首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
在浙江椒江口潮间带采集了3个未扰动沉积物柱状样,并采用分级提取方法获得了沉积物各痕量金属的活性态和黄铁矿态分量,同时采用冷扩散法测试了酸可挥发性硫化物(AVS)。结果表明:研究区痕量金属黄铁矿矿化程度(DOP)较低,痕量金属存在较大的活性,容易参与水生系统的生物地球化学循环;但各元素的痕量金属黄铁矿矿化度(DTMP)存在较大差别,即元素As和Hg的DTMP值最大,Cu、Zn、Cd、Cr和Ni中等,Pb和Mn最小。控制黄铁矿矿化程度的因素包括沉积物是否存在大量的有机碳(OrgC)、AVS以及是否存在隔氧的还原系统。  相似文献   

2.
青岛胶州湾沉积物痕量元素黄铁矿化程度及其剖面类型   总被引:4,自引:0,他引:4  
为了探索青岛近海不同沉积环境下不同痕量元素的黄铁矿化规律, 2003年5月潜水员潜入海底采集了4个不同沉积环境的未扰动柱样, 并利用Huerta-Diaz and Morse (1990)连续提取技术测试分析了沉积物痕量金属的不同存在形式(活性态和黄铁矿结合态) 在垂直剖面上的分布规律.结果表明: 除了在涨潮三角洲上部沉积和潮下带沉积物柱子的Cd和Cr外, 痕量元素的黄铁矿化度的增高取决于其相应剖面上的DOP的增高; 并且不同痕量元素向黄铁矿中转移的规模存在着较大的差别, 即元素As、Hg和Mo转移的规模最大, Cu、Zn、Cd、Cr、Co和Ni中等, Pb和Mn最小; 此外, 还进一步揭示了河流三角洲沉积物的下部各元素的黄铁矿化程度高, 而潮下带沉积物以及涨潮三角洲沉积物低.最后指出在河口水下三角洲进行的清淤工作应注意黄铁矿结合态痕量元素的活化而产生生物有效的毒性元素.   相似文献   

3.
3个未扰动柱状样分别采自浙江椒江口潮间带高、中、低潮带,用冷盐酸法测定了沉积物中酸可挥发硫化物(AVS)及同步提取金属(SEM),分析了不同潮位沉积物剖面类型及形成机理,并根据SEM-Me/AVS比值评价痕量金属(Cu、Pb、Zn、Cd、Cr、As、Hg及Ni)的活性和生物有效性。结果表明:在高潮带和低潮带形成了薄活动层剖面(<6 cm),痕量金属的活性态浓度较低,AVS浓度较高;而中潮带形成了厚活动层(约26 cm),痕量金属的活性态浓度较高。潮间带不同潮位痕量金属活性态浓度剖面类型的形成是沉积速率、有机质供源及所处潮位共同作用的结果。在河口区应该存在表层mm尺度上的高值有机碳(C有机)分布。  相似文献   

4.
陈富荣 《安徽地质》2009,19(3):200-203,189
对巢湖表层沉积物中8种重金属元素的分布特征和生态风险进行了研究和评价。结果表明:沉积物中Hg、Cd含量总体高于背景值,其中西部沉积物中重金属含量明显高于中东部湖区,并表现出多元素复合污染特征;Hakanson潜在生态危害指数表明巢湖沉积物重金属生态危害变化于轻微-强危害程度,以西北部湖区最为严重,Hg和Cd是主要影响因子,其它元素生态危害性较小;沉积物中As、cd、Hg、Pb元素主要以残渣态(非有效态)形式存在,但沉积物中腐殖酸态的As和Hg、铁锰氧化态的Pb、离子态的Cd占总量比例较高,其中又以Cd易利用态比例最高,生物有效性最强,具有较高的生态危害风险。  相似文献   

