首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Aqueous oxidation of sulfide minerals to sulfate is an integral part of the global sulfur and oxygen cycles. The current model for pyrite oxidation emphasizes the role of Fe2+-Fe3+ electron shuttling and repeated nucleophilic attack by water molecules on sulfur. Previous δ18O-labeled experiments show that a variable fraction (0-60%) of the oxygen in product sulfate is derived from dissolved O2, the other potential oxidant. This indicates that nucleophilic attack cannot continue all the way to sulfate and that a sulfoxyanion of intermediate oxidation state is released into solution. The observed variability in O2% may be due to the presence of competing oxidation pathways, variable experimental conditions (e.g. abiotic, biotic, or changing pH value), or uncertainties related to the multiple experiments needed to effectively use the δ18O label to differentiate sulfate-oxygen sources. To examine the role of O2 and Fe3+ in determining the final incorporation of O2 oxygen in sulfate produced during pyrite oxidation, we designed a set of aerated, abiotic, pH-buffered (pH = 2, 7, 9, 10, and 11), and triple-oxygen-isotope labeled solutions with and without Fe3+ addition. While abiotic and pH-buffered conditions help to eliminate variables, triple oxygen isotope labeling and Fe3+ addition help to determine the oxygen sources in sulfate and examine the role of Fe2+-Fe3+ electron shuttling during sulfide oxidation, respectively.Our results show that sulfate concentration increased linearly with time and the maximum concentration was achieved at pH 11. At pH 2, 7, and 9, sulfate production was slow but increased by 4× with the addition of Fe3+. Significant amounts of sulfite and thiosulfate were detected in pH ? 9 reactors, while concentrations were low or undetectable at pH 2 and 7. The triple oxygen isotope data show that at pH ? 9, product sulfate contained 21-24% air O2 signal, similar to pH 2 with Fe3+ addition. Sulfate from the pH 2 reactor without Fe3+ addition and the pH 7 reactors all showed 28-29% O2 signal. While the O2% in final sulfate apparently clusters around 25%, the measurable deviations (>experimental error) from the 25% in many reaction conditions suggest that (1) O2 does get incorporated into intermediate sulfoxyanions (thiosulfate and sulfite) and a fraction survives sulfite-water exchange (e.g. the pH 2 with no Fe3+ addition and both pH 7 reactors); and (2) direct O2 oxidation dominates while Fe3+ shuttling is still competitive in the sulfite-sulfate step (e.g. the pH 9, 10, and 11 and the pH 2 reactor with Fe3+ addition). Overall, the final sulfate-oxygen source ratio is determined by (1) rate competitions between direct O2 incorporation and Fe3+ shuttling during both the formation of sulfite from pyrite and from sulfite to final sulfate, and (2) rate competitions between sulfite and water oxygen exchange and the oxidation of sulfite to sulfate. Our results indicate that thiosulfate or sulfite is the intermediate species released into solution at all investigated pH and point to a set of dynamic and competing fractionation factors and rates, which control the oxygen isotope composition of sulfate derived from pyrite oxidation.  相似文献   

2.
Precipitation of iron sulfides is an important process in groundwater geochemistry because it reduces iron mobility in anaerobic aquifers. Iron sulfides occur in various allotropic forms such as amorphous FeS and pyrite, and their solubility products differ up to 13 orders of magnitude. However, few data for ion activity products (IAP) of iron sulfides defined by the equation: H+ + FeS(S) = Fe2+ + HS- in groundwater have been reported in the literature. We computed IAP values of iron sulfides for 46 groundwater samples from the Choshui fan-delta of Taiwan and 65 samples from other areas of the world. The mean of -log(IAP) values obtained for the 46 samples is 3.07 ± 0.34 (1σ), which is consistent with the solubility constant 3.00 ± 0.12 (Davison et al., 1999) of amorphous FeS, implying that the anaerobic aquifers in the Choshui fan-delta are still undergoing active sulfate-reduction processes and keeping the groundwater saturated with amorphous FeS.We suggest that the −logKsp value 3.91 of amorphous FeS adopted in the databases for WATEQF and PHREEQC computer programs ought to be revised to 3.00. Otherwise, the saturation indices (SI) calculated by the two computer programs will be an order of magnitude too high.  相似文献   

