首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marine bacteria have recently been identified as a potent solution for petroleum hydrocarbon degradation in response to hazardous oceanic oil spills. In this study, a mesocosm experiment simulating a petroleum spill event was performed to investigate changes in the abundance, structure, and productivity of bacterial communities in response to oil pollution. Cultured heterotrophic bacteria and total bacteria showed a consistent trend involving an immediate decrease in abundance, followed by a slight increase, and a steady low-level thereafter. However, the changing trend of bacterial productivity based on bacterial biomass and bacterial volume showed the opposite trend. In addition, the density of oil-degrading bacteria increased initially, then subsequently declined. The change in the bacterial community structure at day 0 and day 28 were also analyzed by amplified ribosomal DNA restriction analysis(ARDRA), which indicated that the species diversity of the bacterial community changed greatly after oil pollution. Alphaproteobacteria(40.98%)replaced Epsilonproteobacteria(51.10%) as the most abundant class, and Gammaproteobacteria(38.80%)became the second most dominant class in the whole bacterial community. The bacterial communities in oil-contaminated seawater(32 genera) became much more complex than those found in the natural seawater sample(16 genera). The proportion of petroleum-degrading bacteria in the oil-contaminated seawater also increased. In this study, culture-dependent and culture-independent approaches were combined to elucidate changes in both bacterial productivity and community structure. These findings will contribute to a better understanding of the role that bacteria play in material cycling and degradation in response to oil pollution.  相似文献   

2.
Ozone depletion in the stratosphere has enhanced solar UV-B radiation reaching the Earth surface and has brought about significant effects to marine ecosystems. The effects of enhanced UV-B radiation on marine microalgae, heterotrophic bacteria and the interaction between them are discussed. The effects on marine microalgae have been proved to occur at molecular, cellular and population levels. Enhanced UV-B radiation increases microalgal flavonoid content but decreases their chlorophyll content and pho-tosynthesis rate; this rachation induces genetic change and results in DNA damage and change of protein content. There have been fewer studies on the effects of UV-B radiation on marine heterotrophic bacteria. Establishment of a nucroalgal ecological dynamic model at population and community levels under UV-B radiation has gradually become a hotspot. The effects of enhanced UV-B radiation on microalgae communities, heterotrophic bacterial populations and interaction between them will become a focus in the near future. This paper will make an overview on the studies concerning the effects of enhanced UV-B radiation on marine microal-gae and heterotrophic bacteria and the interaction between them.  相似文献   

3.
Studies on the diversity and distribution of bacterial populations will improve the overall understanding of the global patterns of marine bacteria and help to comprehend local biochemical processes and environments. We evaluated the composition and the dynamics of bacterial communities in the sediment of Jiaozhou Bay (China) using PCR-denaturing gradient gel electrophoresis (DGGE). Sediment samples were collected from 10 different sites in May, August, and November 2008 and in February 2009. There was significant temporal variation in bacterial community composition at all sites. However, the spatial variation was very small. The DGGE analyses of bacterial communities were used to divide the 10 stations into three types. Canonical correspondence analysis (CCA) revealed that the changes in bacterial communities were driven by sediment properties. Sequence analysis of DGGE band-derived 16S rRNA gene fragments revealed that the dominant bacterial groups in the sediment were of the classes γ-proteobacteria and δ-proteobacteria and phyla Bacteroidetes and Nitrospirae. Our results provide considerable insight into the bacterial community structure in Jiaozhou Bay, China.  相似文献   

