首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Observation of Coriolis coupled modes below 1 mHz   总被引:3,自引:0,他引:3  
We present observations of spectral energy at toroidal mode frequencies in vertical seismic recordings of the 1998 Balleny Islands earthquake. Since toroidal modes on a spherically symmetric, nonrotating Earth have horizontally polarized particle motion these observations call for an explanation. We first rule out local and instrumental effects as being responsible for the verticalcomponent signal of the toroidal modes 0 T 3 (0.59 mHz) and 0 T 4 (0.77 mHz). The global effects that we consider are general heterogeneous mantle structure, ellipticity of figure and rotation. We find that rotation through Coriolis coupling of loworder spheroidal and toroidal oscillations is the dominant mechanism.  相似文献   

2.
Summary. Palaeomagnetic results are presented from the c . 160 km2 Caledonian synorogenic layered Fongen-Hyllingen gabbro complex (of probable late Silurian age) located about 75 km SE of Trondheim, Norway, in the allochthonous Seve-Kdli Nappe Complex. A total of 80 oriented samples from eight sites in the northern part of the gabbro were investigated. After detailed af demagnetization two stable high coercivity components emerge: one with a well defined NW direction with D =325°, I =−21° (α95=8°, N =8), and another, less well defined, probably younger, SW direction with D = 237°, I = 6° (α95= 9°, N = 8). Correction for dip of these two directions gives D = 329°, I =−7° (α95= 10°) and D = 238°, I =−11° (α95= 12°), respectively. The corresponding pole positions are P 1 : 19° N, 225° E and P 2: 19° S, 308° E, respectively. The reversed pole -P 2 of the SW direction lies close to other NW European palaeomagnetic poles of Caledonian, Upper Silurian-Lower Devonian age. However, the dominant pole PI is far away from these, and could be due to a late Caledonian geomagnetic excursion of considerable duration; or it could record a c . 90° rotation around a vertical axis of a crustal block within the Scandinavian Caledonides. Block rotation could have been related to nappe translation, although geological observations do not at present appear to support the occurrence of such an event.  相似文献   

3.
Summary. Asymptotic expressions for components of the electromagnetic field of a grounded electric dipole are considered for the model consisting of a thin surface-layer overlapping a stratified medium with a highly resistive screen on the roof. It is shown that the method of spatial derivatives makes it possible to obtain proper estimates of the impedance at distances of r ≥|λ0| from the nearest edge of the surface anomaly (|λ0| being the effective depth of the field penetration in the underlying section). the magnetotelluric methods allow one to obtain the true values of impedance, provided r ≥ max {|λ0|, |/( S −1+ Z 0|1/2} where S is the integrated conductivity of the surface layer, is the transverse resistance of the screen, and Z 0 is the Tikhonov—Cagniard impedance for the medium underlying the surface layer.  相似文献   

4.
Measurement of samples from 154 sites in the continental sector of the Cameroon Volcanic Line yielded six palaeomagnetic poles, at 243.6°E, 84.6°N, α 95 = 6.8°; 224.3°E, 81.2°N, α 95 = 8.4°; 176.1°E, 82.0°N, α 95 = 8.5°; 164.3°E, 86.4°N, α 95 = 3.4°; 169.4°E, 82.6°N, α 95 = 4.6° and 174.7°E, 72.8°N, α 95 = 9.5°, belonging to rocks which have been dated by the K–Ar method at 0.4–0.9  Ma, 2.6  Ma, 6.5–11  Ma, 12–17  Ma, 20–24  Ma and 28–31  Ma, respectively. The results are in general agreement with other palaeomagnetic poles from Oligocene to Recent formations in Africa.
  The first three poles for rocks formed between 0.4 and 11  Ma are not significantly different from the present geographical pole. Together with other African poles for the same period, this suggests that the African continent has moved very little relative to the pole since 11  Ma. The other three poles for rocks dated between 12 and 31  Ma are significantly different from the present geographical pole, showing a 5° polar deviation from the present pole in the Miocene and 13° in the Middle Oligocene.  相似文献   

