首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Photometric BV light curves of BO CVn obtained in 1992 and new times of minima are presented. The primary minimum shows a transit, whereas the secondary minimum, shows an occultation. The system may be classified as an A‐type W UMa system. A complete study of minima allows one to detect a possibly increasing period by about 0.037 s/yr. This indicates that the conservative mass transfer rate from the less massive component to the more massive one is 1.57 10—10M /yr. Because of the variable period, the new ephemeris is determined for future observations. Using the Wilson‐Devinney code a simultaneous solution of the B and V light curves is also performed. The analysis shows that the system is in a contact configuration with q = 0.205 ± 0.001 and fillout factor (f) = 0.18, T1 = 7240 K (fixed), T2 = 7150± 10 K. The high orbital inclination i = 87°.54 ± 0.26 was con firmed by photometric observations of the secondary minimum.  相似文献   

2.
This paper presents a new CCD Bessell VRcIc light curves and photometric analysis of the newly discovered RS CVn type eclipsing binary star V1034 Her. The light curves were obtained at the Çanakkale Onsekiz Mart University Observatory in 2006. Variations of the orbital period of the system were firstly studied. The (O − C) diagram with a low range of observing time of about 20 years shows an upward parabola, which indicates a secular increase in the orbital period of the system. The light curves are generally those of detached eclipsing binaries; however, there are large asymmetries between maxima. The VRcIc light curves were analysed with two different fitting procedures: Wilson–Devinney method supplemented with a Monte Carlo type algorithm and Information Limit Optimization Technique (ILOT). Our general results find V1034 Her. as a well detached system, in which the components are filling 65% of their Roche lobes. Light curve asymmetries of the system are explained in terms of large dark starspots on the primary component. The primary star shows a long-lived spot distribution with active longitudes in the same hemisphere.  相似文献   

3.
We present multi-colour CCD observations of the low-temperature contact binaries, V453 Mon and V523 Cas. Their light curves are modelled to determine a new set of stellar and orbital parameters. Analysis of mid-eclipse times yields a new linear ephemeris for both systems. A period decrease (dP/dt=2.3×10−7 days/yr) in V453 Mon is discovered. V523 Cas, however, is detected to show a period increase (dP/dt=9.8×10−8 days/yr) because of the mass transfer of a rate of 1.1×10−7 M yr−1, from a less massive donor. Using these findings we can determine the physical parameters of the components of V523 Cas to be M 1=0.76 (3)M , M 2=0.39 (2)M , R 1=0.74 (2)R , R 2=0.55 (2)R , L 1=0.19 (3)L , L 2=0.14 (3)L , and the distance of system as 46(9) pc.  相似文献   

4.
Two CCD epochs of light minimum and a complete R light curve of SS Ari are presented. The light curve obtained in 2007 was analyzed with the 2003 version of the W-D code. It is shown that SS Ari is a shallow contact binary system with a mass ratio q=3.25 and a degree of contact factor f=9.4%(±0.8%). A period investigation based on all available data shows that there may exist two distinct solutions about the assumed third body. One, assuming eccentric orbit of the third body and constant orbital period of the eclipsing pair, results in a massive third body with M 3=1.73M and P 3=87.0 yr. On the contrary, assuming continuous period changes of the eclipsing pair the orbital period of tertiary is 37.75 yr and its mass is about 0.278M . Both of the cases suggest the presence of an unseen third component in the system.  相似文献   

5.
This paper presents charge-couple device (CCD) photometric observations for the eclipsing binary AW UMa. The V-band light curve in 2007 was analyzed using the 2003 version of the Wilson–Devinney code. It is confirmed that AW UMa is a total eclipsing binary with a higher degree of contact f=80.2% and a lower mass ratio of q=0.076. From the (OC) curve, the orbital period shows a continuous period decrease at a rate of dP/dt=−2.05×10−7 d yr−1. The long-term period decrease suggested that AW UMa is undergoing the mass transfer from the primary component to the secondary one, accompanied by angular momentum loss due to mass outflow L 2. Weak evidence indicates that there exists a cyclic variation with a period of 17.6 yr and a small amplitude of A=0. d 0019, which may be attributed to the light-time effect via the third body. If the existence of an additional body is true, it may remove a great amount of angular momentum from the central system. For this kind of contact binary, as the orbital period decreases, the shrinking of the inner and outer critical Roche lobes will cause the contact degree f to increase. Finally, this kind of binary will merge into a single rapid-rotation star.  相似文献   