4.
Characteristics of a microbial community are important as they indicate the status of aquatic ecosystems. In the present study, the metabolic and phylogenetic profile of the bacterioplankton community in Guishan coastal water(Pearl River Estuary), South China Sea, at 12 sites(S1–S12) were explored by community-level physiological profiling(CLPP) with BIOLOG Eco-plate and denaturing gradient gel electrophoresis(DGGE). Our results showed that the core mariculture area(S6, S7 and S8) and the sites associating with human activity and sewage discharge(S11 and S12) had higher microbial metabolic capability and bacterial community diversity than others(S1–5, S9–10). Especially, the diversity index of S11 and S12 calculated from both CLPP and DGGE data(H 3.2) was higher than that of others as sewage discharge may increase water nitrogen and phosphorus nutrient. The bacterial community structure of S6, S8, S11 and S12 was greatly influenced by total phosphorous, salinity and total nitrogen. Based on DGGE fingerprinting, proteobacteria, especially γ- and α-proteobacteria, were found dominant at all sites. In conclusion, the aquaculture area and wharf had high microbial metabolic capability. The structure and composition of bacterial community were closely related to the level of phosphorus, salinity and nitrogen.  相似文献   

5.
Among many reports investigating microbial diversity from environmental samples with denaturing gradient gel electrophoresis (DGGE), limited attention has been given to the effects of universal primers and DNA extraction on the outcome of DGGE analysis. In this study, these effects were tested with 16S rRNA gene-based DGGE on a bacterial community from farming water samples. The results indicate that the number of discernable bands in the DGGE fingerprint differed with the primer pairs used; the bands produced by 63f/518r, 341f/926r and 933f/1387r primer pairs were obviously fewer than those by 968f/1401r. Also, we found that each DNA extraction method resulted in different community profiles, reflected by the number and intensity of bands in the DGGE fingerprint. Furthermore, the main bands (theoretically representing dominant bacteria) differed with the extraction methods applied. It is therefore believed that the effects of universal primers and DNA extraction should be given more attention and carefully chosen before performing an investigation into a new environment with DGGE.  相似文献   

6.
Copper has long been utilized as a disinfectant for bacteria,but its impact on microbial communities attached to the steel surface in seawater remains unknown.In the present study,3 mooring chain steels of different copper contents are subjected to a 3-month marine field exposure,and the corrosion rate increases in the order of BR5 steel(without copper) BR5 CuH steel(0.8% copper) BR5 CuL steel(0.4% copper).The microbial community results show that copper introduction does not result in an obvious change in microbial quantity,but it alters the diversity,richness,and structure of microbial communities due to the variation in copper-resistance of different species.BR5 CuH steel holds microbial communities with the highest percentage of some well-known corrosive microbes including sulfate-reducing bacteria,sulfuroxidizing bacteria,and iron-oxidizing bacteria,but possesses the lowest community diversity/richness owing to the toxicity of copper.The microbial community diversity/richness is stimulated by the low-copper content of BR5 CuL steel,and this steel also carries an intermediate proportion of such corrosive bacteria.Both well-known corrosive bacteria and microbial community diversity/richness seem to be involved in the corrosion acceleration of copper-bearing mooring chain steels.  相似文献   

7.
The soil biological activity of mountain meadows is a significant factor that determines the health and utility of these regions. The climax stage of this area is forest, but to maintain semi-natural grassland, which is characterised by high biodiversity,low-intensity land use(mowing or grazing) is necessarily required. To understand the effect of various mowing regimes on the soil biological activity and plants, the soil microbial activity(microbial biomass carbon, dehydrogenase activity and number of the cultivable fraction of soil microbial community),annelids community(density and species composition earthworms and enchytraeids) and plant species composition were investigated. The study area was located in the Pieniny National Park in the Carpathian Mountains, in a meadow belonging to the association Dactylis glomerata-Poa trivialis. The investigated variants were divided according to mowing regime:traditional scything – hand mowing(HM), mechanical mowing(MM), or the abandonment of mowing – nonmowing(NM). The microbial activities(expressed by,e.g. microbial biomass carbon and the number of phosphorus bacteria) were affected by the mowing regime. The density of earthworms was higher in the HM and MM than in the NM variants. The largest changes in plant species composition were caused by the abandonment of mowing(NM). The mean number of plant species was positively correlated with soil moisture, earthworm density, and microbial activity(expressed indirectly by dehydrogenases activity). The soil microbial community, such as vegetative bacteria forms and ammonifying bacteria,were positively associated with pH value, and the microbial and total organic carbon content. The results presented here indicate that there is no single form of optimal management for all living organisms.Decisions about mowing regimes, or abandonment of use, should be preceded by multi-aspect studies,including plants and soil biota.  相似文献   

