首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Assessing landslide exposure in areas with limited landslide information   总被引:4,自引:2,他引:2  
Landslide risk assessment is often a difficult task due to the lack of temporal data on landslides and triggering events (frequency), run-out distance, landslide magnitude and vulnerability. The probability of occurrence of landslides is often very difficult to predict, as well as the expected magnitude of events, due to the limited data availability on past landslide activity. In this paper, a qualitative procedure for assessing the exposure of elements at risk is presented for an area of the Apulia region (Italy) where no temporal information on landslide occurrence is available. Given these limitations in data availability, it was not possible to produce a reliable landslide hazard map and, consequently, a risk map. The qualitative analysis was carried out using the spatial multi-criteria evaluation method in a global information system. A landslide susceptibility composite index map and four asset index maps (physical, social, economic and environmental) were generated separately through a hierarchical procedure of standardising and weighting. The four asset index maps were combined in order to obtain a qualitative weighted assets map, which, combined with the landslide susceptibility composite index map, has provided the final qualitative landslide exposure map. The resulting map represents the spatial distribution of the exposure level in the study area; this information could be used in a preliminary stage of regional planning. In order to demonstrate how such an exposure map could be used in a basic risk assessment, a quantification of the economic losses at municipal level was carried out, and the temporal probability of landslides was estimated, on the basis of the expert knowledge. Although the proposed methodology for the exposure assessment did not consider the landslide run-out and vulnerability quantification, the results obtained allow to rank the municipalities in terms of increasing exposure and risk level and, consequently, to identify the priorities for designing appropriate landslide risk mitigation plans.  相似文献   

2.
T. Mahdi 《Natural Hazards》2007,42(1):225-236
The direct consequences of exceptional floods are usually considered to be limited to the maximum flooding zone created downstream. However, considering the magnitude of the flows, the morphology of the flooded zone could undergo deep changes. To predict the hazard zone on a river undergoing exceptional flooding, numerical simulations are widely used. In this article, the simulation of the evolution of river reaches resulting from such catastrophic events is performed by coupling the hydraulic and sediment transport numerical model GSTARS with a developed slope stability model based on the Bishop’s simplified method. This is a novel methodology for the delimitation of hazard zones along riverbanks by taking into consideration not only the flood risks but also the possible induced landslides. Indeed, each section of the river reach is subject to changes caused by the river hydraulics and the associated erosion or sediment deposition and also undergoes profile changes caused by possible landslides. The initial hydraulic and geotechnical characteristics are first defined and then used to test the stability of several slopes of representative sections of the river reaches before the dam break. Validation tests are performed on specific reaches of the Outaouais River (Quebec) undergoing a dam break flood.  相似文献   

3.
In this paper a methodology for a multi-risk assessment of an urban area is introduced and performed for the city of Cologne, Germany, considering the natural hazards windstorm, flooding and earthquake. Moreover, sources of the uncertainty in the analysis and future needs for research are identified. For each peril the following analyses were undertaken: hazard assessment, vulnerability assessment and estimation of losses. To compare the three hazard types on a consistent basis, a common economic assessment of exposed assets was developed. This was used to calculate direct economic losses to buildings and their contents. The perils were compared by risk curves showing the exceedence probability of the estimated losses. In Cologne, most of the losses that occur frequently are due to floods and windstorms. For lower return periods (10–200 years) the risk is dominated by floods. For return periods of more than 200 years the highest damage is caused by earthquakes.  相似文献   

4.
Landslide hazard or susceptibility assessment is based on the selection of relevant factors which play a role on the slope instability, and it is assumed that landslides will occur at similar conditions to those in the past. The selected statistical method compares parametric maps with the landslide inventory map, and results are then extrapolated to the entire evaluated territory with a final product of landslide hazard or susceptibility map. Elements at risk are defined and analyzed in relation with landslide hazard, and their vulnerability is thus established. The landslide risk map presents risk scenarios and expected financial losses caused by landslides, and it utilizes prognoses and analyses arising from the landslide hazard map. However, especially the risk scenarios for future in a selected area have a significant importance, the literature generally consists of the landslide susceptibility assessment and papers which attempt to assess and construct the map of the landslide risk are not prevail. In the paper presented herein, landslide hazard and risk assessment using bivariate statistical analysis was applied in the landslide area between Hlohovec and Sered?? cities in the south-western Slovakia, and methodology for the risk assessment was explained in detail.  相似文献   