3.
Field and laboratory data are presented that show a soluble FeS species(FeSaq) exists in sulfidic seawater solutions, and is observedwhen the IAP exceeds the Ksp of amorphous FeS. TheFeSaq yields a discrete signal (double peak) using square-wavevoltammetry and two one-electron waves in sampled DC polarographyexperiments at the Hg electrode. The aqueous FeS species reacts irreversiblyat the electrode as a single FeS subunit and not as a polymeric entity. Thepeak potential of FeSaq occurs at -1.1 V whereas the peakpotential of Fe occurs at-1.45 V; the positive shift for Fe2+ reduction inFeSaq indicates a change in geometry for Fe2+from octahedral to tetrahedral. The kinetics of electron transfer at theelectrode are determined to be similar for both Fe2+ andFeSaq. Molecular orbital energy diagrams, further indicatethat Fe(II) does change from octahedral to tetrahedral geometry in solution.First, Fe(II) exists as octahedralFe in solution whichundergoes a substitution reaction of bisulfide for water. The resultingcomplex, Fe(H2O)5(HS)+, thentransforms to a tetrahedral complex on further addition of sulfide. Thisgeometry change is consistent with the formation of amorphous FeS thatconverts to mackinawite which has tetrahedral Fe(II). The process is entropydriven because of the water loss that occurs. The overall sequence can berepresented as: Soluble FeS species are important asreactants in the formation of iron-sulfide minerals including pyrite.  相似文献   

4.
A four month study of a man-made lake used for hydroelectric power generation in northeastern Pennsylvania USA was conducted to investigate seasonal anoxia and the effects of sulfide species being transported downstream of the power generation equipment. Water column analyses show that the system is iron-rich compared to sulfide. Total Fe(II) concentrations in the hypolimnion are typically at least twice the total sulfide levels. In situ voltammetric analyses show that free Fe(II) as [Fe(H2O)6]2+ or free H2S as H2S/HS- are either not present or at trace levels and that iron-rich sulfide complexes are present. From the in situ data and total Fe(II) and H2S measurements, we infer that these iron-rich sulfide complexes may have stoichiometries such as Fe2SH3+ (or polymeric forms of this and other stoichiometries). These iron-rich sulfide complexes appear related to dissolution of the iron-rich FeS mineral, mackinawite, because IAP calculations on data from discrete bottle samples obtained from bottom waters are similar to the pKsp of mackinawite. Soluble iron-sulfide species are stable in the absence of O2 (both in lake waters and the pipeline) and transported several miles during power generation. However, iron-sulfide complexes can react with O2 to oxidize sulfide and can also dissociate releasing volatile H2S when the waters containing them are exposed to the atmosphere downstream of the powerplant. Sediment analyses show that the lake is rich in oxidized iron solids (both crystalline and amorphous). Fe concentrations in FeS solids are low (<5 μmole/grdry wt) and the pyrite concentration ranges from about equal to the solid FeS to 30 times the solid FeS concentration. The degree of pyritization is below 0.12 indicating that pyrite formation is limited by free sulfide, which can react with the iron-rich sulfide complexes.  相似文献   

5.
The reaction products and the accompanying sulfur isotope fractionations during the reaction of H2S with goethite in aqueous media at 22–24°C for periods from 0.5 hr to 65 days were studied. Fine-grained pyrite formed within two days and was isotopically 0.8‰ lighter than the H2S source. After 65 days reaction time the pyrite had nearly the same isotopic value as the H2S. Aqueous precipitation of pyrite from H2S and goethite at room temperature involved three major steps, namely: (1) the rapid oxidation of H2S and reduction of Fe3+ during which elemental S is formed; (2) the formation of acid-volatile sulfides and the disappearance of elemental S; and (3) the formation of pyrite at the expense of acid-volatile sulfides.  相似文献   

6.
Crystal chemistry of Fe-containing sphalerites   总被引:2,自引:0,他引:2  
 Cell dimensions and solvus properties of Fe-containing sphalerites, depending on temperature and sulfur fugacity, were investigated using equilibrated powdered materials synthesized from elements and binary sulfides under vacuum. The Fe solvus in sphalerite, determined by optical microscopy and microprobe analysis, are directly correlated with increasing temperature and decreasing sulfur fugacity controlled by solid-state buffers. The increase of lattice parameters with Fe correlates with an increase of FeS independent of sulfur fugacity up to 10 mol% FeS within ZnS. Above about 10 mol% the lattice parameters are strongly depending on the sulfur fugacity controlled Fe3+/Fe2+ ratios. The Fe3+/Fe2+ ratios determined by Moessbauer spectroscopy and involving metal vacancies depend on the sulfur fugacity. The critical Fe2+ content determined by experimental simulations as well as the minimal Fe3+/ Fe2+ ratios agree with the required minimal Fe content for CuFeS2-DIS in sphalerite. The critical Fe2+ content also agrees with the change of Moessbauer signal from a singlet to a doublet for Fe2+ containing sphalerite. Pyrrhotite exsolutions in sphalerite caused by higher sulfur fugacity show orientationally intergrown with the sphalerite matrix. Density data calculated from lattice parameters and composition are compared with experimental density measurements. Received: 25 April 2001 / Accepted: 14 February 2003  相似文献   

