首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reliable Dynamic Positioning (DP) system is the key requirement for critical offshore activities. This paper presents the quantitative reliability assessment for offshore multi-megawatt capacity electric DP systems based on the present technological maturity and the offshore industry-reported component failure rates. It is identified that the International Maritime Organization defined DP1, DP2 DP3 architectures with fully redundant power generators and electric variable speed thrusters could have mean time to fail periods of 0.3, 2.1 and 2.5 years respectively. In the analyzed DP2 architecture, the power generation cum management system, the computer control cum sensors system and the thruster systems contribute to 17%, 42%, and 41% of the total DP system failures. The results presented could be used for reliability-centered design and maintenance planning of multi megawatt capacity DP systems.  相似文献   

2.
为研究系泊状态下动力定位船舶与码头及缆绳间的耦合作用,采取凝集质量法计算系泊缆索有效张力,设置弹簧阻尼单元用以计算码头碰垫间的非线性反力,应用比例-积分-微分控制系统(PID)进行推力控制。在系泊状态下,以动力定位船舶和无动力定位船舶为研究对象,分析了耦合系统中侧推器对消除因一阶波浪载荷而引起的船舶运动影响的作用;针对动力定位船舶,讨论了码头-缆绳及目标位置两个因素对动力定位船舶的定位能力及侧推器性能的影响。结果表明,在选取合理目标位置的情况下,耦合系统中的侧推器性能及动力定位船舶的定位能力均得到了有效提高。  相似文献   

3.
This paper develops a nonlinear mathematical model to simulate the dynamic motion behavior of the barge equipped with the portable outboard Dynamic Positioning (DP) system in short-crested waves. The self-tuning Proportional-Derivative (PD) controller based on the neural network algorithm is applied to control the thrusters for optimal adjustment of the barge position in waves. In addition to the wave, the current, the wind and the nonlinear drift force are also considered in the calculations. The time domain simulations for the six-degree-of-freedom motions of the barge with the DP system are solved by the 4th order Runge-Kutta method which can compromise the efficiency and the accuracy of the simulations. The technique of the portable alternative DP system developed here can serve as a practical tool to assist those ships without being equipped with the DP facility while the dynamic positioning missions are needed.  相似文献   

4.
5.
An offshore vessel with a dynamic positioning system (DP system) needs fast response to produce thrust to counteract the environmental forces acting on it for the purpose of maintaining its position and heading as close as possible to the working position. Therefore, quick and effective modulation of the thrust is the problem to determine the thrust and the rotation angle of the thruster devices of the ship. This paper presents an effective optimum control for a thruster system, using the sequential quadratic method to achieve economical and effective modulation of the thrust and the direction of the thruster. An optimum control study of a 2280 tons DP coring vessel with five rotary azimuth thruster marine positioning is studied in detail, which can quickly and exactly estimate the thrusts and angles of direction of all the thrusters. The results can provide a valuable thruster system for a dynamically positioned vessel.  相似文献   

6.
在风载荷估算的传统模块法基础上,引入了形状修正系数、方向修正系数和遮蔽系数,提出了适合于钻井船风载荷估算的改进模块法,可为钻井船动力定位能力分析提供更准确的环境载荷。同时,针对深水钻井船配置有数量众多推力器的特点,采用序列二次规划法进行推力器的推力分配优化求解,形成了适用于深水钻井船的动力定位能力分析方法,并编制了相关分析软件。实例分析表明,本方法计算结果可靠,可以用于深水钻井船的动力定位能力评估。  相似文献   

7.
Ayman B. Mahfouz   《Ocean Engineering》2007,34(8-9):1151-1163
As the capability of polar plots becomes better understood, improved dynamic positioning (DP) systems are possible as the control algorithms greatly depend on the accuracy of the aerodynamic and hydrodynamic models. The measurements and estimation of the environmental disturbances have an important role in the optimal design and selection of a DP system for offshore platforms. The main objective of this work is to present a new method of predicting the Capability-Polar-Plots for offshore platforms using the combination of the artificial neural networks (NNs) and the capability polar plots program (CPPP). The estimated results from a case study for a scientific drilling vessel are presented. A trained artificial NN is designed in this work and is able to predict the maximum wind speed at which the DP thrusters are able to maintain the offshore platform in a station-keeping mode in the field site. This prediction for the maximum wind speed will be a helpful tool for DP operators in managing station-keeping for offshore platforms in an emergency situation where the automation of the DP systems is disabled. It is obvious from the obtained results that the developed technique has potential for the estimation of the capability-polar-plots for offshore platforms. This tool would be suitable for DP operators to predict the maximum wind speed and direction in a very short period of time.  相似文献   