5.
云南省新平县那板箐泥石流发育特征及风险评价   总被引:1,自引:0,他引:1  
2007年8月4日云南省新平县漠沙镇那板箐发生泥石流灾害,造成重大人员、经济损失。通过调查该泥石流的形成条件并分析其发育特征,明确了灾害危害的重点范围及原因,结合危险性与易损性评价形成了全流域风险性分区。结果表明:那板箐具备良好的泥石流地形、物源、水源发育条件,流域范围内人类活动剧烈,道路建设、电站引水、占用河道等是形成和加大泥石流灾害的原因,尤其是挤占河道的乡镇建筑沟段形成了危险与损失均在中等以上程度的高风险区。对泥石流发育特征进行分析与风险性评价,为该类泥石流的预防治理与乡镇后期建设规划提供指导。  相似文献   

6.
Fatal landslides in Europe   总被引:4,自引:3,他引:1  
Landslides are a major hazard causing human and large economic losses worldwide. However, the quantification of fatalities and casualties is highly underestimated and incomplete, thus, the estimation of landslide risk is rather ambitious. Hence, a spatio-temporal distribution of deadly landslides is presented for 27 European countries over the last 20  years (1995–2014). Catastrophic landslides are widely distributed throughout Europe, however, with a great concentration in mountainous areas. In the studied period, a total of 1370 deaths and 784 injuries were reported resulting from 476 landslides. Turkey showed the highest fatalities with 335. An increasing trend of fatal landslides is observed, with a pronounced number of fatalities in the latest period from 2008 to 2014. The latter are mostly triggered by natural extreme events such as storms (i.e., heavy rainfall), earthquakes, and floods and only minor by human activities, such as mining and excavation works. Average economic loss per year in Europe is approximately 4.7 billion Euros. This study serves as baseline information for further risk mapping by integrating deadly landslide locations, local land use data, and will therefore help countries to protect human lives and property.  相似文献   

7.
Landslide risk assessment and management: an overview   总被引:29,自引:0,他引:29  
Landslides can result in enormous casualties and huge economic losses in mountainous regions. In order to mitigate landslide hazard effectively, new methodologies are required to develop a better understanding of landslide hazard and to make rational decisions on the allocation of funds for management of landslide risk. Recent advances in risk analysis and risk assessment are beginning to provide systematic and rigorous processes to enhance slope management. In recent years, risk analysis and assessment has become an important tool in addressing uncertainty inherent in landslide hazards.This article reviews recent advances in landslide risk assessment and management, and discusses the applicability of a variety of approaches to assessing landslide risk. Firstly, a framework for landslide risk assessment and management by which landslide risk can be reduced is proposed. This is followed by a critical review of the current state of research on assessing the probability of landsliding, runout behavior, and vulnerability. Effective management strategies for reducing economic and social losses due to landslides are described. Problems in landslide risk assessment and management are also examined.  相似文献   

8.
A review of assessing landslide frequency for hazard zoning purposes   总被引:11,自引:0,他引:11  
The probability of occurrence is one of the key components of the risk equation. To assess this probability in landslide risk analysis, two different approaches have been traditionally used. In the first one, the occurrence of landslides is obtained by computing the probability of failure of a slope (or the reactivation of existing landslides). In the second one, which is the objective of this paper, the probability is obtained by means of the statistical analysis of past landslide events, specifically by the assessment of the past landslide frequency. In its turn, the temporal frequency of landslides may be determined based on the occurrence of landslides or from the recurrence of the landslide triggering events over a regional extent. Hazard assessment using frequency of landslides, which may be taken either individually or collectively, requires complete records of landslide events, which is difficult in some areas. Its main advantage is that it may be easily implemented for zoning. Frequency assessed from the recurrence of landslide triggers, does not require landslide series but it is necessary to establish reliable relations between the trigger, its magnitude and the occurrence of the landslides. The frequency of the landslide triggers can be directly used for landslide zoning. However, because it does not provide information on the spatial distribution of the potential landslides, it has to be combined with landslide susceptibility (spatial probability analysis) to perform landslide hazard zoning. Both the scale of work and availability of data affect the results of the landslide frequency and restrict the spatial resolution of frequency zoning as well. Magnitude–frequency relationships are fundamental elements for the quantitative assessment of both hazard and risk.  相似文献   