7.
Arsenite sorption on troilite (FeS) and pyrite (FeS2)   总被引:4,自引:0,他引:4  
Arsenic is a toxic metalloid whose mobility and availability are largely controlled by sorption on sulfide minerals in anoxic environments. Accordingly, we investigated reactions of As(III) with iron sulfide (FeS) and pyrite (FeS2) as a function of total arsenic concentration, suspension density, sulfide concentration, pH, and ionic strength. Arsenite partitioned strongly on both FeS and FeS2 under a range of conditions and conformed to a Langmuir isotherm at low surface coverages; a calculated site density of near 2.6 and 3.7 sites/nm2 for FeS and FeS2, respectively, was obtained. Arsenite sorbed most strongly at elevated pH (>5 to 6). Although solution data suggested the formation of surface precipitates only at elevated solution concentrations, surface precipitates were identified using X-ray absorption spectroscopy (XAS) at all coverages. Sorbed As was coordinated to both sulfur [d(As-S) = 2.35 Å] and iron [d(As-Fe) = 2.40 Å], characteristic of As coordination in arsenopyrite (FeAsS). The absorption edge of sorbed As was also shifted relative to arsenite and orpiment (As2S3), revealing As(III) reduction and a complete change in As local structure. Arsenic reduction was accompanied by oxidation of both surface S and Fe(II); the FeAsS-like surface precipitate was also susceptible to oxidation, possibly influencing the stability of As sorbed to sulfide minerals in the environment. Sulfide additions inhibit sorption despite the formation of a sulfide phase, suggesting that precipitation of arsenic sulfide is not occurring. Surface precipitation of As on FeS and FeS2 supports the observed correlation of arsenic and pyrite and other iron sulfides in anoxic sediments.  相似文献   

8.
The biogeochemistry of iron sulfide minerals in the water column of the Cariaco Basin was investigated in November 2007 (non-upwelling season) and May 2008 (upwelling season) as part of the on-going CARIACO (CArbon Retention In A Colored Ocean) time series project. The concentrations of particulate sulfur species, specifically acid volatile sulfur (AVS), greigite, pyrite, and particulate elemental sulfur, were determined at high resolution near the O2/H2S interface. In November 2007, AVS was low throughout the water column, with the highest concentration at the depth where sulfide was first detected (260 m) and with a second peak at 500 m. Greigite, pyrite, and particulate elemental sulfur showed distinct concentration maxima near the interface. In May 2008, AVS was not detected in the water column. Maxima for greigite, pyrite, and particulate elemental sulfur were again observed near the interface. We also studied the iron sulfide flux using sediment trap materials collected at the Cariaco station. Pyrite comprised 0.2-0.4% of the total particulate flux in the anoxic water column, with a flux of 0.5-1.6 mg S m−2 d−1.Consistent with the water column concentration profiles for iron sulfide minerals, the sulfur isotope composition of particulate sulfur found in deep anoxic traps was similar to that of dissolved sulfide near the O2/H2S interface. We conclude that pyrite is formed mainly within the redoxcline where sulfur cycling imparts a distinct isotopic signature compared to dissolved sulfide in the deep anoxic water. This conclusion is consistent with our previous study of sulfur species and chemoautotrophic production, which suggests that reaction of sulfide with reactive iron is an important pathway for sulfide oxidation and sulfur intermediate formation near the interface. Pyrite and elemental sulfur distributions favor a pathway of pyrite formation via the reaction of FeS with polysulfides or particulate elemental sulfur near the interface. A comparison of thermodynamic predictions with actual concentration profiles for iron sulfides leads us to argue that microbes may mediate this precipitation.  相似文献   