8.
针对某最新的深水半潜平台,应用PID控制策略和卡尔曼滤波技术相结合的方法对其动力定位能力进行了研究,重点关注在两台推进器于不同时刻分别失效后的平台运动和推进器功率消耗信息。在平台的运动时域分析中,通过采用数值模拟与实验验证相结合的方法来获得平台的水动力数据;而在推力分配过程中,以最小功率消耗为优化目标,并考虑了推进器的机械物理特性及水动力干扰造成的推力损失对推进器的推力进行了分配。结果表明编制的模拟软件具有理想的模拟效果,该平台在指定海况下动力定位能力良好。  相似文献   

9.
This paper concerns the design of feedback control systems to maximize power generation of a wave energy converter (WEC) in a random sea. In the literature on WEC control, most of the proposed feedback controllers fall into three categories. Many are static; i.e., they extract power by imposing an equivalent damping or resistive load on the power take-off (PTO) devices. Others are dynamic and are designed to maximize power generation at all frequencies, which results in an anticausal feedback law. Other dynamic control design methods are causal, and are tuned to achieve the anticausal performance at only a single frequency. By contrast, this paper illustrates that the determination of the true optimal causal dynamic controller for a WEC can be found as the solution to a nonstandard linear quadratic Gaussian (LQG) optimal control problem. The theory assumes that the control system must make power generation decisions based only on present and past measurements of the generator voltages and/or velocities. It is shown that unlike optimal anticausal control, optimal causal control requires knowledge of the stationary spectral characteristics of the random sea state. Additionally, it is shown that the efficiency of the generator factors into the feedback synthesis. The theory is illustrated on a linear dynamical model for a buoy-type WEC with significant resonant modes in surge and pitch, and equipped with three spatially-distributed generators.  相似文献   

10.
The real-time estimation of second-order difference-frequency wave forces using real-time random-wave measurement is developed for the FF (feed-forward) control based dynamic positioning of floating offshore vessels and platforms. The efficacy of the developed FF control scheme is validated by using the in-house hull-mooring-riser-thruster fully coupled time-domain computer simulation program through comparisons with the results by the conventional feedback-control-only case. The feedback (FB) control intends to reduce the accumulated position-excursion error, meanwhile the proposed feed-forward control compensates the controllable slowly-varying wave loads by activating thrusters in advance based on the real-time estimation of the second-order difference-frequency wave loadings using the real-time signal of random incident wave. The real-time estimation of the second-order difference-frequency wave loads is done by using the double-convolution integral with pre-calculated QIF (quadratic impulse function). The numerical DP system is successfully implemented with the FF control algorithm in the vessel-thruster fully coupled time-domain simulation program. The developed schemes are applied to a turret-moored FPSO (floating production storage offloading) with six dynamic-positioning (DP) azimuth thrusters in two non-collinear storm conditions. It is clearly demonstrated that the developed FF control scheme performs much better than the conventional feedback-control-only case. The corresponding reductions in horizontal offsets, motions, mooring tensions, and fuel consumptions by using the developed FF control scheme are underscored.  相似文献   

11.
As the capability of polar plots becomes better understood, improved dynamic positioning (DP) systems are possible since the control algorithms greatly depend on the accuracy of the aerodynamic and hydrodynamic models. The measurements and estimation of the environmental disturbances have an important role in the optimal design and selection of a DP system for a marine vessel. The main objective of this work is to present a new software program capable of estimating the environmental forces, thrusters capability calculations, and capability polar plots for marine vessels. A flowchart illustrating the logic and data flow of a developed software program, the Capability Polar Plot Program (CPPP), and the estimated results for two case studies for a scientific drilling vessel and a survey vessel are presented. It is obvious from the obtained results that the developed program has a future potential for the estimation of the Capability Polar Plots for marine vessels. Moreover, the developed software program would be considered as a marine tool for the thrusters' selection and their configuration for marine vessels and floating production units for the Oil and Gas industries.  相似文献   

12.
Dynamic positioning (DP) is an operation method whereby the position of a surface vessel is maintained in close proximity to a required position in the horizontal plane through the controlled application of forces and moments generated by purposely installed thrusters. When estimating thrust, this kind of conventional control system often uses many acceleration sensors, velocity sensors, environment sensors, and filters. Usually, these sensors have measured electrical errors. To reduce the number of sensors used and to decrease the measurement errors, this article presents an effective control system for estimating thrust and moment commands, which is based on energy and impulsemomentum principles. Donha and Brinati's example is followed to verify the feasibility of the present control system, which performs semisubmersible platform positioning using an LQG controller, and the results are feasible and economical. A simulated coring vessel marine positioning in southern Taiwan is presented, which can estimate the counterthrust and moment commands, and the complex environmental forces and moments are described. The results can provide a valuable control system for dynamically positioned vessels.  相似文献   

