首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Microstructural analysis and microthermometry are useful methods for determining the deformation evolution. To address this issue, rheological behavior of quartz, feldspar and calcite in veins and host rocks during deformation, are presented in the mylonite zone of the dextral reverse Zamanabad Shear Zone (ZSZ), in northern part of Sistan Suture Zone (SSZ), in east of Iran. Microstructure evidences revealed two evolution stages of high and low temperature deformation. Quartz microstructures in the ZSZ show abundant evidences for early high-temperature plastic deformation (e.g. Bulging recrystallization (BLG)) which are as microstructures with SW directed ductile shearing in the central parts of the ZSZ. This shear zone shows progressively decreasing strain away from the central of shear zone toward the wall. High-temperature microstructures are overprinted partly or completely during shearing by the later low-temperature deformation (e.g. Pressure solution, fractures, veinlets). Microstructural observations of veins (quartz and calcite) confirms the results of microstructures in the host rock, as quartz veins occurred from peak metamorphic conditions (<400°C) and then in lower P–T conditions have been formed calcite veins (~250°C). According to microthermometric studies, two primary fluid groups are observed in quartz veins: (1) fluids trapped during peak deformation conditions, with higher-salinity, They were initially trapped at ~300–400°C, (2) smaller fluids by trapping of low-salinity inclusions at ~240–180°C that related to subsequent phases of shear zone exhumation in lower deep. Microthermometry results and microstructural analysis indicate deformation under lower greenschist facies conditions for the ZSZ, and then exhumation of the early of high-temperature rocks within regime of ductile-brittle transition to brittle.  相似文献   

2.
Ductilely deformed veins consisting of quartz+andalusite, in which the andalusite is partially replaced by fibrous sillimanite, locally occur in garnet–sillimanite schist near a margin of the Niğde metamorphic core complex in south-central Turkey. Mineral assemblages, reaction textures and structural features of the veins record low-pressure–high-temperature deformation during exhumation of mid-crustal rocks. The partial replacement of andalusite by sillimanite may indicate a late-stage increase in temperature and/or fluid pressure, possibly related to Miocene magmatism, during extensional unroofing of the core complex. Aluminosilicate-bearing veins are observed at the eastern margin of the massif where metapelitic rocks were deformed during unroofing of the core complex. Veins formed in aluminous rocks where deformation-enhanced permeability allowed fluid flow during extensional shear. The cm-scale veins are typically boudinaged and form asymmetric lenses concordant with the host rock foliation and are parallel to the down-dip lineation defined by sillimanite and stretched biotite. Aluminosilicate-bearing boudins record top-to-the-east shear sense, which is compatible with the extensional shear sense displayed by structures in the host rock.  相似文献   

3.
In an extensional shear zone in the Talea Ori, Crete, quartz veins occur in high-pressure low-temperature metamorphic sediments at sites of dilation along shear band boundaries, kink band boundaries and boudin necks. Bent elongate grains grown epitactically from the host rock with abundant fluid inclusion trails parallel to the vein wall indicate vein formation by crack-seal increments during dissolutionprecipitation creep of the host rock. The presence of sutured high-angle grain boundaries and subgrains shows that temperatures were sufficiently high for recovery and strain-induced grain boundary migration, i.e. higher than 300 -350℃, close to peak metamorphic conditions. The generally low amount of strain accumulated by dislocation creep in quartz of the host rock and most veins indicates low bulk stress conditions of a few tens of MPa on a long term. The time scale of stress-loading to cause cyclic cracking and sealing is assumed to be lower than the Maxwell relaxation time of the metasediments undergoing dissolution-precipitation creep at high strain rates(10-10 s-1 to 10-9 s-1), which is on the order of hundred years. In contrast, some veins discordant or concordant to the foliation show heterogeneous quartz microstructures with micro-shear zones, sub-basal deformation lamellae, shortwavelength undulatory extinction and recrystallized grains restricted to high strain zones. These microstructures indicate dislocation glide-controlled crystal-plastic deformation(low-temperature plasticity) at transient high stresses of a few hundred MPa with subsequent recovery and strain-induced grain boundary migration at relaxing stresses and temperatures of at least 300 -350℃. High differential stresses in rocks at greenschist-facies conditions that relieve stress by creep on the long term, requires fast stress-loading rates, presumably by seismic activity in the overlying upper crust. The time scale for stress loading is controlled by the duration of the slip event along a fault, i.e. a few seconds to minutes.This study demonstrates that microstructures can distinguish between deformation at internal low stress-loading rates(to tens of MPa on a time scale of hundred years) and high(coseismic) stress-loading rates to a few hundred MPa on a time scale of minutes.  相似文献   