9.
The Sargaz Cu–Zn massive sulfide deposit is situated in the southeastern part of Kerman Province, in the southern Sanandaj–Sirjan Zone of Iran. The stratigraphic footwall of the Sargaz deposit is Upper Triassic to Lower Jurassic (?) pillowed basalt, whereas the stratigraphic hanging wall is andesite. Mafic volcanic rocks are overlain by andesitic volcaniclastics and volcanic breccias and locally by heterogeneous debris flows. Rhyodacitic flows and volcaniclastics overlie the sequence of basaltic and andesitic rocks. Based on the bimodal nature of volcanism, the regional geologic setting and petrochemistry of the volcanic rocks, we suggest massive sulfide mineralization in the Sargaz formed in a nascent ensialic back-arc basin. The current reserves (after ancient mining) of the Sargaz deposit are 3 Mt at 1.34% Cu, 0.38% Zn, 0.08%Pb, 0.24 g/t Au, and 7 g/t Ag. The structurally dismembered massive sulfide lens is zoned from a pyrite-rich base, to a pyrite?±?chalcopyrite-rich central part, and a sphalerite–chalcopyrite-rich upper part, with a sphalerite-rich zone lateral to the upper part. The main sulfide mineral is pyrite, with lesser chalcopyrite and sphalerite. The feeder zone, comprised of a vein stockwork consists of quartz–sulfide–sericite pesudobreccia and, in the deepest part, chlorite–quartz–pyrite pesudobreccia. Footwall hydrothermal alteration extends at least 70–80 m below the massive sulfide lens and more than a hundred meters along strike from the massive sulfide lens. Jasper and Fe–Mn bearing chert horizons lateral to the sulfide deposit represent low-temperature hydrothermal precipitates of the evolving hydrothermal system. Based on mineral textures and paragenetic relationships, the growth history of the Sargaz deposit is complex and includes: (1) early precipitation of sulfides (protore) on the seafloor as precipitation of fine-grained anhedral pyrite, sphalerite, quartz, and barite; (2) anhydrite precipitation in open spaces and mineral interstices within the sulfide mound followed by its subsequent dissolution, formation of breccia textures, and mound clasts and precipitation of coarse-grained pyrite, sphalerite, tetrahedrite–tennantite, galena and barite; (3) replacement of pre-existing sulfides by chalcopyrite precipitated at higher temperatures (zone refining); (4) continued “refining” led to the dissolution of stage 3 chalcopyrite and formation of a base-metal-depleted pyrite body in the lowermost part of the massive sulfide lens; (5) carbonate veins were emplaced into the sulfide lens, replacing stage 2 barite. The δ34S composition of the sulfides ranges from +2.8‰ to +8.5‰ (average, +5.6‰) with a general increase of δ34S ratios with depth within the massive sulfide lens and underlying stockwork zone. The heavier values indicate that some of the sulfur was derived from seawater sulfate that was ultimately thermochemically reduced in deep hydrothermal reaction zones.  相似文献   

10.
Experimental investigations on pyrite synthesis indicate that before pyrite can be produced by a reaction involving ferrous iron, the disulphide ion must be formed; in experiments described the ion was obtained by the action of H2S in aqueous solution on elemental sulphur. Conditions under which the experiments were conducted indicate that pyrite will not form above pH 6.0. The reaction to produce pyrite is fastest when oxygen is excluded and elemental sulphur is produced from the oxidation of H2S by ferric iron. A reaction between FeS and elemental sulphur will yield pyrite at a much slower rate, although the same basic reaction is involved. An attempt has been made to relate the occurrence of pyrite in different sedimentary environments to this basic chemistry.
Zusammenfassung Wie Versuche zeigen, ist die Voraussetzung der Pyrit-Bildung das Vorliegen von S 2 2– -Ionen, die dann mit FeII reagieren. Die S 2 2– -Ionen wurden durch Einwirken einer verdünnten H2S-Lösung auf elementaren Schwefel erhalten. Pyrite entstehen in diesen Experimenten somit nur unterhalb pH 6. Pyrit erhält man am schnellsten, wenn Sauerstoff abwesend ist und der H2S durch FeIII oxidiert wird. Die Umsetzung von FeS mit elementarem Schwefel liefert Pyrit wesentlich langsamer, wenn auch die zugrunde liegenden Reaktionen sich entsprechen. Es wird versucht, sedimentäre Pyrit-Vorkommen entsprechend diesen Reaktionsabläufen zu deuten.
  相似文献   