9.
Owing to fragile geo-morphology, extreme climatic conditions, and densely populated settlements and rapid development activities, West Java Province is the most landslide hazardous area in Indonesia. So, a landslide risk map for this province bears a great importance such as for land-use planning. It is however widely accepted that landslide risk analysis is often difficult because of the difficulties involved in landslide hazard assessment and estimation of consequences of future landslide events. For instance, lack of multi-temporal inventory map or records of triggering events is often a major problem in landslide hazard mapping. In this study, we propose a simple technique for converting a landslide susceptibility map into a landslide hazard map, which we have employed for landslide risk analysis in one ideally hazardous part of volcanic mountains in West Java Province. The susceptibility analysis was carried out through correlation between past landslides and eight spatial parameters related to instability, i.e. slope, aspect, relative relief, distance to river, geological units, soil type, land use and distance to road. The obtained susceptibility map was validated using cross-time technique, and was collaborated with the frequency-area statistics to respond to ‘when landslide will occur’ and ‘how large it will be’. As for the judgment of the consequences of future landslides, expert opinion was used considering available literature and characteristic of the study area. We have only considered economic loss in terms of physical damage of buildings, roads and agricultural lands for the landslide risk analysis. From this study, we understand the following: (1) the hazard map obtained from conversion of the susceptibility map gives spatial probability and the area of an expected landslide will be greater than 500m2 in the next 2 years, (2) the landslide risk map shows that 24% of the total area is in high risk; 30% in moderate risk; 45% in low risk and no risk covers only 1% of the total area, and (3) the loss will be high in agricultural lands, while it will be low in the road structures and buildings.  相似文献   

10.
暴雨诱发滑坡致灾机理与减灾方法研究进展   总被引:6,自引:1,他引:5  
暴雨滑坡是多发性的地质灾害.阐述了暴雨诱发滑坡致灾机理、风险评估与减灾方法研究的重要意义.分别从暴雨诱发滑坡的地质力学机制、暴雨诱发滑坡的机理、暴雨诱发滑坡演化过程的数值模拟方法、暴雨滑坡动态风险评估方法以及暴雨诱发滑坡灾害的减灾方法5个方面,详细综述了国内外研究的主要成果和进展.在此基础上,指出了目前暴雨诱发滑坡灾害研究中存在的主要问题.最后,提出了在暴雨诱发滑坡灾害的研究中应以暴雨作用下的斜坡演化动力学过程为主线,以暴雨诱发滑坡的地质力学机制研究为基础,以暴雨诱发滑坡机理研究为核心,以暴雨诱发滑坡灾害的风险评估为手段,以最大可能地防灾减灾为目标.  相似文献   

11.
《China Geology》2023,6(2):228-240
The Sichuan-Tibet transportation corridor is located at the eastern margin of the Qinghai-Tibet Plateau, where the complex topography and geological conditions, developed geo-hazards have severely restricted the planning and construction of major projects. For the long-term prevention and early control of regional seismic landslides, based on analyzing seismic landslide characteristics, the Newmark model was used to carry out the potential seismic landslide hazard assessment with a 50-year beyond probability 10%. The results show that the high seismic landslide hazard is mainly distributed along large active tectonic belts and deep-cut river canyons, and are significantly affected by the active tectonics. The low seismic landslide hazard is mainly distributed in the flat terrain such as the Quaternary basins, broad river valleys, and plateau planation planes. The major east-west linear projects mainly pass through five areas with high seismic landslide hazard: Luding-Kangding section, Yajiang-Xinlong (Yalong river) section, Batang-Baiyu (Jinsha river) section, Basu (Nujiang river) section, and Bomi-Linzhi (eastern Himalaya syntaxis) section. The seismic action of the Bomi-Linzhi section can also induce high-risk geo-hazard chains such as the high-level glacial lake breaks and glacial debris flows. The early prevention of seismic landslides should be strengthened in the areas with high seismic landslide hazard.©2023 China Geology Editorial Office.  相似文献   