4.
Post-deformational annealing of calcite rocks   总被引:3,自引:3,他引:3  
The evolution of microstructure and crystallographic preferred orientation (CPO) during post-deformational annealing was studied on three calcite rock types differing in purity and grain size: Carrara marble (98% calcite, mean grain size of 115 μm), Solnhofen limestone (96%, 5 μm) and synthetic calcite aggregates (99%, 7 μm). Samples were first deformed in torsion at 727 °C at a shear strain rate of 3 × 10 4 s 1 to a shear strain of 5 and subsequently heat-treated at 727 °C for various durations between 0 and 24 h. Microstructures and CPOs were analysed by optical microscopy, image analysis and electron backscatter diffraction (EBSD).All rock types deformed in the dislocation creep field at the same applied conditions, but their microstructures and CPOs after deformation and after annealing differed depending on starting grain size and material composition. In Carrara marble and in the synthetic calcite aggregate, a strong CPO developed during deformation accompanied by dynamic recrystallisation with significant changes in grain size. During annealing, widespread grain growth and subtle changes of CPO occurred, and equilibrated foam microstructures were approached after long annealing times. The CPO is the only feature in annealed samples indicating an earlier deformation phase, although it is not always identical to the CPO formed during deformation. In the more impure Solnhofen limestone, secondary phases on grain boundaries suppressed grain boundary mobility and prevented both the formation of a recrystallisation CPO during deformation and grain size modification during deformation and annealing.  相似文献   

5.
Although many Archaean greenstone-hosted mesothermal gold deposits are in steep, reverse-motion fault zones, other fault geometries are prospective for mineralization. Harbour Lights is one of a number of deposits at Leonora hosted in a normal-motion shear zone, probably related to movement off the adjacent domal granitoid. The deposit is also atypical in that mineralization predates the last deformation to affect the mine sequence, but formed by similar processes to other mesothermal deposits in all respects other than the detail of shear zone geometry, kinematics and timing. Gold mineralization at Harbour Lights is related to D1 quartz veins parallel to a well-developed gently NE- to E-dipping D1 cleavage, both of which are deformed in steeply dipping and later extensional shear bands (D2). Gently dipping quartz veins, as at Harbour Lights, must have formed at extremely high fluid pressures, capable of holding the weight of the overlying crust. In the gently dipping normal-motion shear zone continued reactivation and veining was possible only with extremely high fluid pressures, and steeply dipping structures, such as the D2 extensional shear bands, were initiated as the fluid pressure dropped after the mineralizing event. The rarity of gold mineralization hosted in normal-motion shear zones is due to their being linked to steep structures which pump fluid upwards and prevents the build-up of extremely high fluid pressures. At Harbour Lights it appears that these links were (atypically) absent, probably because deformation was a result of granitoid doming, and was subparallel to strata.  相似文献   

6.
Quartzofeldspathic ultramylonites from the Alpine Fault Zone, one of the world's major, active plate boundary-scale fault zones have quartz crystallographic preferred orientations (CPO) and abundant low-angle (<10° misorientation) boundaries, typical microstructures for dislocation creep-dominated deformation. Geometrically necessary dislocation density estimates indicate mean dislocation densities of ∼109 cm−2. A significant proportion (∼30%) of grain boundaries (>10° misorientation) are decorated by faceted pores, commonly with uniformly-oriented pyramidal shapes. Only grain boundaries with >10° misorientation angles in polymineralic aggregates are decorated by pores. Mean grain boundary pore densities are ∼5 × 108 cm−2. Grain boundary pores are dissolution pits generated during syn-deformational transient grain boundary permeability, nucleating on dislocation traces at dilatant grain boundary interfaces. They have not been removed by subsequent grain boundary closure or annealing. Pore decoration could have led to grain boundary pinning, triggering a switch in the dominant deformation mechanism to grain boundary sliding, which is supported by evidence of CPO destruction in matrix quartz. Pore-decorated grain boundaries have significantly reduced surface area available for adhesion and cohesion, which would reduce the tensile and shear strength of grain boundaries, and hence, the bulk rock. Grain boundary decoration also significantly decreased the mean distance between pores, potentially facilitating dynamic permeability. Consequently, these microstructures provide a new explanation for strain weakening and evidence of fluid flow along grain boundaries in mylonites at mid-crustal conditions.  相似文献   