11.
《Chemical Geology》2004,203(1-2):153-168
The importance of the magnetic iron sulfide minerals, greigite (Fe3S4) and pyrrhotite (Fe7S8), is often underappreciated in geochemical studies because they are metastable with respect to pyrite (FeS2). Based on magnetic properties and X-ray diffraction analysis, previous studies have reported widespread occurrences of these magnetic minerals along with magnetite (Fe3O4) in two thick Plio-Pleistocene marine sedimentary sequences from southwestern Taiwan. Different stratigraphic zones were classified according to the dominant magnetic mineral assemblages (greigite-, pyrrhotite-, and magnetite-dominated zones). Greigite and pyrrhotite are intimately associated with fine-grained sediments, whereas magnetite is more abundant in coarse-grained sediments. We measured total organic carbon (TOC), total sulfur (TS), total iron (FeT), 1N HCl extractable iron (FeA), and bulk sediment grain size for different stratigraphic zones in order to understand the factors governing the formation and preservation of the two magnetic iron sulfide minerals. The studied sediments have low TS/FeA weight ratios (0.03–0.2), far below that of pyrite (1.15), which indicates that an excess of reactive iron was available for pyritization. Observed low TS (0.05–0.27%) is attributed to the low organic carbon contents (TOC=0.25–0.55%), which resulted from dilution by rapid terrigenous sedimentation. The fine-grained sediments also have the highest FeT and FeA values. We suggest that under conditions of low organic carbon provision, the high iron activity in the fine-grained sediments may have removed reduced sulfur so effectively that pyritization was arrested or retarded, which, in turn, favored preservation of the intermediate magnetic iron sulfides. The relative abundances of reactive iron and labile organic carbon appear to have controlled the transformation pathway of amorphous FeS into greigite or into pyrrhotite. Compared to pyrrhotite-dominated sediments, greigite-dominated sediments are finer-grained and have higher FeA but lower TS. We suggest that diagenetic environments with higher supply of reactive iron, lower supply of labile organic matter, and, consequently, lower sulfide concentration result in relatively high Eh conditions, which favor formation of greigite relative to pyrrhotite.  相似文献   

12.
We carried out experiments on crystallization of Fe-containing melts FeS2Ag0.1–0.1xAu0.1x (x = 0.05, 0.2, 0.4, and 0.8) with Ag/Au weight ratios from 10 to 0.1. Mixtures prepared from elements in corresponding proportions were heated in evacuated quartz ampoules to 1050 ºC and kept at this temperature for 12 h; then they were cooled to 150 ºC, annealed for 30 days, and cooled to room temperature. The solid-phase products were studied by optical and electron microscopy and X-ray spectroscopy. The crystallization products were mainly from iron sulfides: monoclinic pyrrhotite (Fe0.47S0.53 or Fe7S8) and pyrite (Fe0.99S2.01). Gold–silver sulfides (low-temperature modifications) are present in all synthesized samples. Depending on Ag/Au, the following sulfides are produced: acanthite (Ag/Au = 10), solid solutions Ag2–xAuxS (Ag/Au = 10, 2), uytenbogaardtite (Ag/Au = 2, 0.75), and petrovskaite (Ag/Au = 0.75, 0.12). They contain iron impurities (up to 3.3 wt.%). Xenomorphic micro- (<1–5 μm) and macrograins (5–50 μm) of Au–Ag sulfides are localized in pyrite or between the grains of pyrite and pyrrhotite. High-fineness gold was detected in the samples with initial ratio Ag/Au ≤ 2. It is present as fine and large rounded microinclusions or as intergrowths with Au–Ag sulfides in pyrite or, more seldom, at the boundary of pyrite and pyrrhotite grains. This gold contains up to 5.7 wt.% Fe. Based on the sample textures and phase relations, a sequence of their crystallization was determined. At ~1050 ºC, there are probably iron sulfide melt L1 (Fe,S ? Ag,Au), gold–silver sulfide melt L2 (Au,Ag,S ? Fe), and liquid sulfur LS. On cooling, melt L1 produces pyrrhotite; further cooling leads to the crystallization of high-fineness gold (macrograins from L1 and micrograins from L2) and Au–Ag sulfides (micrograins from L1 and macrograins from L2). Pyrite crystallizes after gold–silver sulfides by the peritectic reaction FeS + LS = FeS2 at ~743 ºC. Elemental sulfur is the last to crystallize. Gold–silver sulfides are stable and dominate over native gold and silver, especially in pyrite-containing ores with high Ag/Au ratios.  相似文献   

13.
Sulfide sulfur in mid-oceanic ridge hydrothermal vents is derived from leaching of basaltic-sulfide and seawater-derived sulfate that is reduced during high temperature water rock interaction. Conventional sulfur isotope studies, however, are inconclusive about the mass-balance between the two sources because 34S/32S ratios of vent fluid H2S and chimney sulfide minerals may reflect not only the mixing ratio but also isotope exchange between sulfate and sulfide. Here, we show that high-precision analysis of S-33 can provide a unique constraint because isotope mixing and isotope exchange result in different Δ33S (≡δ33S-0.515 δ34S) values of up to 0.04‰ even if δ34S values are identical. Detection of such small Δ33S differences is technically feasible by using the SF6 dual-inlet mass-spectrometry protocol that has been improved to achieve a precision as good as 0.006‰ (2σ).Sulfide minerals (marcasite, pyrite, chalcopyrite, and sphalerite) and vent H2S collected from four active seafloor hydrothermal vent sites, East Pacific Rise (EPR) 9-10°N, 13°N, and 21°S and Mid-Atlantic Ridge (MAR) 37°N yield Δ33S values ranging from −0.002 to 0.033 and δ34S from −0.5‰ to 5.3‰. The combined δ34S and Δ33S systematics reveal that 73 to 89% of vent sulfides are derived from leaching from basaltic sulfide and only 11 to 27% from seawater-derived sulfate. Pyrite from EPR 13°N and marcasite from MAR 37°N are in isotope disequilibrium not only in δ34S but also in Δ33S with respect to associated sphalerite and chalcopyrite, suggesting non-equilibrium sulfur isotope exchange between seawater sulfate and sulfide during pyrite precipitation. Seafloor hydrothermal vent sulfides are characterized by low Δ33S values compared with biogenic sulfides, suggesting little or no contribution of sulfide from microbial sulfate reduction into hydrothermal sulfides at sediment-free mid-oceanic ridge systems. We conclude that 33S is an effective new tracer for interplay among seawater, oceanic crust and microbes in subseafloor hydrothermal sulfur cycles.  相似文献   