5.
半干旱草原景观区鹿儿坝金矿的勘查地球化学特征   总被引:1,自引:0,他引:1  
鹿儿坝金矿中,与金矿化密切相关的蚀变有硅化、黄铁矿化、碳酸盐化,在地表主要表现为存在褐铁矿、黄钾铁矾、高岭土等矿物。岩石地球化学研究表明,Au与As的关系密切,Sb、Hg、Au、As一起构成Au的近矿—矿上元素;Au与As、Zn相对稳定地存在于同一种矿物中,如黄铁矿、毒砂。这种关系在土壤中得到继承,而在水系沉积物中基本瓦解。因此,岩石测量和土壤测量中,Au、As是最佳指示元素;水系沉积物测量中,最佳指示元素是Au、As、Sb。Au在表生介质中的贫化富集过程,在矿区才有较为显著的表现,并且主要发生在由土壤进入水系沉积物这一环节。汇水盆地内地表流水机械混匀作用、分选作用及样品加工过程中的筛分,是水系沉积物中Au含量适度降低的决定性因素。在正常背景地带的次生介质中,并不存在显著的贫化富集过程。  相似文献   

6.
胶州湾李村河口沉积物中硫化物形成的控制因素   总被引:1,自引:0,他引:1  
在胶州湾李村河口,对多个短柱状岩芯沉积物中的有机质(有机碳和有机氮)、酸可挥发性硫化物(AVS)、黄铁矿及活性铁等进行了分析。结果表明,样品的有机质含量较高,有机碳含量为0.16%~3.21%,有机氮含量为0.002%-0.2%;6个短柱状样的AVS含量变化较大:198.4—0.4umol/g,平均35.6umol/g;活性铁含量为47.5~169.3umol/g,平均91.4umol/g;黄铁矿含量为14.8~41.0umol/g,平均28.7umol/g。通过计算沉积物中活性铁的黄铁矿化度(DOP)与硫化度(DOS)指标,及分析各参数间相关性,发现以下现象:(1)胶州湾李村河口沉积物中的活性铁被转化为硫化物的程度较高,被转化为黄铁矿的程度较低,沉积物中的黄铁矿得到了较好保存。DOP不适宜用作河口区氧化还原状态的判断指标,DOS对氧化还原状态的响应更加灵敏;(2)距河口较近的区域,受李村河河水的影响较大,易分解有机质供应充足,AVS大量形成,其向黄铁矿的转化并不充分,活性铁成为硫化物形成的控制因素。距河口较远的站位,活性铁含量相对充足,有机质含量相对不足,因此有机质含量成为硫化物形成的控制因素,AVS向黄铁矿的转化比较充分;(3)有机质尤其是易分解有机质含量是李村河口硫化物形成、活性铁富集及其黄铁矿化度的主要控制因素。AVS的形成主要受到有机氮的限制,而黄铁矿的形成主要受到有机碳的限制。因此,河流输入物质对河口区沉积物中C、S和Fe的循环具有显著的影响。  相似文献   

7.
金鹏  祁超  郭炳跃 《江苏地质》2023,47(4):420-427
为查清高邮湖底泥及出入湖河口表层沉积物重金属分布特征,评价其潜在生态风险,以湖区及周边25个底泥和沉积物样品为载体,重点研究8种重金属元素,选用单因子污染指数法、内梅罗综合指数法、地累积指数法和潜在生态风险指数法,相似比对重金属污染等级及评价潜在生态风险。测试数据表明,8种重金属元素中,仅Hg含量(平均值)未超过里下河浅洼平原表层土壤重金属元素背景值,As含量(最大值)超过农用地土壤污染风险筛选值。Pearson相关系数矩阵表明,重金属元素Ni与Cr、Pb、Zn、Cu之间具显著同源性;单因子污染指数法与内梅罗综合指数法评价结果显示,污染指数均值排序均为As>Cd>Pb>Cu>Zn>Ni>Cr>Hg,但对As、Cd评价前者为轻度污染,后者为中度污染;地累积指数Igeo显示,仅As为轻度污染,其余元素均为无污染状态。沉积物单项潜在生态风险指数排序为Cd>Hg>As>Pb>Cu>Ni>Cr>Zn,仅Cd属中风险,其余元素为低风险;研究区综合潜在生态风险指数RI均值为115.7,表明全区总体生态风险属于低风险状态,重金属有沿入湖河口向湖心区富集趋势。  相似文献   