13.
Dynamic positioning (DP) is an operation method whereby the position of a surface vessel is maintained in close proximity to a required position in the horizontal plane through the controlled application of forces and moments generated by purposely installed thrusters. When estimating thrust, this kind of conventional control system often uses many acceleration sensors, velocity sensors, environment sensors, and filters. Usually, these sensors have measured electrical errors. To reduce the number of sensors used and to decrease the measurement errors, this article presents an effective control system for estimating thrust and moment commands, which is based on energy and impulsemomentum principles. Donha and Brinati's example is followed to verify the feasibility of the present control system, which performs semisubmersible platform positioning using an LQG controller, and the results are feasible and economical. A simulated coring vessel marine positioning in southern Taiwan is presented, which can estimate the counterthrust and moment commands, and the complex environmental forces and moments are described. The results can provide a valuable control system for dynamically positioned vessels.  相似文献   

14.
面向一型喷水推进器为动力定位执行机构的单体喷水推进船舶,开展了船舶仿真模型建立、推力分配及进一步动力定位相关控制算法设计与仿真模拟。针对传统的定步长Kalman滤波提出了改进方案,同时考虑到单体喷水推进船舶的特殊性,对推力分配算法进行了优化,并基于荷载前馈的PD控制算法开展了不同工况下的仿真试验。试验结果表明,所提出的喷水推进推力分配算法能够有效控制一型单体喷水推进船舶实现定点、定艏向、移位、转艏等动力定位典型功能,并具备一定抗外部干扰能力。  相似文献   

15.
Ocean wave energy is an emerging kind of renewable energy, and several energy conversion methods are available today. One solution is to connect a buoy to a linear generator. Such units are quite small (10–100 kW), and farm solutions are suggested to increase power production. This paper shows the results from small farm simulations where the translator motion is varied for the generators in the farm.Simulations with five and 10 units show that power fluctuations decrease with an increasing number of generators.  相似文献   

16.
A heaving-buoy wave energy converter equipped with hydraulic power take-off is studied in this paper. This wave energy converter system is divided into five subsystems: a heaving buoy, hydraulic pump, pipelines, non-return check valves and a hydraulic motor combined with an electric generator. A dynamic model was developed by considering the interactions between the subsystems in a state space form. The transient pressures caused by starting/stopping the buoy or closing/opening the check valves were predicted numerically using the established model. The simulation results show that transmission line dynamics play a dominant role in the studied wave energy converter system. The length of the pipeline will not only affect the amplitude of the transient pressures but also affect the converted power. The variation of the time-averaged converted electric power with the pipeline length is estimated using the simulation method for the buoy exposed to one irregular sea state. Finally, it is suggested how reduced power efficiency due to the pipelines may be ameliorated.  相似文献   

17.
海上浮体动力定位外力计算   总被引:5,自引:1,他引:4  
动力定位系统(dynamic positioning system)是一种闭环自动控制系统,采用推力器来抵抗风、浪、流等作用在浮体上的境力,使其保持在所要求的位置上。船舶的风和流作用力由经验公式求得,波浪力主要考虑二阶漂移力,由三维势流理论的直接积分法求得。通过模拟仿真,表明其结果能够用于船舶动力定位系统研究。  相似文献   

18.
余尚禹  王磊  李博  衣凡 《海洋工程》2019,37(6):49-61
针对半潜平台锚泊辅助动力定位系统的最优定位点问题,设计了基于强化学习中深度神经网络的Q学习(DQN)控制策略的锚泊辅助动力定位的智能决策系统。该决策系统中DQN方法与比例—积分—微分(PID)控制方法相结合使用,实现系统优化。在基于机器人操作系统(ROS)平台的动力定位时域模拟程序中进行数值仿真,仿真结果验证了该系统在定位点决策问题上的可靠性和有效性,从而使半潜平台在面对未知海况时,均能寻找到最优定位点,在保证锚泊辅助动力定位系统可靠性的同时降低功率消耗,提高经济性。  相似文献   

19.
This paper develops an adaptive fuzzy controller for the dynamic positioning (DP) system of vessels with unknown dynamic model parameters and unknown time-varying environmental disturbances. The controller is designed by combining the adaptive fuzzy system with the vectorial backstepping method. An adaptive fuzzy system is employed to approximate the uncertain term induced by unknown dynamic model parameters and unknown time-varying environmental disturbances. It is theoretically proved that the proposed adaptive fuzzy DP controller can make the vessel be maintained at the desired values of its position and heading with arbitrary accuracy, while guaranteeing the uniform ultimate boundedness of all signals in the closed-loop DP control system of vessels. Simulation studies with comparisons on a supply vessel are carried out, and the results illustrate the effectiveness of the proposed control scheme.  相似文献   

20.
动力定位系统发展状况及研究方法   总被引:21,自引:2,他引:21  
动力定位系统(Dynamic Positioning System)是一种闭环的控制系统,其采用推力器来提供抵抗风、浪、流等作用在船上的环境力,从而使船尽可能地保持在海平面上要求的位置上,其定位成本不会随着水深增加而增加,并且操作也比较方便。本文对动力定位系统发展及各组成部分进行了介绍,以期对动力定位系统有个比较完整的认识。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号