6.
We study the relationship between the brightness (I) and magnetic field (B) distributions of sunspots using 272 samples observed at the San Fernando Observatory and the National Solar Observatory, Kitt Peak, whose characteristics varied widely. We find that the I – B relationship has a quadratic form for the spots with magnetic field less than about 2000 G. The slope of the linear part of the I – B curve varies by about a factor of three for different types of spots. In general the slope increases as the spot approaches disk center. The I – B slope does not have a clear dependency on the spot size but the lower limit appears to increase as a function of the ratio of umbra and penumbra area. The I – B slope changes as a function of age of the sunspots. We discuss various sunspot models using these results.  相似文献   

7.
Summary From the early discovery in 1948 of X-rays from the Solar corona, X-ray spectroscopy has proven to be an invaluable tool in studying hot astrophysical and laboratory plasmas. Because the emission line spectra and continua from optically thin plasmas are fairly well known, high-resolution X-ray spectroscopy has its most obvious application in the measurement of optically thin sources such as the coronae of stars. In particular X-ray observations with theEINSTEIN observatory have demonstrated that soft X-ray emitting coronae are a common feature among stars on the cool side of the Hertzsprung-Russell diagram, with the probable exception of single very cool giant and supergiant stars and A-type dwarfs. Observations with the spectrometers aboardEINSTEIN andEXOSAT have shown that data of even modest spectral resolution (/ = 10–100) permit the identification of coronal material at different temperatures whose existence may relate to a range of possible magnetic loop structures in the hot outer atmospheres of these stars. The higher spectral resolution of the next generation of spectrometers aboard NASA'sAXAF and ESA'sXMM will allow to fully resolve the coronal temperature structure and to enable velocity diagnostics and the determination of coronal densities, from which the loop geometry (i.e. surface filling factors and loop lengths) can be derived. In this paper various diagnostic techniques are reviewed and the spectral results fromEINSTEIN andEXOSAT are discussed. A number of spectral simulations forAXAF andXMM, especially high-resolution iron K-shell, L-shell, and2s-2p spectra in the wavelength regions around 1.9 Å, 10 Å, and 100 Å, respectively, are shown to demonstrate the capabilities for temperature, density, and velocity diagnostics. Finally, iron K-shell spectra are simulated for various types of detectors such as microcalorimeter, Nb-junction, and CCD.  相似文献   

8.
The combination of dispersion measures of pulsars, distances from the model of Cordes & Lazio (2002) and emission measures from the WHAM survey enabled a statistical study of electron densities and filling factors of the diffuse ionized gas (DIG) in the Milky Way. The emission measures were corrected for absorption and contributions from beyond the pulsar distance. For a sample of 157 pulsars at |b | > 5. and 60° < ℓ < 360°, located in mainly interarm regions within about 3 kpc from the Sun, we find that: (1) The average volume filling factor along the line of sight and the mean density in ionized clouds are inversely correlated: ( ) = (0.0184 ± 0.0011) –1.07 ± 0.03 for the ranges 0.03 < < 2 cm–3 and 0.8 > > 0.01. This relationship is very tight. The inverse correlation of and causes the well‐known constancy of the average electron density along the line of sight. As (z ) increases with distance from the Galactic plane |z |, the average size of the ionized clouds increases with |z |. (2) For |z| < 0.9 kpc the local density in clouds n c(z ) and local filling factor f (z ) are inversely correlated because the local electron density n e(z ) = f (z )n c(z ) is constant. We suggest that f (z ) reaches a maximum value of >0.3 near |z | = 0.9 kpc, whereas n c(z ) continues to decrease to higher |z |, thus causing the observed flattening in the distribution of dispersion measures perpendicular to the Galactic plane above this height. (3) For |z | < 0.9 kpc the local distributions n c(z ), f (z ) and (z ) have the same scale height which is in the range 250 < h ≲ 500 pc. (4) The average degree of ionization of the warm atomic gas (z ) increases towards higher |z | similarly to (z ). Towards |z | = 1 kpc, (z ) = 0.24 ± 0.05 and (z ) = 0.24 ± 0.02. Near |z | = 1 kpc most of the warm, atomic hydrogen is ionized. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
This paper corrects and completes a previous study of the shape of the extinction curve in the visible and the value of RV. A continuous visible/infrared extinction law proportional to 1/λp with p close to 1 (± 0.4) is indistinguishable from a perfectly linear law (p = 1) in the visible within observational precision, but the shape of the curve in the infrared can be substantially modified. Values of p slightly larger than 1 would account for the increase of extinction (compared to the p = 1 law) reported for λ > 1 μ m and deeply affect the value of RV. In the absence of gray extinction RV must be 4.04 if p = 1. It becomes 3.14 for p = 1.25, 3.00 for p = 1.30, and 2.76 for p = 1.40. Values of p near 1.3 are also attributed to extinction by atmospheric aerosols, which indicates that both phenomena may be governed by similar particle size distributions. A power extinction law may harmonize visible and infrared data into a single, continuous, and universal interstellar extinction law (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We present the first long‐term Johnson UBVR observations and comprehensive photometric analysis of the W UMa‐type eclipsing binary V2612 Oph. Observations in the time interval between 2003 and 2009 enabled us to reveal the seasonal and long‐term variations of the light curve. Hence, we found that the mean brightness level of the light curve shows a variation with a period of 6.7 years. Maximum and minimum brightness levels of the light curve exhibit a variation from year to year which we attribute to a solar‐like activity. The OC variation of eclipse timings of the system shows a decreasing parabolic trend and reveals a period decrease at a rate of P = 6.27×10‐7 day yr‐1 with an additional low‐amplitude sinusoidal variation that has a similar period as the long‐term brightness variations. Our light curve analysis shows that the system is a W‐subtype W UMa eclipsing binary. We calculated masses and radii of the primary and secondary components as M1 = 1.28 M, M2 = 0.37 M and R1 = 1.31 R, R2 = 0.75 R, respectively. The derived absolute photometric parameters allow us to calculate a distance of 140 pc, which confirms that the system is a foreground star in the sky field of the Galactic open cluster NGC 6633. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Given the complexity involved in a flux-transport-type dynamo driven by both Babcock – Leighton and tachocline α effects, we present here a step-by-step procedure for building a flux-transport dynamo model calibrated to the Sun as a guide for anyone who wishes to build this kind of model. We show that a plausible sequence of steps to reach a converged solution in such a dynamo consists of (i) numerical integration of a classical α – ω dynamo driven by a tachocline α effect, (ii) continued integration with inclusion of meridional circulation to convert the model into a flux-transport dynamo driven by only a tachocline α effect, (iii) final integration with inclusion of a Babcock – Leighton surface α effect, resulting in a flux-transport dynamo that can be calibrated to obtain a close fit of model output with solar observations.  相似文献   