14.
The biogeochemistry of sedimentary sulfur was investigated on the continental shelf off central Chile at water depths between 24 and 88 m under partial influence of an oxygen minimum zone. Dissolved and solid iron and sulfur species, including the sulfur intermediates sulfite, thiosulfate, and elemental sulfur, were analyzed at high resolution in the top 20 cm. All stations were characterized by high rates of sulfate reduction, but only the sediments within the Bay of Concepción contained dissolved sulfide. Due to advection and/or in-situ reoxidation of sulfide, dissolved sulfate was close to bottom water values. Whereas the concentrations of sulfite and thiosulfate were mostly in the submicromolar range, elemental sulfur was by far the dominant sulfur intermediate. Although the large nitrate- and sulfur-storing bacteria Thioploca were abundant, the major part of S0 was located extracellularly. The distribution of sulfur species and dissolved iron suggests the reaction of sulfide with FeOOH as an important pathway for sulfide oxidation and sulfur intermediate formation. This is in agreement with the sulfur isotope composition of co-existing elemental sulfur and iron monosulfides. In the Bay of Concepción, sulfur isotope data suggest that pyrite formation proceeds via the reaction of FeS with polysulfides or H2S. At the shelf stations, on the other hand, pyrite was significantly depleted in 34S relative to its potential precursors FeS and S0. Isotope mass balance considerations suggest further that pyritization at depth includes light sulfide, potentially originating from bacterial sulfur disproportionation. The δ34S-values of pyrite down to −38‰ vs. V-CDT are among the lightest found in organic-rich marine sediments. Seasonal variations in the sulfur isotope composition of dissolved sulfate indicated a dynamic non-steady-state sulfur cycle in the surface sediments. The 18O content of porewater sulfate increased with depth at all sites compared to the bottom water composition due to intracellular isotope exchange reactions during microbial sulfur transformations.  相似文献   

15.
The Blue Dot gold deposit, located in the Archean Amalia greenstone belt of South Africa, is hosted in an oxide (± carbonate) facies banded iron formation (BIF). It consists of three stratabound orebodies; Goudplaats, Abelskop, and Bothmasrust. The orebodies are flanked by quartz‐chlorite‐ferroan dolomite‐albite schist in the hanging wall and mafic (volcanic) schists in the footwall. Alteration minerals associated with the main hydrothermal stage in the BIF are dominated by quartz, ankerite‐dolomite series, siderite, chlorite, muscovite, sericite, hematite, pyrite, and minor amounts of chalcopyrite and arsenopyrite. This study investigates the characteristics of gold mineralization in the Amalia BIF based on ore textures, mineral‐chemical data and sulfur isotope analysis. Gold mineralization of the Blue Dot deposit is associated with quartz‐carbonate veins that crosscut the BIF layering. In contrast to previous works, petrographic evidence suggests that the gold mineralization is not solely attributed to replacement reactions between ore fluid and the magnetite or hematite in the host BIF because coarse hydrothermal pyrite grains do not show mutual replacement textures of the oxide minerals. Rather, the parallel‐bedded and generally chert‐hosted pyrites are in sharp contact with re‐crystallized euhedral to subhedral magnetite ± hematite grains, and the nature of their coexistence suggests that pyrite (and gold) precipitation was contemporaneous with magnetite–hematite re‐crystallization. The Fe/(Fe+Mg) ratio of the dolomite–ankerite series and chlorite decreased from veins through mineralized BIF and non‐mineralized BIF, in contrast to most Archean BIF‐hosted gold deposits. This is interpreted to be due to the effect of a high sulfur activity and increase in fO2 in a H2S‐dominant fluid during progressive fluid‐rock interaction. High sulfur activity of the hydrothermal fluid fixed pyrite in the BIF by consuming Fe2+ released into the chert layers and leaving the co‐precipitating carbonates and chlorites with less available ferrous iron content. Alternatively, the occurrence of hematite in the alteration assemblage of the host BIF caused a structural limitation in the assignment of Fe3+ in chlorite which favored the incorporation of magnesium (rather than ferric iron) in chlorite under increasing fO2 conditions, and is consistent with deposits hosted in hematite‐bearing rocks. The combined effects of reduction in sulfur contents due to sulfide precipitation and increasing fO2 during progressive fluid‐rock interactions are likely to be the principal factors to have caused gold deposition. Arsenopyrite–pyrite geothermometry indicated a temperature range of 300–350°C for the associated gold mineralization. The estimated δ34SΣS (= +1.8 to +2.5‰) and low base metal contents of the sulfide ore mineralogy are consistent with sulfides that have been sourced from magma or derived by the dissolution of magmatic sulfides from volcanic rocks during fluid migration.  相似文献   