8.
以金矿开发影响的黄河二级支流太峪水系沉积物为研究对象,沿河采集16个表层沉积物样品,分层采集垂向剖面10件水库沉积物样品,测定了样品中重金属元素Hg、Pb、Cd、Cr、As、Cu和Zn的含量,采用Hakanson潜在生态指数法和Tomlinson污染负荷指数法评价重金属元素污染程度和潜在生态风险。结果表明,矿业活动是太峪水系沉积物重金属元素污染的主要因素;变异系数、富集系数和最高污染系数均反映Hg、Pb、Cd是太峪水系沉积物的特征污染重金属元素,Cr和As的质量分数接近地区背景值;太峪水系表层沉积物受到重金属元素的极强污染,山区段污染较山外更严重;整个流域的Hg、Pb、Cd具有很强的潜在生态危害,Cr、As、Zn的潜在生态危害轻微;太峪水系沉积物垂向各层沉积物都受到重金属元素的极强污染,生态问题以Hg、Pb、Cd的潜在生态危害为主,其污染和生态危害程度都高于流向上的沉积物。潜在生态危害指数评价突出了不同元素的毒性和危害程度,而污染负荷指数法侧重于样本空间上的污染程度,二者互补使用有利于实际问题的全面评价。  相似文献   

9.
利用同站位多介质同采的资料分析研究了各环境介质中的不同痕量金属对生物富集的贡献。提出底层水中Cu、Hg、As对生物体中同名组分富集的贡献较大。采用PHREEQC软件模拟了底层水中Cu、Hg、As三种元素的组分存在形态,结果表明:Cu(OH2)、HgCl3-、HAsO42-分别为底层水中Cu、Hg、As的优势态,但其生物有效形态依次为Cu2 、HgCl42-、HAsO42-,提出生物对其所处环境介质中痕量金属的富集并不取决于痕量金属的总量或其相应的优势态浓度的多寡,而是取决于痕量金属的生物有效态的浓度大小。  相似文献   

10.
【研究目的】黄沙坪铜锡多金属矿床是湘南地区岩浆热液成矿系统的典型矿床之一。为了深化研究该矿床成岩成矿机制、高效指导深部找矿勘查,需要揭示与隐伏花岗斑岩有关的多金属矿化-蚀变分带规律,构建深部矿化-蚀变空间分带模式。【研究方法】应用热液矿床的大比例尺蚀变岩相定位找矿预测方法,开展矿区内-136 m、-176 m、-256 m中段典型穿脉剖面的矿化蚀变测量和矿物岩石地球化学研究,剖析了矿化-蚀变的强弱变化、矿物共生组合及其空间分带特征,探讨了成矿元素、元素组合及其元素比值变化规律。【研究结果】构建了矿化-蚀变空间分带模式:从花岗斑岩体(内带)→接触带→围岩(外带),依次为钨钼(黄铁)矿化-硅化-绢云母化花岗斑岩带(Ⅰ)→磁铁(钨锡)矿化石榴石矽卡岩带(Ⅱ-1)→钨钼-磁黄铁矿化石榴石矽卡岩带(Ⅱ-2)→铅锌矿化结晶灰岩带(Ⅲ)→强方解石化灰岩带(Ⅳ)的分带规律,各带对应的主要矿物组合为:石英+(黄铁矿+绢云母)→磁铁矿+透辉石+硅灰石+绿帘石+绿泥石+(白钨矿+锡石+黄铁矿+石榴石)→白钨矿+辉钼矿+磁黄铁矿+(锡石+黄铜矿+黄铁矿+闪锌矿+方铅矿)+石榴石+符山石+透辉石+角闪石+萤石+...  相似文献   