7.
The microfabrics of folded quartz veins in fine‐grained high pressure–low temperature metamorphic greywackes of the Franciscan Subduction Complex at Pacheco Pass, California, were investigated by optical microscopy, scanning electron microscopy including electron backscatter diffraction, and transmission electron microscopy. The foliated host metagreywacke is deformed by dissolution–precipitation creep, as indicated by the shape preferred orientation of mica and clastic quartz without any signs of crystal‐plastic deformation. The absence of crystal‐plastic deformation of clastic quartz suggests that the flow stress in the host metagreywacke remained below a few tens of MPa at temperatures of 250–300 °C. In contrast, the microfabric of the folded quartz veins indicates deformation by dislocation creep accompanied by subgrain rotation recrystallization. For the small recrystallized grain size of ~8 ± 6 μm, paleopiezometers indicate differential stresses of a few hundred MPa. The stress concentration in the single phase quartz vein is interpreted to be due to its higher effective viscosity compared to the fine‐grained host metagreywacke deforming by dissolution–precipitation creep. The fold shape suggests a viscosity contrast of one to two orders of magnitude. Deformation by dissolution–precipitation creep is expected to be a continuous process. The same must hold for folding of the vein and deformation of the vein quartz by dislocation creep. The microfabric suggests dynamic recrystallization predominantly by subgrain rotation and only minor strain‐induced grain boundary migration, which requires low contrasts in dislocation density across high‐angle grain boundaries to be maintained during climb‐controlled creep at high differential stress. The record of quartz in these continuously deformed veins is characteristic and different from the record in metamorphic rocks exhumed in seismically active regions, where high‐stress deformation at similar temperatures is episodic and related to the seismic cycle.  相似文献   

8.
Flexural slip folds are distinctive of mixed continuous-discontinuous deformation in the upper crust, as folding is accommodated by continuous bending of layers and localized, discontinuous slip along layer interfaces. The mechanism of localized, layer-parallel slip and the stress and fluid pressure conditions at which flexural slip occurs are therefore distinctive of shear localization during distributed deformation. In the Prince Albert Formation mudstone sequence of the Karoo Basin, the foreland basin to the Cape Fold Belt, folds are well developed and associated with incrementally developed bedding-parallel quartz veins with slickenfibers oriented perpendicular to fold hinge lines, locally cross-cutting axial planar cleavage, and showing hanging wall motion toward the fold hinge. Bedding-parallel slickenfiber-coated veins dip at angles from 18° to 83°, implying that late increments of bedding-parallel shear occurred along unfavorably oriented planes. The local presence of tensile veins, in mutually cross-cutting relationship with bedding-parallel, slickenfiber-coated veins, indicate local fluid pressures in excess of the least compressive stress.Slickenfiber vein microstructures include a range of quartz morphologies, dominantly blocky to elongate-blocky, but in places euhedral to subhedral; the veins are commonly laminated, with layers of quartz separated by bedding-parallel slip surfaces characterized by a quartz-phyllosilicate cataclasite. Crack-seal bands imply incremental slickenfiber growth, in increments from tens of micrometers to a few millimeters, in some places, whereas other vein layers lack evidence for incremental growth and likely formed in single slip events. Single slip events, however, also involved quartz growth into open space, and are inferred to have formed by stick-slip faulting. Overall, therefore, flexural slip in this location involved bedding-parallel faulting, along progressively misoriented weak planes, with a range of slip increments.  相似文献   