12.
Typhoons Aere (2004) and Matsa (2005) caused high nephelometric turbidity in the Shihmen reservoir in northern Taiwan, jeopardizing the operation of the reservoir for several days, and ultimately impacting the living conditions and economy of the downstream residents. The torrential rains caused landslides and debris flows in upland areas, and flowed into riverbeds, likely contributing significantly to the suspended sediment yields in the reservoir. This investigation elucidates how upland landslides affect sediment attributes in the reservoir basin. Study methods including field observations, spatial analysis in GIS and aerial photo interpretation are adopted to trace the sediment sources and contributing factors to the landslide. Torrential rains induced landslides and debris-flows upland, causing river incisions and soil erosion in landslide areas lacking vegetation. These factors, together with the conditions of the engineered structures and geologic vulnerabilities of the area, caused suspended sediment yield in the reservoir. The high nephelometric turbidity could potentially reoccur, with masses of landslide-derived sediment remaining upland and in the riverbed.  相似文献   

13.
Zhou  Shu  Ouyang  Chaojun  Huang  Yu 《Acta Geotechnica》2022,17(8):3613-3632

Assessing the hazard of potential landslides is crucial for developing mitigation strategies for landslide disasters. However, accurate assessment of landslide hazard is limited by the lack of landslide inventory maps and difficulty in determining landslide run-out distance. To address these issues, this study developed a novel method combining the InSAR technique with a depth-integrated model. Within this new framework, potential landslides are identified through InSAR and their potential impact areas are subsequently estimated using the depth-integrated model. To evaluate its capability, the proposed method was applied to a landslide event that occurred on November 3, 2018 in Baige village, Tibet, China. The simulated results show that the area with a probability of more than 50% to be affected by landslides matched the real trimlines of the landslide and that the accuracy of the proposed method reached 85.65%. Furthermore, the main deposit characteristics, such as the location of maximum deposit thickness and the main deposit area, could be captured by the proposed method. Potential landslides in the Baige region were also identified and evaluated. The results indicate that in the event of landslides, the collapsed mass has a high probability to block the Jinsha River. It is therefore necessary to implement field monitoring and prepare hazard mitigation strategies in advance. This study provides new insights for regional-scale landslide hazard management and further contributes to the implementation of landslide risk assessment and reduction activities.

  相似文献   

14.
Preparation of reliable landslide hazard and risk maps is crucial for hazard mitigation and risk management. In recent years, various approaches have been developed for quantitative assessment of landslide hazard and risk. However, possibly due to the lack of new data, very few of these hazard and risk maps were updated after their first generation. In this study, aiming at an ongoing assessment, a novel approach for updating landslide hazard and risk maps based on Persistent Scatterer Interferometry (PSI) is introduced. The study was performed in the Arno River basin (central Italy) where most mass movements are slow-moving landslides which are properly within the detection precision of PSI point targets. In the Arno River basin, the preliminary hazard and risk assessment was performed by Catani et al. (Landslides 2:329–342, 2005) using datasets prior to 2002. In this study, the previous hazard and risk maps were updated using PSI point targets processed from 4 years (2003–2006) of RADARSAT images. Landslide hazard and risk maps for five temporal predictions of 2, 5, 10, 20 and 30 years were updated with the exposure of losses estimated in Euro (€). In particular, the result shows that in 30 years a potential loss of approximate €3.22 billion is expected due to these slow-moving landslides detected by PSI point targets.  相似文献   

15.
A systematic inventory of landslide events over the globe is valuable for estimating human and economic losses, quantifying the relationship between landslide occurrences and climate variations and for evaluating emerging global landslide prediction efforts based on remote sensing data. This study compiles a landslide catalog for rainfall-triggered events for several years, drawing upon news reports, scholarly articles, and other hazard databases to provide a landslide catalog at the global scale. While this database may only represent a subset of rainfall-triggered landslides globally, due to lack of reports, it presents a lower boundary on the number of events globally and provides initial insight into the spatiotemporal statistical trends in landslide distribution and impact. This article develops a methodology for landslide event compilation that can be used in evaluating global landslide forecasting initiatives and assessing patterns in landslide distribution and frequency worldwide.  相似文献   

16.
In different areas of the world, shallow landslides represent a remarkable hazard inducing fatalities and economic damages. Then, the evaluation about potential variation in frequency of such hazard under the effect of climate changes should be a priority for defining reliable adaptation measurements. Unfortunately, current performances of climate models on sub-daily scales, relevant for heavy rainfall events triggering shallow landslides, are not reliable enough to be used directly for performing slope stability analysis. In an attempt to overcome the constrains by gap in time resolution between climate and hazard models, the paper presents an integrated suitable approach for estimating future variations in shallow landslide hazard and managing the uncertainties associated with climate and sub-daily downscaling models. The approach is tested on a small basin on Amalfi coast (southern Italy). Basing on available basin scale critical rainfall thresholds, the paper outlines how the projected changes in precipitation patterns could affect local slope stability magnitude scenarios with different relevances as effect of investigated time horizon and concentration scenario. The paper concludes with qualitative evaluations on the future effectiveness of the local operative warning system in a climate change framework.  相似文献   