11.
Authigenic pyrite grains from a section of the Lower Toarcian Posidonia Shale were analysed for their trace‐element contents and sulphur‐isotope compositions. The resulting data are used to evaluate the relationship between depositional conditions and pyrite trace‐element composition. By using factor analysis, trace‐elements in pyrite may be assigned to four groups: (i) heavy metals (including Cu, Ni, Co, Pb, Bi and Tl); (ii) oxyanionic elements (As, Mo and Sb); (iii) elements partitioned in sub‐microscopic sphalerite inclusions (Zn and Cd); and (iv) elements related to organic or silicate impurities (Ga and V). Results indicate that trace‐element contents in pyrite depend on the site and mechanism of pyrite formation, with characteristic features being observed for diagenetic and syngenetic pyrites. Diagenetic pyrite formed within anoxic sediments generally has a high heavy metals content, and the degree of pyritization of these elements increases with increasing oxygen deficiency, similar to the degree of pyritization of reactive Fe. The highest gradient in the increase of the degree of trace element pyritization with bottom‐water oxygenation was found for the elements Ni < Cu < Mo = As < Tl. In contrast, syngenetic pyrite formed within a euxinic water column typically is enriched in As, Mo and Sb, but is low in heavy metals, and the geochemical variation reflects changes in sea water composition.  相似文献   

12.
The formation of iron sulphide minerals exerts significant control on the behaviour of trace elements in sediments. In this study, three short sediment cores, retrieved from the remote Antinioti lagoon (N. Kerkyra Island, NW Greece), are investigated concerning the solid phase composition, distribution, and partitioning of major (Al, Fe) and trace elements (Cd, Cu, Mn, Pb, and Zn). According to 210Pb, the sediments sampled correspond to depositions of the last 120 years. The high amounts of organic carbon (4.1–27.5%) result in the formation of Fe sulphides, predominantly pyrite, already at the surface sediment layers. Pyrite morphologies include monocrystals, polyframboids, and complex FeS–FeS2 aggregates. According to synchrotron-generated micro X-ray fluorescence and X-ray absorption near-edge structure spectra, authigenically formed, Mn-containing, Fe(III) oxyhydroxides (goethite type) co-exist with pyrite in the sediments studied. Microscopic techniques evidence the formation of galena, sphalerite and CuS, whereas sequential extractions show that carbonates are important hosts for Mn, Cd, and Zn. However, significant percentages of non-lattice held elements are bound to Fe/Mn oxyhydroxides that resist reductive dissolution (on average 60% of Pb, 46% of Cd, 43% of Zn and 9% of Cu). The partitioning pattern changes drastically in the deeper part of the core that is influenced by freshwater inputs. In these sediments, the post-depositional pyritization mechanism, illustrated by overgrowths of Fe monosulphides on pre-existing pyrite grains, results in relatively high degree of pyritization that reaches 49% for Cd, 66% for Cu, 32% for Zn and 7% for Pb.  相似文献   

13.
《Applied Geochemistry》2003,18(8):1149-1163
A core collected in the Guaymas Basin contained an organic-poor, Mn oxide-rich and (relatively) Fe oxide-rich turbidite layer that affected the distribution of Fe, Mn, C, S and trace metals. Results indicate that sediments not influenced by the turbidite layer achieved a 100% degree of pyritization and, by extension, that pyrite production is Fe-limited in these sediments. In contrast, the mud slide layer apparently supplied enough reactive Fe to transfer essentially 98% of the total S present at the base of the turbidite (17–19 cm) to the pyrite reservoir. C/S ratios showed rapid decreases with depth, from a high of 38 close to the sediment-water interface, to minimum values of 2.8 at the lower limit of the turbidite layer, a ratio equal to the average C/S value of normal marine modern sediments, where concentrations of organic C and pyrite supposedly have attained quasi-steady values. A significant part of the reactive Mn was associated with carbonates (41±12%) and, to a much lower degree, with pyrite (2.7±1.2%). The turbidite layer is currently showing a depletion of Mn relative to the host sediment. It is possible that Mn, a major metal constituent in these sediments, was initially present in high concentrations in the mud slide, but was eventually mobilized and transferred either to the water column or to the sediments immediately below the turbidite layer. Metals associated with this element probably followed the same path, affecting their incorporation into pyrite. The turbidite layer apparently affected the distribution of most of the trace metals associated with pyrite, except maybe Cd, Pb and, to a certain, extent Cr. However, Cu, Cr, Zn, Ni and Co were all found to be highly pyritized (>80%) in the sediments of the Guaymas Basin.  相似文献   