9.
The auriferous lode in the Hira-Buddini deposit is confined to the sheared contact of amphibolite and felsic metavolcanic rock. Gold mineralization in the deposit is associated with sub-horizontal, sub–vertical, irregular and with few conjugate veins. These veins were emplaced during deformation in a ductile-brittle regime as inferred from the megascopic features and microstructures of the vein minerals. Fluid pressure was higher than the sum of the minimum principal stress and lithostatic load as well as the tensile strength of the shear zone. Crack-seal process appears to be the mechanism of vein formation. The microstructures of the vein minerals indicate a temperature of ~500ºC during the vein emplacement. In the auriferous lode, amphibolite and felsic metavolcanic rock have been subjected to intense alteration by the ore fluid with development of biotite-chlorite-tourmaline-calcite and muscovite (sericite)-chlorite-calcite-feldspar-biotite assemblages, respectively. Both the altered rocks contain significant amount of pyrite and chalcopyrite with native grains of gold and silver. Post-dating the fluid activity associated with gold mineralization, there is another stage of fluid activity manifested by the calcite veins and micro-veinlets.  相似文献   

10.
Several quartz vein sets with varying orientation, geometry and internal structure were recognized in the Atalla area. The veins were associated with the deformation phases affecting the area. En echelon and extensional veins are the main geometrical types. Syn-kinematic veins associated with the major northeast-over-southwest thrust faults were later boudinaged, folded and re-folded. En echelon veins, fibrous veins, and extensional veins are associated with the NNW–SSE faults. Other veins are associated with the NW–SE, N–S, NE–SW and E–W faults. Veins are concentrated at the intersection zones between faults. The internal structure of the veins comprises syntaxial, antitaxial, and composite types and reflects a change from a compressive stress regime to an extensional one. Chocolate-tablet structures and synchronous and co-genetic vein networks indicate later multi-directional extension of the area. Interaction between cracking and sealing of fractures is a common feature in the study area indicating that it was easy for the pore pressure to open pre-existing fractures instead of creating new ones. The reopening of pre-existing fractures rather than creating new ones is also indicated by the scattering of vein data around σ3. There is an alteration and change in characteristics of the wall rock due to increase in fluid flow rate. Fault-valving probably is also a cause of the complex geometry of some veins.  相似文献   

11.
We present microstructural analyses demonstrating how the geometrical distribution and interconnectivity of mica influences quartz crystallographic preferred orientation (CPO) development in naturally deformed rocks. We use a polymineralic (Qtz + Pl + Kfs + Bt + Ms ± Grt ± Tur) mylonite from the Zanskar Shear Zone, a section of the South Tibetan Detachment (NW Himalaya), to demonstrate how quartz CPO intensity decreases from quartz-dominated domains to micaceous domains, independently of whether or not quartz grains are pinned by mica grains. We then use a bimineralic (Qtz + Ms) mylonite from the Main Central Thrust (NW Himalaya) to show how increasing mica grain connectivity is concomitant with a systematic weakening of quartz CPO. Our results draw distinctions between CPO weakening due to: (i) second phase drag, leading to ineffective recovery in quartz; and (ii) increased transmission and localisation of strain between interconnected mica grains. In the latter case, well-connected micaceous layers take up most of the strain, weakening the rock and preventing straining of the stronger quartz matrix. Our findings suggest that rock weakening in quartz-rich crustal rocks is influenced not only by the presence of mica-rich layers but also the degree of mica grain connectivity, which allows for more effective strain localization through the entire rock mass.  相似文献   