8.
From Oct. 1999 to Oct. 2000, the heterotrophic bacterial floras in the industrial marine environment around the Qingdao Power Plant (QPP) and in the unpolluted marine environments were investigated. The results showed that the numbers of the heterotrophic bacteria around QPP were much higher than those in unpolluted environments, and the average numbers in QPP Seawater, QPP Sediment, Unpolluted Seawater and Unpolluted Sediment were 5.4×104cfu(mL)−1, 5.0×105cfug−1, 3.0×102cfu(mL)−1 and 1.3×105cfug−1 respectively. Totally, 118 strains were isolated from QPP and 99 of them were Gram-negative. One hundred and twenty one strains were isolated from the unpolluted environments and 104 of them were Gram-negative. All the Gram-negative bacteria belonged to 13 genera. The distribution of the bacteria was varied in different marine environments. The results showed that the unpolluted marine environments contained much more Vibrio than seawater and sediment around QPP.  相似文献   

9.
The 16S and 18S ribosomal ribonucleic acid genes of microbial organisms collected from the contrasting environments (temperature, salinity, silicate, phosphate and nitrate, p <0.05) of the inner and outer basins of Kongsfjorden (Spitsbergen, Arctic) were studied using polymerase chain reaction-denaturing gradient gel electrophoresis(DGGE) fingerprinting. Comparison of the microbial fingerprints and the physicochemical parameters revealed that molecular methodology exhibited a greater sensitivity. Sequences obtained from bacterial DGGE were affiliated with four main phylogenetic groups of bacteria:Proteobacteria(Alpha, Beta and Gamma), Bacteroidetes, Verrucomicrobia and Cyanobacteria. The relationships between the genotype distribution of these microbes and associated biotic/abiotic factors, revealed by canonical correspondence analysis, showed that Station 1 at 30 m (outer fjord) was grouped separately from the other sites. This difference could be a consequence of the thermocline and base of the euphotic layer at this depth where the Atlantic and Arctic-type waters overlapped.  相似文献   

10.
Pollution has a considerable effect on biological communities, in terms of size and diversity of the populations. Yet, the precise consequences of human activity on microbial communities in the marine environment are poorly understood. Therefore, in an ongoing collaborative research programme between Heriot-Watt University and the Ocean University of Qingdao, bacteria were isolated in 1999 and 2000 from marine sediment, seawater, seaweed, fish and shellfish, taken from locations in Shandong Province adjacent to Qingdao. Sampling locations were comprised of industrial and aquacultural sites and a clean, control site. In order to analyse microbial diversity, a polyphasic approach was adopted for characterisation of these isolates, specifically through examination of key phenotypic traits, i.e. using Biolog GN MicroPlate profiles, bacterial whole cell protein profiles and 16S and 23S rRNA gene sequences. These techniques yielded complex taxonomic data, which were subjected to statistical and cluster analyses. The application of these methods to studies of microbial communities is discussed.  相似文献   

11.
研究了南三岛近岸海区异养细菌数量变动与潮汐周期的关系。结果表明:在24h内异养细菌的数量随着潮位的上升而减少或随着潮位的下降而增加,高平潮时数量最低,低平潮时数量最高。比较一个月内各个高平潮异养细菌的数量,发现异养菌数量在小潮期向大潮期转变的过程中达到顶峰,并在大潮期急剧下降至最低值,接着从大潮期至小潮期,异养细菌数量缓慢回升,直至小潮期后才快速地上升。在水平分布中,异养细菌的数量在潮间带最大,其次是离低潮线100m的海区,离低潮线300m的海区最小。在垂直分布中.异养细菌数量以表层水最高,中层水次之,底层水最低。  相似文献   