5.
3-D images of P velocity and P - to S -velocity ratio have been produced for the upper crust of the Friuli area (northeastern Italy) using local earthquake tomography. The data consist of 2565 P and 930 S arrival times of high quality. The best-fitting V P and V P / V S 1-D models were computed before the 3-D inversion. V P was measured on two rock samples representative of the investigated upper layers of the Friuli crust. The tomographic V P model was used for modelling the gravity anomalies, by converting the velocity values into densities along three vertical cross-sections. The computed gravity anomalies were optimized with respect to the observed gravity anomalies. The crust investigated is characterized by sharp lateral and deep V P and V P / V S anomalies that are associated with the complex geological structure. High V P / V S values are associated with highly fractured zones related to the main faulting pattern. The relocated seismicity is generally associated with sharp variations in the V P / V S anomalies. The V P images show a high-velocity body below 6 km depth in the central part of the Friuli area, marked also by strong V P / V S heterogeneities, and this is interpreted as a tectonic wedge. Comparison with the distribution of earthquakes supports the hypothesis that the tectonic wedge controls most of the seismicity and can be considered to be the main seismogenic zone in the Friuli area.  相似文献   

6.
Summary. A method that enables the objective resolution of almost parallel multi-component magnetizations is described and demonstrated. A feature distinguishing this method from others is its simultaneous analysis of demagnetization data from a group of specimens, rather than the analysis of data from one specimen at a time. The only prerequisite is that the specimens are derived from a homogeneous source. Thus for a formation carrying a simple single component magnetization, all specimens from the formation may be simultaneously reduced. For a more complicated two component magnetization it is shown that only specimens from a particular site can be considered homogeneous, and for a complex three component system each sample often requires undivided attention. Thus the workload is proportionally increased to achieve analyses of comparable reliability from data of variable quality.
New pole positions from Mesozoic intrusions of the Sydney Basin, NSW are: from the Marsden Park Breccia pipe 48°S, 127°E ( A 95= 6°); the St Marys Breccia pipe 46°S, 150°E ( A 95= 8°); the Prospect Dolerite 60°S, 142°E ( A 95= 13°) and 53°S, 180°E ( A 95= 6°); and from the Dundas Breccia pipe 58°S, 162°E ( A 95= 36°) and 31°S, 195°E ( A 95= 16°). The last two formations possess multi-component magnetizations. These pole positions are consistent with previous results from south-eastern Australia.  相似文献   

7.
Summary. The response of many dynamical systems to an impulse is a linear combination of decaying cosines. The frequencies of the cosines have generally been estimated in geophysics by periodogram analysis and little formal indication of uncertainty has been provided. This work presents an estimation procedure by the methods of complex demodulation and nonlinear regression that specifically incorporates in the basic model the decaying aspect of the cosines (periodogram analysis does not). The use of plots of the instantaneous phase as a function of time is shown to greatly enhance resolution. Expressions for the variances of eigenfrequencies, amplitudes, phases and damping constants Q are derived by non-linear least-squares. The results are illustrated, for the problem of the free oscillations of the Earth, by computations with the record made at Trieste of the Chilean earthquake of 1960 May 22. Sample values are periods and standard errors of 737.79 ± 0.13 s, 506.25 ± 0.13 s and 429.60 ± 0.14 s for 0 T 8, 0 T 13 and 0 T 16 with Q values and standard errors of 200 ± 14, 230 ± 28 and 215 ± 30, respectively.  相似文献   

8.
Summary. The geopotential is usually expressed as an infinite series of spherical harmonics, and the odd zonal harmonics are the terms independent of longitude and antisymmetric about the equator: they define the 'pear-shape' effect. The coefficients J 3, J 5, J 7, … of these harmonics have been evaluated by analysing the variations in eccentricity of 28 satellite orbits from near-equatorial to polar. Most of the orbits from our previous determination in 1974 are used again, but three new orbits are added, including two at inclinations between 62° and 63°, which have been specially observed for more than five years by the Hewitt cameras. With the help of the new orbits and revised theory, we have obtained sets of J -coefficients with standard deviations about 40 per cent lower than before. A 9-coefficient set is chosen as representative, and is as follows (all × 109): J 3=– 2530 ± 4, J 5=–245 ± 5, J 7=–336 ± 6, J 9=–90 ± 7, J 11= 159 ± 9, J 13=–158 ± 15, J 15=– 20 ± 15, J 17=– 236 ± 14, J 19=– 27 ± 19. With this set of values, the pear-shape asymmetry of the geoid (north polar minus south polar radius) amounts to 45.1 m instead of the previous 44.7 m. The accuracy of the longitude-averaged geoid profile is estimated as 50 cm, except at latitudes above 86°. The geoid profile and predicted amplitude of the oscillation in eccentricity are compared with those from other sources.  相似文献   