14.
The present study investigates the levels of Mn, Zn, Ni, and Co pyritization in mangrove sediments along distinct sedimentary zones in Enseada das Gra?as, a lagoon-type estuary located on the southeastern coast of Brazil. The coastal geology is characterized by intense interactions of trace metals, forming pyrite minerals. Specific orders of DOP (degree of pyritization) and DTMP (degree of trace-metal pyritization) are shown: supratidal flat?<?mangrove forest?<?mud flat. Distinct changes in content along the sediment profiles are noted, where a supratidal flat presented low levels of DOP and DTMP with little variance along the sedimentary depths. The mangrove forest showed relatively high values of DOP and DTMP in the lower depths, while the mud flat showed the highest levels of DOP and DTMP.  相似文献   

15.
Offatts Bayou basin was created by use of this are as a borrow pit for landfill by the city of Galveston, Texas, in the first half of this century. Restricted exchange of water with the adjacent West Bay results in this basin changing, on a seasonal time scale, between oxic winter and highly sulfidic summer (greater than 500 μM ΣH2S) bottom water conditions. It is, therefore, a “natural laboratory” for the investigation of the behavior of toxic metals in an estuarine environment where redox conditions undergo major variations. Here we report the first study of the chemistry of Offatts Bayou’s waters and sediment-associated trace metals. The high concentrations of dissolved sulfide in bottom water during summer cause a loss of macrofauna from most of the water deeper than about 4 m and the bottom of the basin. The potential exists for major mortality of organisms living in the oxic surface waters if rapid mixing of waters were to occur during the summer. Reactions of toxic metals with sulfides are probably the dominant influence on their potential bioavailability in this type of environment, as evidenced by large seasonal changes in concentrations of sedimentary sulfide minerals and associated trace metals. The trace metals As, Cu, and Hg are dominantly found in the pyrite phase (greater than 75% pyritization), Ag and Mn are moderately pyritized (40% to 60%), and Zn is not strongly associated with pyrite (less than 20% pyritization).  相似文献   

16.
《Geochimica et cosmochimica acta》1999,63(19-20):3373-3378
Interactions of trace metals with sulfide in anoxic environments are important in determining their chemical form and potential toxicity to organisms. In recent years, a considerable body of observational data has accumulated that indicates very different behavior for various trace metals in sulfidic sediments. These differences in behavior cannot be entirely attributed to thermodynamic relationships, but also reflect differences in ligand exchange reaction kinetics, and redox reaction pathways.Pb, Zn, and Cd, which are generally pyritized to only a few percent of the “reactive” fraction, have faster water exchange reaction kinetics than Fe2+, resulting in MeS phases precipitating prior to FeS formation and subsequent pyrite formation, whereas, Co and Ni, which have slower H2O exchange kinetics than Fe2+, are incorporated into pyrite. Although Hg and Cu have faster reaction kinetics than Fe2+, both are incorporated into pyrite or leached from the pyrite fraction with nitric acid. Hg undergoes significant chloride complexation, which can retard reaction with sulfide, but can also replace Fe in FeS to form HgS, which can only be dissolved in the pyrite fraction. Cu2+ is reduced by sulfide and forms a variety of sulfides with and without Fe that can only be dissolved with nitric acid. Mn2+ does not form a MnS phase easily and is incorporated into pyrite at high iron degrees of pyritization (DOP).Oxyanions of Mo and As are first reduced by sulfide. These reduced forms may then react with sulfides resulting in incorporation into pyrite. However, the oxyanion of Cr is reduced to Cr3+, which is kinetically inert to reaction with sulfide and, therefore, not incorporated into pyrite.  相似文献   