12.
Bacteria are important regulators of carbon cycling in lakes and are central to sediment ecosystem processes. However, the sediment microbial communities and their respiratory responses to the lake wetland succession are poorly understood. In this study, we collected sediment samples from four different succession points(the Potamogeton lucens zone, the Scirpus tabernaemontani zone, the Scirpus triqueter zone, and the Juncus effusus zone) in the Caohai Wetland of the Guizhou Plateau(China). The bacterial communities at these succession points were studied using a high-throughput sequencing approach. The sediment microbial respiration(SR) was measured using static chambers in the field and basal respiration(BR) was determined in the laboratory. The results show that the dominant bacterial taxa in the sediment was Proteobacteria(34.7%), Chloroflexi(17.8%), Bacteroidetes(7.3%), Acidobacteria(6.6%), and Cyanobacteria(6.1%). Principal coordinate analysis showed that the microbial community structure differs significantly at different sampling points along the successional gradient, indicating that the bacterial community structure is sensitive to the lake wetland succession. Different hydrological regimes and soil characteristics such as NH_4~+-N, Fe~(2+), Mn~(2+), and sediment organic carbon(SOC) content may be important factors responsible for the differences in the sediment microbial characteristics of the different successional stages in the Caohai wetland. Additionally, it was found that the SR increased significantly from the P. lucens zone to the J. effusus zone, but BR had the opposite response. The shifts in the bacterial community structure along the successional gradient may be the main reason for the observed differences in sediment respiration.  相似文献   

13.
We characterized variations in bacterioplankton community composition(BCC) in mesocosms subject to three different treatments. Two groups contained fish(group one: Cyprinus carpio; group two: Hypophthalmichthys molitrix); and group three, the untreated mesocosm, was the control. Samples were taken seven times over a 49-d period, and BCC was analyzed by PCR-denaturing gradient gel electrophoresis(DGGE) and real-time quantitative PCR(q PCR). Results revealed that introduction of C. carpio and H. molitrix had a remarkable impact on the composition of bacterioplankton communities, and the BCC was significantly diff erent between each treatment. Sequencing of DGGE bands revealed that the bacterioplankton community in the different treatment groups was consistent at a taxonomic level, but differed in its abundance. H. molitrix promoted the richness of Alphaproteobacteria and Actinobacteria, while more bands affiliated to Cyanobacteria were detected in C. carpio mesocosms. The redundancy analysis(RDA) result demonstrated that the BCC was closely related to the bottom-up(total phosphorus, chlorophyll a, phytoplankton biomass) and top-down forces(biomass of copepods and cladocera) in C. carpio and control mesocosms, respectively. We found no evidence for top-down regulation of BCC by zooplankton in H. molitrix mesocosms, while grazing by protozoa(heterotrophic nanoflagellates, ciliates) became the major way to regulate BCC. Total bacterioplankton abundances were significantly higher in C. carpio mesocosms because of high nutrient concentration and suspended solids. Our study provided insights into the relationship between fish and bacterioplankton at species level, leading to a deep understanding of the function of the microbial loop and the aquatic ecosystem.  相似文献   

14.
Exopolysaccharides from marine bacteria   总被引:1,自引:0,他引:1  
Microbial polysaccharides represent a class of important products of growing interest for many sectors of industry. In recent years, there has been a growing interest in isolating new exopolysaccharides (EPSs)-producing bacteria from marine environments, particularly from various extreme marine environments. Many new marine microbial EPSs with novel chemical compositions, properties and structures have been found to have potential applications in fields such as adhesives, textiles, pharmaceuticals and medicine for anti-cancer, food additives, oil recovery and metal removal in mining and industrial waste treatments, etc. This paper gives a brief summary of the information about the EPSs produced by marine bacteria, including their chemical compositions, properties and structures, together with their potential applications in industry.  相似文献   