12.
A simple, semi-analytic method is developed for obtaining the orbits of galaxies undergoing fast collisions in which the galaxies are represented by Plummer models. The results are found to agree fairly well with those of N-body simulations.A simple formula for obtaining the angle of deflection is deduced. The maximum angle of deflection is 180° forV p/V esc(p)=1.00, about 36° forV p/V esc(p)=1.50, and about 18° forV p/V esc(p)=2.00, whereV p is the velocity at closest approachp, andV esc(p) is the parabolic velocity of escape atp. The angle of deflection of a pair of colliding elliptical galaxies without halos is about twice that for a pair of galaxies with halos for the same relative velocity at infinite separation.  相似文献   

13.
The recent VIIth Catalogue of Galactic Wolf-Rayet Stars lists 227 Population I WR stars, comprising 127 WN, 87 WC, 10 WN/WC and 3 WO stars. Additional discoveries bring the census to 234 WR stars. A re-determination of the optical photometric distances and the galactic distribution of WR stars shows in the solar neighbourhood a projected surface density of 2.7 WR stars per kpc2, a N WC/N WN number ratio of 1.3, and a WR binary frequency of 40 %.The galactocentric distance (R WR) distribution per subtype showsR WN and R WC decreasing with WN and WC subtypes. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

14.
We re‐discuss the evolutionary state of upper main sequence magnetic stars using a sample of Ap and Bp stars with accurate Hipparcos parallaxes and definitely determined longitudinal magnetic fields. We confirm our previous results obtained from the study of Ap and Bp stars with accurate measurements of the mean magnetic field modulus and mean quadratic magnetic fields that magnetic stars of mass M < 3 M are concentrated towards the centre of the main‐sequence band. In contrast, stars with masses M > 3 M seem to be concentrated closer to the ZAMS. The study of a few known members of nearby open clusters with accurate Hipparcos parallaxes confirms these conclusions. Stronger magnetic fields tend to be found in hotter, younger and more massive stars, as well as in stars with shorter rotation periods. The longest rotation periods are found only in stars which spent already more than 40% of their main sequence life, in the mass domain between 1.8 and 3 M and with log g values ranging from 3.80 to 4.13. No evidence is found for any loss of angular momentum during the main‐sequence life. The magnetic flux remains constant over the stellar life time on the main sequence. An excess of stars with large obliquities β is detected in both higher and lower mass stars. It is quite possible that the angle β becomes close to 0. in slower rotating stars of mass M > 3 M too, analog to the behaviour of angles β in slowly rotating stars of M < 3 M. The obliquity angle distribution as inferred from the distribution of r ‐values appears random at the time magnetic stars become observable on the H‐R diagram. After quite a short time spent on the main sequence, the obliquity angle β tends to reach values close to either 90. or 0. for M < 3 M. The evolution of the obliquity angle β seems to be somewhat different for low and high mass stars. While we find a strong hint for an increase of β with the elapsed time on the main sequence for stars with M > 3 M, no similar trend is found for stars with M < 3 M. However, the predominance of high values of β at advanced ages in these stars is notable. As the physics governing the processes taking place in magnetised atmospheres remains poorly understood, magnetic field properties have to be considered in the framework of dynamo or fossil field theories. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We present the first diffraction-limited K-band image of the Red Rectangle with 76 mas resolution, an H-band image with 75 mas resolution, and an RG 715 filter image ( 800 nm wavelength) with 78 mas resolution (corresponding to 25 AU for a distance of 330 pc). The H and K images were reconstructed from 6 m telescope speckle data and the RG 715 image from 2.2 m telescope data using the speckle masking bispectrum method. At all wavelengths the images show a compact, highly symmetric bipolar nebula, suggesting a toroidal density distribution of the circumstellar material. No direct light from the central binary can be seen as it is obscured by a dust disk or circumbinary torus. Our first high-resolution HK color image of the nebula shows a broad red plateau of HK≈ 2m in the bright inner regions.The optical and near-infrared images and the available photometric continuum observations in a wide range of ultraviolet to centimeter wavelengths enabled us to model the Red Rectangle in detail using a two-dimensional radiative transfer code. Our model matches both the high-resolution images and the spectral energy distribution of this object very well, making the following picture much more certain. The central close binary system with a total luminosity of 3000 L is embedded in a very dense, compact circumbinary torus which has an average number density nH ≈5×1012 cm−3, an outer radius of the dense inner region of R≈30 AU (91 mas), and a ρ∝r−2 density distribution. The full opening angle of the bipolar outflow cavities in our model is 70°. By comparing the observed and theoretical images, we derived an inclination angle of the torus to the line of sight of 7°±1°.The radiative transfer calculations show that the dust properties in the Red Rectangle are spatially inhomogeneous. The modeling confirms that the idea of large grains in the long-lived disk around the Red Rectangle (Jura et al., 1997 [ApJ, 474, 741]) is quantitatively consistent with the observations. In our models, unusually large, approximately millimeter-sized grains dominate the emission of the compact, massive torus. Models with smaller average grain sizes can possibly be found in future studies, for instance, if it turns out that the radio spectrum is not mainly caused by continuum dust emission. Therefore, the large grains suggested by our models require further confirmation by both new observations and radiative transfer calculations. Assuming a dust-to-gas ratio ρdg of 0.005, the dense torus mass is 0.25 M. The model gives a lower limit of 0.0018 M, for the mass of the large particles, which produce a gray extinction of A≈ 28m, towards the center. A much smaller mass of submicron-sized dust grains is presumably located in the polar outflow cavities, their conical surface layers, and in the outer low-density parts of the torus (where ρ∝r−4, in the region of 30 AUr 2000 AU corresponding to 0.′′09–6′′).  相似文献   