16.
Element geochemistry of gold arsenic and mineralogical features of their sulfides in the Carlin-type gold depostis of the Qinling region are discussed in this paper.The initial contents of ore-forming elements such as glod and arsenic are high the ore-bearing rock series in the Qinling region.Furthermore,both the metals are concentrated mainly in the diagenetic pyrite.Study on the mineralogy of arsenic-bearing sulfide minerals in the ores demonstrated that there is a poistive correlation between gold and arsenic in the sulfide minerals.Available evidence suggests that gold in the As-bearing sulfide minerals in likely to be presented as a charge species(Au ),and it is most possible for it to replace the exxcess arsenic at the site of iron and war probably deposited together with arsenic as solid in the sulfide minerals. Pyrite is composed of(Aux^3 ,Fe1-2^2 )([AsS]x^3-[S2]1-x^2-),and arenopyrite of (Aux^3 ,Fe1-x^3 )([AsS]x^3-[AsS2]1-x^3-).The occurrence of glod in the As-sulfied minerals from the Carlin-type gold depostis in the Qinling region has been confirmed by electron probe and transmission electron microscopic studies.The results show that gold was probably depostied together with arsenicas coupled solid solutions in sulfide minerals in the early stage of mineralization.Metallogenic chemical reactions concerning gold deposition in the Carlin-type As-rich gold deposits would involve oxidation of glod and concurrent reduction of arsenic.Later,the deposited gold as solid was remobilized and redistributed as exsolutions,as a result of increasing hydrothermal alteration and crystallization,and decreasing resistance to refractoriness of the host minerals.Gold occurs as sub-microscopic grains(ranging from 0.04tp 0.16μm in diameter)of native gold along micro factures in and crystalline grains of the sulfiedes.  相似文献   

17.
A sulfide chimney ore sampled from the flank of the active Tiger vent area in the Yonaguni Knoll IV hydrothermal field, south Okinawa trough, consists of anhydrite, pyrite, sphalerite, galena, chalcopyrite and bismuthinite. Electron microprobe analysis indicates that the chalcopyrite contains up to 2.4 wt% Sn, whereas bismuthinite contains up to 1.7 wt% Pt, 0.8 wt% Cu and 0.5 wt% Fe. The Sn‐rich chalcopyrite and Pt–Cu–Fe‐bearing bismuthinite are the first reported occurrence of such minerals in an active submarine hydrothermal system. The results confirm that Sn enters the chalcopyrite as a solid solution towards stannite by the coupled substitution of Sn4+Fe2+ for Fe3+Fe3+, whereas Pt, Cu and Fe enter the bismuthinite structure as a solid solution during rapid nucleation. The fluid inclusions homogenization temperatures in anhydrite (220–310°C) and measured end‐member temperature of the vent fluids on‐site (325°C) indicate that Sn‐bearing chalcopyrite and Pt–Cu–Fe‐bearing bismuthinite express the original composition of the minerals that precipitated as metastable phases at a temperature above 300°C. The result observed in this study implies that sulfides in ancient volcanogenic massive sulfide deposits have similar trace element distribution during nucleation but it is remobilised during diagenesis, metamorphism or supergene enrichment processes.  相似文献   