9.
A palaeomagnetic study of 115 samples (328 specimens) from 22 sites of the Mid- to Upper Cretaceous Bagh Group underlying the Deccan Traps in the Man valley (22°  20'N, 75°  5'E) of the Narmada Basin is reported. A characteristic magnetization of dominantly reverse polarity has been isolated from the entire rock succession, whose depositional age is constrained within the Cretaceous Normal Superchron. Only a few samples in the uppermost strata have yielded either normal or mixed polarity directions. The overall mean of reverse magnetization is D m=144°, I m=47° ( α 95=2.8°, k =152, N =18 sites) with the corresponding S-pole position 28.7°S, 111.2°E ( A 95=3.1°) and a palaeolatitude of 28°S±3°. The characteristic remanence is carried dominantly by magnetite. Similar magnetizations of reverse polarity are also exhibited by Deccan basalt samples and a mafic dyke in the study area. This pole position falls near the Late Cretaceous segment of the Indian APWP and is concordant with poles reported from the Deccan basalt flows and dated DSDP cores (75–65  Ma) of the Indian Ocean. It is therefore concluded that the Bagh Group in the eastern part of the Narmada Basin has been pervasively remagnetized by the igneous activity of Deccan basalt effusion. This overprinted palaeomagnetic signature in the Bagh Group indicates a counter-clockwise rotation by 13°±3° and a latitudinal drift northwards by 3°±3° of the Indian subcontinent during Deccan volcanism.  相似文献   

10.
Rocks from the Massif de la Serre in the French Jura (latitude: 47.3°N longitude: 5.6°E) belonging to an ignimbritic assemblage dominated by vitrophyric rhyolites, and whose age of formation is probably Permian (Autunian to Saxonian) have been studied by applying thermal and alternating field demagnetization. the characteristic magnetization has a mean direction derived from 89 samples of D= 170°, I = - 16°, k = 26.2°, α95= 3° and a corresponding north palaeopole at 41°N, 172°E, A 95= 5°. the pole, which is very close to the Permian European poles, can thus be considered as a new contribution. Some samples are found to carry a unique normal polarity magnetization, others carry both normal and reverse polarities. It therefore seems that, similar to Permian series in the USSR, these west European rocks have registered a normal event in the Kiaman interval. From a structural point of view, we may conclude that during the Alpine tectonic phases the Massif de la Serre has not been subjected to substantial rotation.  相似文献   

11.
We evaluate the stress field in and around the southern Korean Peninsula with focal mechanism solutions, using the data collected from 71 earthquakes ( ML = 1.9–5.2) between 1999 and 2004. For this, the hypocentres were relocated and well-constrained fault plane solutions were obtained from the data set of 1270 clear P -wave polarities and 46 SH / P amplitude ratios. The focal mechanism solutions indicate that the prevailing faulting types in South Korea are strike-slip-dominant-oblique-slip faultings with minor reverse-slip component. The maximum principal stresses (σ1) estimated from fault-slip inversion analysis of the focal mechanism solutions show a similar orientation with E–W trend (269°–275°) and low-angle plunge (10°–25°) for all tectonic provinces in South Korea, consistent with the E–W trending maximum horizontal stress (σHmax) of the Amurian microplate reported from in situ stress measurements and earthquake focal mechanisms. The directions of the intermediate (σ2) and minimum (σ3) principal stresses of the Gyeongsang Basin are, however, about 90 deg off from those of the other tectonic provinces on a common σ2–σ3 plane, suggesting a permutation of σ2 and σ3. Our results incorporated with those from the kinematic studies of the Quaternary faults imply that NNW- to NE-striking faults (dextral strike-slip or oblique-slip with a reverse-slip component) are highly likely to generate earthquakes in South Korea.  相似文献   

12.
In this article the interaction of plane waves with a weak-contrast interface between two weakly anisotropic half-spaces is investigated. The anisotropy dealt with is of a general type. The stress–displacement vectors of the plane waves are calculated by perturbation theory. By assuming that the jump in elastic parameters and density across the interface is small, one can derive a simple expression for the R qPqP coefficient. In cases in which the wave motion is restricted to a symmetry plane of an anisotropic medium, simple expressions for the R qSVqSV and R SHSH coefficients are also derived.  相似文献   

