sphere. Meridional flux is concentrated in the shear and boundary layers. Fluid tends to rotate with the inner sphere and to expel azimuthal magnetic field from an -region restricted by the free shear in the spherical shell. For an imposed axial uniform magnetic field, this -region is outside the cylinder tangent to the inner sphere and rotates with the outer sphere. Weak differential rotation O(/) is inside the cylinder, while almost all difference in rotation rates between spheres is accommodated in the thin O((/)1/2) free shear. For an imposed dipole magnet, the region has a shape of a lobe touching the outer equator. Inside a super-rotation exists; this is the common case for such when the source of the imposed field is inside.  相似文献   

17.
Zusammenfassung Die starke Abhängigkeit der zeitlichen Folge erdmagnetischer Störungen und Erdbehen von einer Periode 34 d .19 wird an den Diagrammen der Figg. 1–5 veranschaulicht. Nach der harmonischen Analyse tritt die Periodenwelle in zwei bestimmten, um 180° gegeneinander versetzten Phasenlagen auf. Ein Vergleich der Amplituden mit derSchusterschen Expektanz lässt erkennen, dass ein Walten des Zufalls hierbei praktisch ausgeschlossen sein sollte. Die Periode ist identisch mit der vom Verfasser früher abgeleiteten Rotationsdauer 34 d .19 eines hypothetischen Sonnenkerns. Auch Perioden der Form treten auf ( p =Umlaufszeit der einzelnen Planeten), wie hier nur an einem Beispiel für den Merkur (Fig. 7) gezeigt wird.
Summary It is shown in the diagrams Figg. 1–5, that the temporal sequences of terrestrial magnetic storms and earthquakes are largely dependent from a period of 34.19 days. The harmonic analyse demonstrates, that there are two waves of this period with a difference of 180° between them. The comparison of the amplitudes of waves with the expectance as defined byA. Schuster shows, that the period should be a reality. This period is identical with the period of 34.19 days for the rotation of an hypothetical sun-core, discovered earlier by the author. It is illustrated only at the example of the planet Mercury (Fig. 7), that there exist also periods of the form: ( p =period of the revolution of the single planet).
  相似文献   

18.
A maximum likelihood method is used to estimate the earthquake hazard parameters maximum magnitudeM max, annual activity rate , and theb value of the Gutenberg-Richter equation in the Vrancea (Romania) region. The applied procedure permits the use of mixed catalogs with incomplete historical as well as complete instrumental parts, the consideration of variable detection thresholds, and the incorporation of earthquake magnitude uncertainty.Our imput data, comprises 105 historical earthquakes which occurred between 984 and 1934, and a complete data file containing 1067 earthquakes which occurred during the period 1935–30 August, 1986. The complete part was divided into four subcatalogs according to different thresholds of completeness. Only subcrustal events were considered, and dependent events were removed.The obtained value (=0.65) is at the lower range of the previously reported results, but it appears concurrent with conceptual and observational facts. The same concerns inferred value of max = 7.8 and activity rate 4.0 = 5.34.  相似文献   

19.
Piest  Jürgen 《Ocean Dynamics》1963,16(1):9-14
Zusammenfassung Als Zusammenhang zwischen der kennzeichnenden Wellenperiode und der durchschnittlichen Periode im Seegang wird die Formel angesetzt. Mit Hilfe empirischer Unterlagen wird nachgewiesen, daßc eine Funktion des von D. E. Cartwright und M. S. Longuet-Higgins [1956] eingeführten Spektralparameters ist. Es wird eine vorläufige quantitative Beziehung zwischenc und abgeleitet.
Empirical investigations of the relation between the mean and the significant wave period in the sea
Summary It is supposed that the formula represents the relation between the significant wave period and the mean period in the sea. With the aid of empirical data it is demonstrated thatc is a function of the spectral parameter introduced by D. E. Cartwright and M. S. Longuet-Higgins [1956]. A preliminary quantitative relation betweenc and is derived.

Etudes empiriques de la relation entre la période moyenne et la période significative des vagues dans la houle
Résumé On suppose que la formule représente la relation entre la période significative des vagues et la période moyenne dans la houle. A l'aide des données empiriques on montre quec est une fonction du paramètre spectral , introduit par D. E. Cartwright et M. S. Longuet-Higgins [1956]. Une relation quantitative préliminaire entrec et est dérivée.

  相似文献   

20.
The magnetoconvection problem under the magnetostrophic approximation is investigated as the nonlinear regime is entered. The model consists of a fluid filled sphere, internally heated, and rapidly rotating in the presence of a prescribed, axisymmetric, toroidal magnetic field. For simplicity only a dipole parity and a single azimuthal wavenumber (m = 2) is considered here. The leading order nonlinearity at small amplitude is the geostrophic flow U g which is introduced to the previously linear model (Walker and Barenghi, 1997a, b). Walker and Barenghi (1997c) considered parameter space above critical and found that U g acts as an equilibration mechanism for moderately supercritical solutions. However, for solutions well above critical a Taylor state is approached and the system can no longer equilibrate. More importantly though, in the context of this paper, is that subcritical solutions were found. Here subcritical solutions are considered in more detail. It was found that, at is strongly dependent on . ( is the critical value of the modified Rayleigh number is a measure of the maximum amplitude of the generated geostrophic flow while , the Elsasser number, defines the strength of the prescribed toroidal field.) Rm at proves to be the key measure in determining how far into the subcritical regime the system can advance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号