首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
Normal faulting and the deep subsurface flow of salt are key processes controlling the structural development of many salt-bearing sedimentary basins. However, our detailed understanding of the spatial and temporal relationship between normal faulting and salt movement is poor due to a lack of natural examples constraining their geometric and kinematic relationship in three-dimensions. To improve our understanding of these processes, we here use 3D seismic reflection and borehole data from the Egersund Basin, offshore Norway, to determine the structure and growth of a normal fault array formed during the birth, growth and decay of an array of salt structures. We show that the fault array and salt structures developed in response to: (i) Late Triassic-to-Middle Jurassic extension, which involved thick-skinned, sub-salt and thin-skinned supra-salt faulting with the latter driving reactive diapirism; (ii) Early Cretaceous extensional collapse of the walls; and (iii) Jurassic-to-Neogene, active and passive diapirism, which was at least partly coeval with and occurred along-strike from areas of reactive diapirism and wall collapse. Our study supports physical model predictions, showcasing a three-dimensional example of how protracted, multiphase salt diapirism can influence the structure and growth of normal fault arrays.  相似文献   

3.
The Central European Basin is a classic area of salt tectonics, characterized by heterogeneous structural evolution and complex salt movement history. We studied an area on its SW margin, based on prestack depth-migrated 2D and 3D seismic data. We use seismic interpretation and retro-deformation to obtain a better understanding of salt tectonics, structural control, and sedimentary response in this region. The first phase of salt tectonic evolution started with two main events of NW–SE extension and rafting in the Triassic before the Upper Bunter and before the Upper Muschelkalk. Rafting was accompanied by first salt diapirism and an increased sedimentary thickness adjacent to the salt structure. After salt supply ceased updip to the salt structure, a mini-basin grew in the intra-raft area. This sedimentary differential loading caused salt movement and growth of a pillow structure basinward. The second phase of salt movement was initiated by the formation of a NNW–SSE striking basement graben in the Middle Keuper that triggered reactive diapirism, the breakthrough of the pillow’s roof and salt extrusion. The following downbuilding process was characterized by sedimentary wedges with basal unconformities, onlap structures and salt extrusions that ceased in the Jurassic. The third and latest phase of salt tectonic evolution was activated in the Late Cretaceous to Lower Tertiary by compressional tectonics indicated by salt rise and a small horizontal shortening of the diapir. The interpreted salt tectonic processes and the resulting geometries can now be better tied in with the regional heterogeneous framework of the basin. Unfortunately, the entire article was originally published Online First with errors. The publishers wish to apologize for this mistake. The correct article is shown here. The online version of the original article can be found at  相似文献   

4.
盐动力层序是指被动盐底辟周缘发育的一套角度不整合地层,是识别盐盆地早期被动底辟的标识。库车地区盐构造由于被上新世区域大规模挤压事件显著破坏,其古新世–中新世的早期演化过程尚存在争议。本文首次将盐动力层序的研究方法运用在库车地区盐构造研究中,并通过对库车褶冲带的博孜敦盐底辟进行野外观察、地层恢复、地震解译后发现,库车地区博孜敦盐底辟南西翼渐新统–中新统发育一套与盐底辟活动相关的沉积层序,小层序之间以角度不整合为界,但随着远离底辟地层之间的接触关系很快变为整合接触,符合直立状复合型盐动力层序的模型。由此认为,库车地区早期被动盐底辟发育,盐构造的演化变形可分为两个期次:早期被动底辟期(渐新世–上新世早期)与后期挤压改造期(上新世–现今)。通过对比物理模拟结果与地震资料解译结果认为,库车地区早期被动底辟作用很可能受控于始新世以来的冲积扇沉积加载作用。  相似文献   