18.
与基性-超基性侵入体有关的Ni-Cu-PGE硫化物矿床是镍-铜-铂族元素矿床的最重要类型。传统观点认为,Ni-Cu-PGE硫化物矿床是由成矿岩浆分异演化、熔离形成的,与围岩性质关系不大。实际上,大部分基性-超基性岩浆是硫化物不饱和的,在岩浆自身演化过程中难以聚集大量硫化物而形成有经济价值的大型高品位NiCu-PGE硫化物矿床。因此,壳源硫的加入是基性-超基性岩浆中硫化物浓度达到过饱和,熔离形成Ni-Cu-PGE硫化物矿床的关键。膏盐层是富含石膏等硫酸盐(SO24-)的蒸发沉积建造,除SO24-外,还富含Cl-、CO23-、Na+、K+等盐类物质,在自然界分布广、面积大,是地壳中重要的硫源层和氧化障。但膏盐层在Ni-Cu-PGE硫化物矿床中的作用长期被忽视,制约了Ni-Cu-PGE硫化物矿床成矿找矿理论的发展。文章以世界最大的俄罗斯诺里尔斯克Ni-CuPGE硫化物矿床为例,介绍了膏盐层与矿床分布的空间关系、石膏等硫酸盐矿物在矿床和蚀变围岩中的分布、成矿元素和硫同位素组成特征及变化规律,阐明了膏盐层在成矿中的作用和控矿机理。膏盐(SO24-)的加入,可以大幅度提高成矿系统的氧逸度,将成矿岩浆中Fe2+氧化成Fe3+,形成铁氧化物,SO24-自身被还原,向成矿系统提供还原硫S2-,与Cu2+、Ni2+等结合,形成铜镍硫化物等,使基性-超基性成矿岩浆由硫化物不饱和变为过饱和,形成硫化物小液滴,在岩浆房经聚集-熔离-富集,形成岩浆型Ni-Cu-PGE硫化物矿床。除膏盐层外,富含硫化物的地层也是形成Ni-Cu-PGE硫化物矿床的重要硫源层。  相似文献   

19.
A suite of nickel, cobalt, iron, copper, and zinc containing sulfides are assayed for the promotion of a model carbon fixation reaction with relevance to local reducing environments of the early Earth. The assay tests the promotion of hydrocarboxylation (the Koch reaction) wherein a carboxylic acid is synthesized via carbonyl insertion at a metal-sulfide-bound alkyl group. The experimental conditions are chosen for optimal assay, i.e., high reactant concentrations and pressures (200 MPa) to enhance chemisorption, and high temperature (250°C) to enhance reaction kinetics. All of the metal sulfides studied, with the exception CuS, promote hydrocarboxylation. Two other significant reactions involve the catalytic reduction of CO to form a surface-bound methyl group, detected after nucleophilic attack by nonane thiol to form methyl nonyl sulfide, and the formation of dinonyl sulfide via a similar reaction. Estimation of the catalytic turnover frequencies for each of the metal sulfides with respect to each of the primary reactions reveals that NiS, Ni3S2, and CoS perform comparably to commonly employed industrial catalysts. A positive correlation between the yield of primary product to NiS and Ni3S2 surface areas provides strong evidence that the reactions are surface catalytic in these cases. The sulfides FeS and Fe(1−x)S are unique in that they exhibit evidence of extensive dissolution, thus, complicating interpretation regarding heterogeneous vs. homogeneous catalysis. With the exception of CuS, each of the metal sulfides promotes reactions that mimic key intermediate steps manifest in the mechanistic details of an important autotrophic enzyme, acetyl-CoA synthase. The relatively high temperatures chosen for assaying purposes, however, are incompatible with the accumulation of thioesters. The results of this study support the hypothesis that transition metal sulfides may have provided useful catalytic functionality for geochemical carbon fixation in a prebiotic world (at least intially) devoid of peptide-based enzymes.  相似文献   

20.
Pyritization in late Pleistocene sediments of the Black Sea is driven by sulfide formed during anaerobic methane oxidation. A sulfidization front is formed by the opposing gradients of sulfide and dissolved iron. The sulfidization processes are controlled by the diffusion flux of sulfide from above and by the solid reactive iron content. Two processes of diffusion-limited pyrite formation were identified. The first process includes pyrite precipitation with the accumulation of iron sulfide precursors with the average chemical composition of FeSn (n = 1.10-1.29), including greigite. Elemental sulfur and polysulfides, formed from H2S by a reductive dissolution of Fe(III)-containing minerals, serve as intermediates to convert iron sulfides into pyrite. In the second process, a “direct” pyrite precipitation occurs through prolonged exposure of iron-containing minerals to dissolved sulfide. Methane-driven sulfate reduction at depth causes a progressive formation of pyrite with a δ34S of up to +15.0‰. The S-isotopic composition of FeS2 evolves due to contributions of different sulfur pools formed at different times. Steady-state model calculations for the advancement of the sulfidization front showed that the process started at the Pleistocene/Holocene transition between 6360 and 11 600 yr BP. Our study highlights the importance of anaerobic methane oxidation in generating and maintaining S-enriched layers in marine sediments and has paleoenvironmental implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号