12.
The Sierra Ballena Shear Zone (SBSZ) is part of a high-strain transcurrent system that divides the Neoproterozoic Dom Feliciano Belt of South America into two different domains. The basement on both sides of the SBSZ shows a deformation stage preceding that of the transcurrent deformation recognized as a high temperature mylonitic foliation associated with migmatization. Grain boundary migration and fluid-assisted grain boundary diffusion enhanced by partial melting were the main deformation mechanisms associated with this foliation. Age estimate of this episode is >658 Ma. The second stage corresponds to the start of transpressional deformation and the nucleation and development of the SBSZ. During this stage, pure shear dominates the deformation, and is characterized by the development of conjugate dextral and sinistral shear zones and the emplacement of syntectonic granites. This event dates to 658–600 Ma based on the age of these intrusions. The third stage was a second transpressional event at about 586 to <560 Ma that was associated with the emplacement of porphyry dikes and granites that show evidence of flattening. Deformation in the SBSZ took place, during the late stages, under regional low-grade conditions, as indicated by the metamorphic paragenesis in the supracrustals of the country rocks. Granitic mylonites show plastic deformation of quartz and brittle behavior of feldspar. A transition from magmatic to solid-state microstructures is also frequently observed in syntectonic granites. Mylonitic porphyries and quartz mylonites resulted from the deformation of alkaline porphyries and quartz veins emplaced in the shear zone. Quartz veins reflect the release of silica associated with the breakdown of feldspar to white mica during the evolution of the granitic mylonites to phyllonites, which resulted in shear zone weakening. Quartz microstructures characteristic of the transition between regime 2 and regime 3, grain boundary migration and incipient recrystallization in feldspar indicate deformation under lower amphibolite to upper greenschist conditions (550–400°C). On the other hand, the mylonitic porphyries display evidence of feldspar recrystallization suggesting magmatic or high-T solid-state deformation during cooling of the dikes.  相似文献   

13.
Local modification of rock chemistry by deformation   总被引:1,自引:0,他引:1  
Metabasalts subjected to progressive deformation in large-scale shear zones at Yellowknife display corresponding changes in major element abundances. Deformation, under conditions of greenschist facies metamorphism, has involved grain size reduction from 1200 m to <20 m, depletion of SiO2 (5%) and Na2O, together with hydration, and a decrease in specific gravity from 2.97 to 2.80. Chemical redistribution by deformation has been accomplished through a decrease in grain diameter of quartz and albite by intercrystalline diffusive mass transport (pressure solution), with concomitant transfer of material into extension veins. The degree of chemical modification is related to the finite strain. Deformation has involved a redistribution of 7.1015g of SiO2 over a volume of about 50km3.The microstructure of an adamellite deformed in a shear zone at higher temperature, under conditions of amphibolite facies metamorphism is indicative of dominant dislocation creep. A low degree of tectonic grain refinement is present. Constant values of major element abundances and specific gravity determined across the shear zone at increasing states of strain imply isochemical and isovolumetric deformation. These results are taken to support the precept that crustal deformation is characterised by a low temperature deformation regime dominated by pressure solution, with local changes of rock chemistry and volume; and a high temperature regime in which strain is accommodated principally by dislocation creep, an isochemical and isovolumetric deformation mechanism.  相似文献   

14.
拉卡兰褶皱带中,发育于Ballarat-Bandigo冲断带中的低级变质砂、泥岩的宏观构造以间离劈理和人字形褶皱为特征,而且劈理在褶皱中呈扇形发育。劈理和褶皱的几何关系分析显示:劈理和褶皱的形成为压溶作用、压扁作用、弯曲作用和被动旋转共同作用的结果,而褶皱砂、泥岩中变形构造则以与压溶作用和再沉淀过程有关的显微构造为其典型特征。Fry法进行的全岩应变测量显示,褶皱砂岩的内部应变相当低(X/Z=1.40—1.83),褶皱应变格局给出变形机制的信息包括:缩短过程中的压扁作用和压溶作用、褶皱过程中由弯滑导致的层平行剪应变、以及褶皱后期发育阶段内弧区强烈的压溶作用。宏观构造、显散构造以及应变特征多方面信息证明:低级变质的沉积岩在褶皱变形过程中,压溶作用为一重要的变形机制。应变分解显示在30%—50%的总地壳水平缩短量下,弯曲导致的缩短最为14%—36%,压扁导致的缩短量为3%—14%,压溶导致的缩短量为8%—26%,而且压溶作用主要发生在褶皱内弧区。  相似文献   