17.
《Applied Geochemistry》1998,13(2):213-233
Porewater concentration profiles were determined for Fe, trace elements (As, Cd, Co, Cu, Mn, Ni, Pb, Zn), sulfide, SO4 and pH in two Canadian Shield lakes (Chevreuil and Clearwater). Profiles of pyrite, sedimentary trace elements associated with pyrite and AVS were also obtained at the same sites. Thermodynamic calculations are used, for the anoxic porewaters where sulfide was measured, to characterize diagenetic processes involving sulfide and trace elements and to illustrate the importance of sulfide, and possibly polysulfides and thiols, in binding trace elements. The ion activity products (IAP) of Fe sulfide agree with the solubility products (Ks) of greigite or mackinawite. For Co, Ni and Zn, IAP values are close to the KS values of their sulfide precipitates; for Cu and Pb, IAP/Ks indicate large oversaturations, which can be explained by the presence of other ligands (not measured) such as polysulfides (Cu) and thiols (Pb). Cobalt, Cu, Ni and Zn porewater profiles generally display a decrease in concentration with increasing ΣH2S, as expected for transition metals, whereas Cd, Pb and Zn show an increase (mobilisation). The results suggest that removal of trace elements from anoxic porewaters occurs by coprecipitation (As and Mn) with FeS(s) and/or adsorption (As and Mn) on FeS(s), and by formation of discrete solid sulfides (Cd, Cu, Ni, Pb, Zn and Co). Reactive Fe is extensively sulfidized (51–65%) in both lakes, mostly as pyrite, but also as AVS. Similarities between As, Co, Cu and Ni to Fe ratios in pyrite and their corresponding mean diffusive flux ratios suggest that pyrite is an important sink at depth for these trace elements. High molar ratios of trace elements to Fe in pyrite from Clearwater Lake correspond chronologically to the onset of smelting activities. AVS can be an important reservoir of reactive As, Cd and Ni and, to a lesser extent, of Co, Cu and Pb. Overall, the trace elements most extensively sulfidized were Ni, Cd and As (maximum of 100%, 81% and 49% of the reactive fraction, respectively), whereas Co, Cu, Mn, Pb and Zn were only moderately sulfidized (11–16%).  相似文献   

18.
Total trace metals (Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn), Al, and pyrite- and reactive-associated metals were measured for the first time in a microbial mat and its underlying anoxic-sulfidic sediment collected in the saltern of Guerrero Negro (GN), Baja California Sur, Mexico. It is postulated that the formation of acid volatile sulfide (AVS) and pyrite in the area of GN could be limited by the availability of reactive Fe, as suggested by its limited abundance (mat and sediment combined average value of only 19 ± 10 ??mol g?1; n = 22) as well as the low pyrite (0.89?C7.9 ??mol g?1) and AVS (0.19?C21 ??mol g?1) concentrations (for anoxic-sulfidic sediments), intermediate degrees of pyritization (12?C50%), high degrees of sulfidization (14?C100%), generally low degrees of trace metal pyritization, and slight impoverishment in total Fe. This is a surprising result considering the large potential reservoir of available Fe in the surrounding desert. Our findings suggest that pyrite formation in the cycling of trace metals in the saltern of GN is not very important and that other sedimentary phases (e.g., organic matter, carbonates) may be more important reservoirs of trace elements. Enrichment factors [EFMe = (Me/Al)sample/(Me/Al)background] of Co, Pb, and Cd were high in the mat (EFMe = 2.2 ± 0.4, 2.8 ± 1.6 and 34.5 ± 9.8, respectively) and even higher in the underlying sediment (EFMe = 4.7 ± 1.5, 14.5 ± 6.2 and 89 ± 27, respectively), but Fe was slightly impoverished (average EFFe of 0.49 ± 0.13 and 0.50 ± 0.27 in both mat and sediment). Organic carbon to pyrite-sulfur (C/S) molar ratios measured in the mat (2.9 × 102?C27 × 102) and sediment (0.81 × 102?C6.6 × 102) were, on average, approximately 77 times higher than those typically found in marine sediments (7.5 ± 2.1). These results may indicate that ancient evaporation basins or hypersaline sedimentary environments could be identified on the basis of extremely high C/S ratios (e.g., >100) and low reactive Fe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号