13.
Upper Jurassic red sandstones and red siltstones were collected from 67 layers at 12 localities in the Penglaizhen formation. This formation is in the north of Bazhong county (31.8°N, 106.7°E) in the Sichuan basin, which is located in the northern part of the Yangtze craton. Thermal demagnetization isolated a high-temperature magnetic component with a maximum unblocking temperature of about 690 °C from 45 layers. The primary nature of the magnetization acquisition is ascertained through the presence of magnetostratigraphic sequences with normal and reversed polarities, as well as positive fold and reversal tests at the 95 per cent confidence level. The tilt-corrected mean direction of 36 layers is D = 20.0°, I = 28.8° with α 95 = 5.8°. A Late Jurassic palaeomagentic pole at 64.7°N, 236.0°E with A 95 = 7.0° is calculated from the palaeomagnetic directions of 11 localities. This pole position agrees with the two other Late Jurassic poles from the northern part of the Yangtze craton. A characteristic Late Jurassic pole is calculated from the three poles (68.6°N, 236.0°E with A 95 = 8.0°) for the northern part of the Yangtze craton. This pole position is significantly different from that for the southern part of the Yangtze craton. This suggests that the southern part of the Yangtze craton was subjected to southward extrusion by 1700 ± 1000  km with respect to the northern part. Intracraton deformation occurred within the Yangtze craton.  相似文献   

14.
Summary. Using nine IDA records for the Indonesian earthquake of 1977 August 19, we have formed an optimal linear combination of the records and have measured the frequency and Q of 0 S 0 and 1 S 0. The frequency was measured using the moment ratio method. The attenuation was measured by the minimum width method and by the time-lapse method. The frequency and attenuation were measured simultaneously by varying them to obtain a best fit to the data. A 2000-hr stack, the sum of nine individual records, for 0 S 0 gave a frequency of 0.814664 mHz±4 ppm. The values for the Q of 0 S 0 for the three different methods of measurement were 5600,5833 and 5700, respectively. The error in the estimates of Q -1 is about 5 per cent for the minimum power method. For 1 S 0 a 300-hr stack yielded a frequency of 1.63151 mHz±30 ppm. The values of Q for this mode were 1960, 1800 and 1850, respectively, with an error in Q -1 of about 12 per cent for the minimum power method.  相似文献   

15.
Summary. A bubble tiltmeter has been used as a horizontal seismometer. With the appropriate filters, the bubble system has good response for displacement over the passband of conventional seismometers (from about 10 Hz to 200 s), and for tilt from about 1 Hz to DC. The accuracy of the response is confirmed by comparing the filtered bubble output to conventional seismic instruments. The agreement between the filtered bubble records and broad band ( T 0= 1 s, T g= 90 s) and short period ( T 0= 1 s, Tg= 0.2 s) conventional records is extremely good in every case.
The small size, broad-band response, and lack of moving parts make the bubble ideal as an instrument for remote environments. In particular, the instrument seems ideal for the ocean bottom, land and marine boreholes and planetary missions.  相似文献   

16.
New palaeomagnetic data from the Lower and Middle Cambrian sedimentary rocks of northern Siberia are presented. During stepwise thermal demagnetization the stable characteristic remanence (ChRM) directions have been isolated for three Cambrian formations. Both polarities have been observed, and mean ChRM directions (for normal polarity) are: Kessyusa Formation (Lower Cambrian) D = 145°, I = -40°, N = 12, α95= 12.8°; pole position: φ= 38°S, A = 165°E; Erkeket Formation (Lower Cambrian, stratigraphically highly) D = 152°, I = - 47°, N = 23, α95= 6.8°; pole position: φ= 45°S, A = 159°E; Yunkyulyabit-Yuryakh Formation (Middle Cambrian) D = 166°, I = - 33°, N = 38, α95= 4.6°; pole position: φ= 36°S, L = 140°E. These poles are in good agreement with the apparent polar wander path based on the bulk of existing Cambrian palaeomagnetic data from the Siberian platform. In Cambrian times, the Siberian platform probably occupied southerly latitudes stretching from about 35° to 0°, and was oriented 'reversely' with respect to its present position. Siberia moved northwards during the Cambrian by about 10° of latitude. This movement was accompanied by anticlockwise rotation of about 30°. The magnetostratigraphic results show the predominance of reversed polarity in the Early Cambrian and an approximately equal occurrence of both polarities in the part of the Middle Cambrian studied. These results are in good agreement with the palaeomagnetic polarity timescale for the Cambrian of the Siberian platform constructed previously by Khramov et al. (1987).  相似文献   