15.
In this contribution we present a review of the evolution of microstructures and fabric in ice. Based on the review we show the potential use of ice as an analogue for rocks by considering selected examples that can be related to quartz-rich rocks. Advances in our understanding of the plasticity of ice have come from experimental investigations that clearly show that plastic deformation of polycrystalline ice is initially produced by basal slip. Interaction of dislocations play an essential role for dynamic recrystallization processes involving grain nucleation and grain-boundary migration during the steady-state flow of ice. To support this review we describe deformation in polycrystalline ‘standard’ water-ice and natural-ice samples, summarize other experiments involving bulk samples and use in situ plane-strain deformation experiments to illustrate the link between microstructure and fabric evolution, rheological response and dominant processes. Most terrestrial ice masses deform at low shear stresses by grain-size-insensitive creep with a stress exponent (n ≤ 3). However, from experimental observations it is shown that the distribution of plastic activity producing the microstructure and fabric is initially dominated by grain-boundary migration during hardening (primary creep), followed by dynamic recrystallization during transient creep (secondary creep) involving new grain nucleation, with further cycles of grain growth and nucleation resulting in near steady-state creep (tertiary creep). The microstructural transitions and inferred mechanism changes are a function of local and bulk variations in strain energy (i.e. dislocation densities) with surface grain-boundary energy being secondary, except in the case of static annealing. As there is a clear correspondence between the rheology of ice and the high-temperature deformation dislocation creep regime of polycrystalline quartz, we suggest that lessons learnt from ice deformation can be used to interpret polycrystalline quartz deformation. Different to quartz, ice allows experimental investigations at close to natural strain rate, and through in-situ experiments offers the opportunity to study the dynamic link between microstructural development, rheology and the identification of the dominant processes.  相似文献   

16.
The Bay of Islands Ophiolite was emplaced onto the continental margin of North America during the mid-Ordovician Taconic orogeny, when tectonic slices of continental margin sediments were accreted to the moving allochthon. Tectonic slices grade into and are surrounded by mélange. Early fracture in sandstones formed without grain breakage and allowed penetration of liquid petroleum along fracture planes. Other fractures involved cataclastic flow and were sometimes re-activated during formation of later pressure solution cleavage. Shear-fracture and extension-fracture boudinage affect competent strata; extensional veins cut cement in limestone beds and are filled by shale, quartz, calcite and bitumen. Folds also formed, at a time when siltstone and sandstone were at least partially lithified. Mélange matrix shows abundant shear and extension fractures in a variety of orientations.Coaxial extension responsible for disruption of bedding can be explained by a brittle accretionary wedge model in which high fluid pressures resulted from tectonic dewatering of shales. Surface slope decreased as fluid pressure rose beneath the ophiolite, causing horizontal extension of the wedge. After escape of excess water the surface slope steepened again as renewed stacking occurred.  相似文献   

17.
Jochen Kolb   《Tectonophysics》2008,446(1-4):1-15
The fabric, mineralogy, geochemistry, and stable isotope systematics of auriferous shear zones in various hydrothermal gold deposits were studied in order to discuss the role of fluids in rock deformation at temperatures between 500 °C and 700 °C. The strong hydrothermal alteration and gold mineralization indicates that effective permeability development goes ahead with high-temperature rock deformation. The economic gold enrichment is often hosted by breccias and quartz veins in the ductile shear zones, which either formed at fast strain rates or by low strain continuous deformation at slow strain rates. Both processes require (1) a close-to lithostatic to supralithostatic fluid pressure and/or (2) a strong rheology contrast of the deformed lithologies that is often developed during progressive hydrothermal alteration. Compartments of high fluid pressure are sealed from the rest of the shear zones by high-temperature deformation mechanisms, e.g. intracrystalline plasticity and diffusion creep, and compaction. In contrast, in mylonites with heterogeneous crystal plastic and brittle deformation mechanisms for the various minerals, an interconnected network of a grain-scale porosity forms an effective fluid conduit, which hampers fluid pressure build-up and the formation of veins.The auriferous shear zones of the various gold mines represent fluid conduits in the deeper crust, 100 m along strike and up to 1000 m down-dip. The hydrothermal fluids infiltrated may be responsible for low magnitude earthquakes in the Earth's lower crust, which otherwise deforms viscously.  相似文献   