15.
Li  Yingjie  Cao  Wenrui  Wang  Yan  Ma  Qingjun 《中国海洋湖沼学报》2019,37(3):1024-1029
Microbial diversity in the abyssal sediments beneath the seafloor of 30, 94, and 151 cm near the southern end of the Mariana Trench was analyzed in the Illumina HiSeq 2500 platform. Results show that the microbial populations were dominated by bacteria but merely no archaea were identified at the three depths. In the bacterial community,Proteobacteria and Firmicutes dominated the total taxon tags, followed by Bacteroidetes, Actinobacteria, Planctomycetes, Cyanobacteria, and Chloroflexi, which together account for over 99% of the total population. Similar to that in the seawater in the trench, the operational taxonomic units(OTUs) belonging to Gammaproteobacteria from the sediment samples showed high abundance.However, common bacterial OTUs in the water of the trench including Nitrospirae and Marinimicrobia were hardly found in the sediments from the southern Mariana Trench or the hadal region. Therefore, this study documented for the first time the compositions of microbial diversity in the trench sediments, revealed the difference in microbial diversity in water and sediment of the trench and will enrich the knowledge on the microbial diversity in the abyssal areas.  相似文献   

16.
Bioremediation, is an effective and environment-friendly method of cleaning up crude oil pollution after an oil spill. However, the in situ bioremediation of crude oil is usually inhibited by deficiency of inorganic nutrients. To understand the effects of nutrient addition on the bioremediation of crude oil and the succession of bacterial communities during process of bioremediation, microcosms containing oilcontaminated sediments were constructed and biodegradation of crude oil was assessed based on the depletion of different ingredients. We used two culture-independent methods, denaturing gradient gel electrophoresis and a 16 S rRNA gene based clone library, to analyze the succession of bacterial communities. The results suggested n-alkanes were degraded after 30 days and that nutrient amendments significantly improved the efficiency of their biodegradation. Moreover, oil contamination and nutrient amendments could dramatically change bacterial community structures. Lower diversity was detected after being contaminated with oil. For instance, bacterial clones affiliated with the phylum Armatimonadetes, Firmicutes, Gemmatimonadetes, and Planctomycetes and the class Deltaproteobacteria and Epsilonproteobacteria could not be identified after 30 days of incubation with crude oil. However, "professional hydrocarbonocastic bacteria" became abundant in samples treated with oil during the bioremediation period, while these clones were almost completely absent from the control plots. Interestingly, bioinformatics analysis showed that even when dramatic differences in oil biodegradation efficiency were observed, bacterial communities in the plots with nutrient amendments were not significantly different from those in plots treated with oil alone. These findings indicated that nutrient amendments could stimulate the process of biodegradation but had less impact on bacterial communities. Overall, nutrient amendments might be able to stimulate the growth of n-alkane degrading bacteria.  相似文献   

17.
Seasonal shifts play an important role in soil microbial community composition. This study examined the hypothesis that soil microbial community structure would vary with seasonal shifts in the Wuyi Mountains in Southeast China, and that two representative tree species (Castanopisi carlesii and Cunninghamia lanceolata) may have different soil microbial community composition. Phospholipids fatty acid analysis (PLFA) was used to assess the effect of seasonal shifts and vegetation types on soil microbial community structure. A total of 22 different PLFAs were identified from all the soil samples. The bacterial PLFAs accounted for 62.37% of the total PLFAs, followed by fungi (28.94%), and the minimum was actinomycetes (6.41%). Overall, the level of PLFAs in C. carlesii soil was greater than those in C. lanceolata soil, and significant differences were observed in some seasons. The amounts of total, bacteria, actinomycic and fungal PLFAs significantly changed with the seasons and followed a sequence order (summer > autumn > spring > winter). The bacteria/fungi PLFAs and G (+) /G (-) PLFAs of two vegetation types also changed with the seasons and the ratios in summer and autumn were higher than those in spring and winter. The correlation analysis of microbial PLFAs and soil physicochemical properties showed that the total, bacteria, fungal, actinomycic, G (+) and G (-) PLFAs were significantly positive correlation with TOC, TN, TP, TK and moisture content. We concluded that the seasonal shifts and vegetation types affect soil microbial community composition by changing the soil physicochemical properties.  相似文献   