16.
We present the first results of our X‐shooter observations for a sample of dwarf (–17 < MB < –15) galaxies in nearby (0.04 < z < 0.07) galaxy clusters. This luminosity range is fundamental to trace the evolution of higher‐z star‐forming cluster galaxies down to the present day, and to explore the galaxy scaling relations of early‐type galaxies over a broad mass range. Thanks to high resolution and availability of several lines we can derive the velocity dispersion of the galaxies in this range of luminosities and we begin the construction of the fundamental plane of faint early‐type galaxies (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We present the results of the blazar 3C 345 monitoring in Johnson‐Cousins BVRI bands for the period 1996–2006. We have collected 29 V and 43 R data points for this period; the BI light curves contain a few measurements only. The accuracy of our photometry is not better than 0.03 mag in the VR bands. The total amplitude of the variability obtained from our data is 2.06 mag in the V and 2.25 mag in the R band. 3C 345 showed periods of flaring activity during 1998/99 and 2001: a maximum of the blazar brightness was detected in 2001 February – 15.345 mag in the V and 14.944 mag in the R band. We confirm that during brighter stages 3C 345 becomes redder; for higher fluxes the colour index seems to be less dependent on the magnitude. The intra‐night monitoring of 3C 345 in three consecutive nights in 2001 August revealed no significant intra‐night variability; 3C 345 did not show evident flux changes over timescales of weeks around the period of the intra‐night monitoring. This result supports the existing facts that intra‐night variability is correlated with rapid flux changes rather than with specific flux levels. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Polarized intensity and polarization angles are calculated from Stokes parameters Q and U in a nonlinear way. The statistical properties of polarized emission hold information about the structure of magnetic fields in a large range of scales, but the contributions of different stages of data processing to the statistical properties should first be understood. We use 1.4 GHz polarization data from the Effelsberg 100‐m telescope of emission in the Galactic plane, near the plane and far out of the plane. We analyze the probability distribution function and the wavelet spectrum of the original maps in Stokes parameters Q, U and corresponding PI. Then we apply absolute calibration (i.e. adding the large‐scale emission to the maps in Q and U), subtraction of polarized sources and subtraction of the positive bias in PI due to noise (“denoising”). We show how each procedure affects the statistical properties of the data. We find a complex behavior of the statistical properties for the different regions analyzed which depends largely on the intensity level of polarized emission. Absolute calibration changes the morphology of the polarized structures. The statistical properties change in a complex way: Compact sources in the field flatten the wavelet spectrum over a substantial range. Adding large‐scale emission does not change the spectral slopes in Q and U at small scales, but changes the PI spectrum in a complex way. “Denoising” significantly changes the p.d.f. of PI and raises the entire spectrum. The final spectra are flat in the Galactic plane due to magnetic structures in the ISM, but steeper at high Galactic latitude and in the anticenter. For a reliable study of the statistical properties of magnetic fields and turbulence in the ISM based on radio polarization observations, absolute calibration and source subtraction are required. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
A mechanism of damped oscillations of a coronal loop is investigated. The loop is treated as a thin toroidal flux rope with two stationary photospheric footpoints, carrying both toroidal and poloidal currents. The forces and the flux-rope dynamics are described within the framework of ideal magnetohydrodynamics (MHD). The main features of the theory are the following: i) Oscillatory motions are determined by the Lorentz force that acts on curved current-carrying plasma structures and ii) damping is caused by drag that provides the momentum coupling between the flux rope and the ambient coronal plasma. The oscillation is restricted to the vertical plane of the flux rope. The initial equilibrium flux rope is set into oscillation by a pulse of upflow of the ambient plasma. The theory is applied to two events of oscillating loops observed by the Transition Region and Coronal Explorer (TRACE). It is shown that the Lorentz force and drag with a reasonable value of the coupling coefficient (c d ) and without anomalous dissipation are able to accurately account for the observed damped oscillations. The analysis shows that the variations in the observed intensity can be explained by the minor radial expansion and contraction. For the two events, the values of the drag coefficient consistent with the observed damping times are in the range c d ≈2 – 5, with specific values being dependent on parameters such as the loop density, ambient magnetic field, and the loop geometry. This range is consistent with a previous MHD simulation study and with values used to reproduce the observed trajectories of coronal mass ejections (CMEs).  相似文献   

20.
The decrease in the rms contrast of time-averaged images with the averaging time is compared between four data sets: (1) a series of solar granulation images recorded at La Palma in 1993, (2) a series of artificial granulation images obtained in numerical simulations by Rieutord et al. (Nuovo Cimento 25, 523, 2002), (3) a similar series computed by Steffen and his colleagues (see Wedemeyer et al. in Astron. Astrophys. 44, 1121, 2004), (4) a random field with some parameters typical of the granulation, constructed by Rast (Astron. Astrophys. 392, L13, 2002). In addition, (5) a sequence of images was obtained from real granulation images by using a temporal and spatial shuffling procedure, and the contrast of the average of n images from this sequence as a function of n is analysed. The series (1) of real granulation images exhibits a considerably slower contrast decrease than do both the series (3) of simulated granulation images and the series (4) of random fields. Starting from some relatively short averaging times t, the behaviour of the contrast in series (3) and (4) resembles the t −1/2 statistical law, whereas the shuffled series (5) obeys the n −1/2 law from n=2 on. Series (2) demonstrates a peculiarly slow decline of contrast, which could be attributed to particular properties of the boundary conditions used in the simulations. Comparisons between the analysed contrast-variation laws indicate quite definitely that the brightness field of solar granulation contains a long-lived component, which could be associated with locally persistent dark intergranular holes and/or with the presence of quasi-regular structures. The suggestion that the random field (4) successfully reproduces the contrast-variation law for the real granulation (Rast in Astron. Astrophys. 392, L13, 2002) can be dismissed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号