18.
The Eclogite Zone, of the Tauern Window is an exhumed subduction channel comprising eclogites with different grades of retrogression in a matrix of high-pressure metasediments. The rocks were exposed to 600 °C and 20–25 kbars, and then retrogressed during their exhumation, first under blueschist facies and later under amphibolite facies metamorphism. To gain insights into the deformation within the subduction channel during subduction and exhumation, both fresh and retrogressed eclogites, as well as the surrounding metasediments were investigated with respect to their deformation microstructures and crystallographic preferred orientations (CPOs). Pristine and retrogressed eclogites show grain boundary migration and subgrain rotation recrystallization microstructures in omphacite. A misorientation axes analysis reveals the activity of complementary deformation mechanisms including grain boundary sliding and dislocation creep. The omphacite CPOs of the eclogites correspond to dominant SL-fabrics characteristic of plane strain deformation, though there are local variations towards flattening or constriction within the paleosubduction channel. The glaucophane CPOs in retrogressed eclogites match those of omphacite, suggesting that a constant strain geometry persisted during exhumation at blueschist facies conditions. Plastic deformation of the host high-pressure metasediments outlasted that of the eclogites, as indicated by white mica fabrics and quartz CPO. The latter is consistently asymmetric, pointing to the operation of non-coaxial deformation. The microstructures and CPO data indicate a continuous plastic deformation cycle with eclogite and blueschist facies metamorphism related to subduction and exhumation of the different rock units.  相似文献   

19.
Gold-bearing veins within the Liese zone of the Pogo deposit display a two-stage evolutionary history that records temporal variation in kinematics, fluid chemistry and temperature. Several stacked shallow northwest-dipping shear veins are developed at Pogo, and collectively comprise the Liese Zone. Veins consist of: (1) early, narrow biotite-bearing shear veins; (2) white quartz veins with pyrite-arsenopyrite bands, referred to as main stage quartz veins, that have sericite-Fe-Mg carbonate alteration envelopes and which exploit the early shear veins; and (3) extension veins that form as steeper offshoots from the main stage veins. The presence and orientation of oblique fabrics developed in the older biotite-bearing shear veins are indicative of top-to-the-south displacement under ductile to semi-brittle conditions at higher temperatures. In contrast, the orientation of the extension veins and local sigmoidal shapes indicate a component of top-to-the-northwest normal displacement on the main stage veins in their present orientation, and brittle to semi-brittle conditions of formation. Dolomite-sericite alteration surrounding main stage veins may represent late to post-mineral hydrothermal fluid exploitation of vein margins during ongoing normal displacement along vein systems. All types of veining overprint 107–106 Ma, post-metamorphic granitic dykes. Molybdenite in main stage quartz assemblages has returned Re-Os ages of 104.2±1.1 Ma, significantly older than 96 to 91 Ma 40Ar/39Ar ages obtained from vein alteration assemblages that may reflect thermal resetting during post-mineral fault related hydrothermal activity, magmatism and/or retrograde cooling of the lithologic sequence. Unlike typical mesothermal shear vein hosted gold systems, Pogo is temporally and tectonically separated from metamorphic deformation events, and has a comparable kinematic and geometric architecture to Cretaceous plutonic gold deposits in the region. We interpret the deposit to have formed during a regional Cretaceous extensional event during multi-stage exploitation of extensional fault surfaces by hydrothermal fluid from a cooling magmatic source.Editorial handling: S.G. Hagemann  相似文献   

20.
In order to address the question of the processes involved during shear zone nucleation, we present a petro-structural analysis of millimetre-scale shear zones within the Roffna rhyolite (Suretta nappe, Eastern central Alps). Field and microscopic evidences show that ductile deformation is localized along discrete fractures that represent the initial stage of shear zone nucleation. During incipient brittle deformation, a syn-kinematic metamorphic assemblage of white mica + biotite + epidote + quartz precipitated at ca. 8.5 ± 1 kbar and 480 ± 50 °C that represent the metamorphic peak conditions of the nappe stacking in the continental accretionary wedge during Tertiary Alpine subduction. The brittle to ductile transition is characterized by the formation of two types of small quartz grains. The Qtz-IIa type is produced by sub-grain rotation. The Qtz-IIb type has a distinct CPO such that the orientation of c-axis is perpendicular to the shear fracture and basal and rhombhoedric slip systems are activated. These Qtz-IIb grains can either be formed by recrystallization of Qtz-IIa or by precipitation from a fluid phase. The shear zone widening stage is characterized by a switch to diffusion creep and grain boundary sliding deformation mechanisms. During the progressive evolution from brittle nucleation to ductile widening of the shear zone, fluid–rock interactions play a critical role, through chemical mass-transfer, metasomatic reactions and switch in deformation mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号