18.
In this study,the intestinal microbiota of kuruma shrimp(Marsupenaeus japonicus) was examined by molecular analysis of the 16S rDNA to identify the dominant intestinal bacteria and to investigate the effects of Bacillus spp.on intestinal microbial diversity.Samples of the intestines of kuruma shrimp fed normal feed and Bacillus spp.amended feed.PCR and denaturing gradient gel electrophoresis(DGGE) analyses were then performed on DNA extracted directly from the guts.Population fingerprints of the predominant organisms were generated by DGGE analysis of the universal V3 16S rDNA amplicons,and distinct bands in the gels were sequenced.The results suggested that the gut of kuruma shrimp was dominated by Vibrio sp.and uncultured gamma proteobacterium.Overall,the results of this study suggest that PCR-DGGE is a possible method of studying the intestinal microbial diversity of shrimp.  相似文献   

19.
《山地科学学报》2020,17(6):1398-1409
Soil microbial communities and enzyme activities play key roles in soil ecosystems. Both are sensitive to changes in environmental factors,including seasonal temperature, precipitation variations and soil properties. To understand the interactive mechanisms of seasonal changes that affect soil microbial communities and enzyme activities in a subtropical masson pine(Pinus massoniana) forest, we investigated the soil microbial community structure and enzyme activities to identify the effect of seasonal changes on the soil microbial community for two years in Jinyun Mountain National Nature Reserve, Chongqing, China. The soil microbial community structure was investigated using phospholipid fatty acids(PLFAs). The results indicated that a total of 36 different PLFAs were identified, and 16:0 was found in the highest proportions in the four seasons, moreover, the total PLFAs abundance were highest in spring and lowest in winter. Bacteria and actinomycetes were the dominant types in the study area. Seasonal changes also had a significant(P 0.05) influence on the soil enzyme activity. The maximum and minimum values of the invertase and catalase activities were observed in autumn and winter, respectively. However, the maximum and minimum values of the urease and phosphatase acid enzymatic activities were found in spring and winter, respectively. Canonical correspondence analysis(CCA) analysis revealed that the seasonal shifts in soil community composition and enzyme activities were relatively more sensitive to soil moisture and temperature, but the microbial community structure and enzyme activity were not correlated with soil pH in the study region. This study highlights how the seasonal variations affect the microbial community and function(enzyme activity)to better understand and predict microbial responses to future climate regimes in subtropical area.  相似文献   

20.
Four soil types(peat, marsh, meadow, and sandy) in the Zoige Plateau of China are associated with the severity of wetland degradation. The effects of wetland degradation on the structure and abundance of fungal communities and cellulase activity were assessed in these 4 soil types at 3 depths using DGGE(Denatured Gradient Gel Electrophoresis), q PCR(Quantitative Real-time PCR),and 3,5-dinitrosalicylic acid assays. Cellulase activity and abundance of the fungal community declined in parallel to the level of wetland degradation(from least to most disturbed). DGGE analysis indicated a major shift in composition of fungal communities among the4 soil types consistent with the level of degradation.Water content(WC), organic carbon(OC), total nitrogen(TN), total phosphorus(TP), available nitrogen(AN), and available phosphorus(AP) were strongly correlated with cellulase activity and the structure and abundance of the fungal community.The results indicate that soil physicochemical properties(WC, OC, TN, TP, AN, and AP), cellulase activity, and diversity and abundance of fungal communities are sensitive indicators of the relative level of wetland degradation. WC was the major factorinvolved in Zoige wetland degradation and lower WC levels contributed to declines in the abundance and diversity of the fungal community and reduction in cellulase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号