17.
The paper deals with a methodology for quantitative landslide hazard and risk assessments over wide-scale areas. The approach was designed to fulfil the following requirements: (1) rapid investigation of large study areas; (2) use of elementary information, in order to satisfy the first requirement and to ensure validation, repetition and real time updating of the assessments every time new data are available; (3) computation of the landslide frequency of occurrence, in order to compare objectively different hazard conditions and to minimize references to qualitative hazard attributes such as activity states. The idea of multi-temporal analysis set forth by Cardinali et al. (Nat Hazards Earth Syst Sci 2:57–72, 2002), has been stressed here to compute average recurrence time for individual landslides and to forecast their behaviour within reference time periods. The method is based on the observation of the landslide activity through aerial-photo surveys carried out in several time steps. The output is given by a landslide hazard map showing the mean return period of landslides reactivation. Assessing the hazard in a quantitative way allows for estimating quantitatively the risk as well; thus, the probability of the exposed elements (such as people and real estates) to suffer damages due to the occurrence of landslides can be calculated. The methodology here presented is illustrated with reference to a sample area in Central Italy (Umbria region), for which both the landslide hazard and risk for the human life are analysed and computed. Results show the powerful quantitative approach for assessing the exposure of human activities to the landslide threat for a best choice of the countermeasures needed to mitigate the risk.An erratum to this article can be found at  相似文献   

18.
A large number of slope movements occur in China annually. Especially, fatal landslides are the most hazardous, causing serious fatalities and significant socio-economic losses. In this study, we collected data on fatal landslides triggered by non-seismic effects from China’s geological environment information site and Ministry of Natural Resources of China for the period 2004–2016. Then, we carried out a statistical analysis of the data to explore the trend and spatiotemporal distribution of the fatal landslides, as well as the distribution of its losses in economic and fatality terms. In the studied period, a total of 4718 deaths were recorded as resulting from 463 landslide events. It represents a frequency of 36 events and an average of 363 deaths every year. Also, an increasing trend of such landslide is observed in the period 2011–2016 with hazard record improvement. But its economic loss has a decreasing proportion of all recorded non-seismic geohazard loss for this period. Even so, the total economic loss in the studied period is still enormous at $981.29 million. The spatial distribution of fatal landslides shows intensive clusters in southwestern and southern China due to the possible distinctive geological environment and precipitation conditions. The temporal distribution reveals significant association with the rainy season, with the largest quantity of events occurring between June and September. Among all the collected landslides during the studied period, 94.2% are associated with rainfall. This research gives a comprehensive recognition of fatal landslide damage and provides baseline information for landslide prevention and mitigation.  相似文献   

19.
甘肃省天水市罗玉沟泥石流灾害风险评价   总被引:2,自引:0,他引:2  
甘肃省天水市罗玉沟曾经爆发过多次泥石流灾害,造成了巨大的经济损失和环境破坏。文章引用单沟泥石流风险评价模型中危害度的计算方法,对罗玉沟流域可能发生泥石流的概率进行了评价;潜在的经济损失主要从人员社会、物质和资源环境3大类进行评价。泥石流风险评价结果显示,该小流域在100a的尺度内发生泥石流的可能性为80%。潜在的经济损失为379583万元。  相似文献   

20.
李彩侠  马煜 《地质与资源》1992,28(3):298-304
在汶川地震影响下,截至2011年龙溪河流域共计有45条泥石流沟暴发泥石流,造成重大经济财产损失.在龙溪河流域泥石流灾害野外调查的基础上,对形成泥石流的地形、降水、物源成因进行了研究,认为物源和降水是激发龙溪河流域泥石流的主要原因.龙溪河流域泥石流具有群发性和小流域暴发性特征,构造带耦合特征,破坏性大和灾害链作用特征.采用MFCAM模型对龙溪河流域泥石流沟进行危险性评价,结果显示有1条沟危险性大,14条危险性中等,30条危险性小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号