17.
Summary. In cases where directional data, such as palaeomagnetic directions, lie nearly along a great circle, a good approximation to the maximum likelihood estimate of the intermediate concentration parameter k 2 in the Bingham probability distribution is given by: 2( t 2/ N ) – 1 = I 1(1/2 k 2)/ I 0(1/2 k 2), where t 2 is the intermediate eigenvalue, N is the number of samples, and the Ii are the appropriate modified Bessel functions of the first kind. This estimate, the asymptotic limit as the smallest eigenvalue t 1→ 0, corresponds to restricting all points to lie on a great circle. The limit is also useful as an endpoint for interpolation, especially since numerical calculation in this region is difficult.  相似文献   

18.
Summary. Differences between estimated average heat flow values for the Mesozoic and Cenozoic formations ( Q 1) and estimated average heat flow values for the Palaeozoic formations below the erosional unconformity ( Q 2) are calculated for the Alberta part of the western Canadian sedimentary basin. Significant heat flow differences exist for these two intervals and the map of Δ Q = Q 1– Q 2 shows that Q 2 is generally greater than Q 1 in the western and south-western part of Alberta, while in the northern part of the province Q 2 is generally less than Q 1. The regional variations of Δ Q are large, with standard deviation of 26 mW m−2 and average value –13.5 mW m−2. A regional trend of Δ Q correlates with topographic relief and the hydraulic head variations in the basin. It is shown that there is a heat flow increase with depth in water recharge areas and a decrease in heat flow with depth in the low topographic elevation water discharge areas when comparing the average heat flow in Mesozoic + Cenozoic and Palaeozoic formations.  相似文献   

19.
Absolute S-velocity estimation from receiver functions   总被引:2,自引:0,他引:2  
We present a novel method to recover absolute S velocities from receiver functions.
For a homogeneous half-space the S velocity can be calculated from the horizontal slowness and the angle of surface particle motion for an incident P wave. Generally, the calculated S velocity is an apparent half-space value which depends on model inhomogeneity and P -waveform. We therefore, suggest to calculate such apparent half-space S velocities from low-pass filtered (smoothed) receiver functions using a suite of filter-parameters, T . The use of receiver functions neutralize the influence of the P -waveform, and the successive low-pass filterings emphasize the variation of S velocity with depth.
We apply this   V S ,app.( T )  technique to teleseismic data from three stations: FUR, BFO and SUM, situated on thick sediments, bedrock and the Greenland ice cap, respectively. The observed   V S ,app.( T )  curves indicate the absolute S velocities from the near surface to the uppermost mantle beneath each station, clearly revealing the different geological environments. Application of linearized, iterative inversion quantify these observations into   V S ( z )  models, practically independent of the S -velocity starting model. The obtained models show high consistency with independent geoscientific results. These cases provide also a general validation of the   V S ,app.( T )  method.
We propose the computation of   V S ,app.( T )  curves for individual three-component broad-band stations, both for direct indication of the S velocities and for inverse modelling.  相似文献   

20.
The tidal dynamics of the Irish and Celtic Seas   总被引:1,自引:0,他引:1  
Summary. Current meter data collected over periods of more than 14 day from the Irish and Celtic Seas are harmonically analysed and presented in maps of tidal stream information. Making use of the analysed current data, and by constructing time series of frictional and inertial stresses which are also harmonically analysed, harmonic constituents of the surface tidal slopes at current meter stations are obtained. Using these with data collected from offshore tide gauges, and in conjunction with coastal tide data, cotidal maps are drawn with some confidence for M 2, S 2, O 1 and K 1, the M 2 chart resolving the discrepancy which exists between the different charts of the Celtic Sea already produced. Cotidal maps for M 3 and M 4 are also presented.
The mean over a tidal cycle of the energy flux for M 2, S 2 and O 1 is also presented in the form of the total energy flux in these constituents which crosses different sectional lines. A flux of 44 × 106 kW is observed to enter the Celtic Sea from the Atlantic and this is compared with previous estimates. An energy budget is also performed for M 2, including all the effects of astronomical forcing and Earth tides to enable comparison to be made between the true energy inflow and the estimated frictional dissipation. Finally, comparison is made between the mean of the instantaneous energy flux and the sum of the energy fluxes associated with the major harmonics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号