5.
This study presents a reconstruction of the tectonic history of an Upper Rotliegend tight gas field in Northern Germany. Tectonism of the greater study area was influenced by multiple phases of salt movement, which produced a variety of salt-related structural features such as salt walls, salt diapirs as well as salt glaciers (namakiers). A sequential 2D retro-deformation and stratal backstripping methodology was used to differentiate mechanisms inducing salt movement and to discuss their relation to regional tectonics. The quantitative geometric restoration included sedimentary balancing, decompaction, fault-related deformation, salt movement, thermal subsidence, and isostasy to unravel the post-depositional tectonic overprint of the Rotliegend reservoir rock. The results of this study indicate that reactive salt diapirism started during an Early Triassic interval of thin-skinned extensional tectonics, followed by an active diapirism stage with an overburden salt piercement in the Late Triassic, and finally a period of intensive salt surface extrusion and the formation of salt glaciers (namakiers) in Late Triassic and Jurassic times. Since the Early Cretaceous, salt in the study area has been rising by passive diapirism.  相似文献   

6.
Geological mapping, seismic analyses, and analogue experiments show that active salt diapirism results in significant faulting in the overburden strata. Faults associated with active diapirism generally develop over the crest of the dome and form a radial pattern. In this study, we have created a 3-D discrete element model and used this model to investigate the fault system over active diapirs. The model reproduces some common features observed in physical experiments and natural examples. The discrete element results show that most faults initiate near the model surface and have displacement decreasing downward. In addition, model results indicate that the earliest fault, working as the master fault, has a strong influence on the subsequent fault pattern. The footwall of the master fault is mainly deformed by arc-parallel stretching and develops a subradial fault pattern, whereas the hanging wall is deformed by both arc-parallel stretching and gliding along the master fault and top of salt, and hence develops both parallel and oblique faults. Model results replicate the fault pattern and deformation mechanism of the Reitbrook dome, Germany.  相似文献   

7.
Sheets of salt and ductile shale advancing beyond the thrust front of the Gibraltar Arc (Iberian–Moroccan Atlantic continental margin) triggered downslope movements of huge allochthonous masses. These allochthons represent the Cádiz Nappe, which detached from the Gibraltar Arc along low‐angle normal faults and migrated downslope from the Iberian and Moroccan continental margins towards the Atlantic Ocean. Extensional tectonics initiated upslope salt withdrawal and downslope diapirism during large‐scale westward mass wasting from the shelf and upper slope. Low‐angle salt and shale detachments bound by lateral ramps link extensional structures in the shelf to folding, thrusting and sheets of salt and shale in the Gulf of Cádiz. From backstripping analyses carried out on the depocentres of the growth‐fault‐related basins on the shelf, we infer two episodes of rapid subsidence related to extensional collapses; these were from Late Tortonian to Late Messinian (200–400 m Myr?1) and from Early Pliocene to Late Pliocene (100–150 m Myr?1). The extensional events that induced salt movements also affected basement deformation and were, probably, associated with the westward advance of frontal thrusts of the Gibraltar Arc as a result of the convergence between Africa and Eurasia. The complexities of salt and/or shale tectonics in the Gulf of Cádiz result from a combination of the deformations seen at convergent and passive continental margins.  相似文献   

8.
Numerical modelling of salt diapirism: influence of the tectonic regime   总被引:2,自引:0,他引:2  
  相似文献   

9.
A high-quality 3D seismic volume from offshore Espírito Santo Basin (SE Brazil) is used to assess the importance of gravitational collapse to the formation of crestal faults above salt structures. A crestal fault system is imaged in detail using seismic attributes such as curvature and variance, which are later complemented by analyses of throw vs. distance (T-D) and throw vs. depth (T-Z). In the study area, crestal faults comprise closely spaced arrays and are bounded by large listric faults, herein called border faults. Two episodes of growth are identified in two opposite-dipping fault families separated by a transverse accommodation zone. Statistical analyses for eighty-four (84) faults show that fault spacing is < 250 m, with border faults showing the larger throw values. Fault throw varies between 8 ms and 80 ms two-way time for crestal faults, and 60–80 ms two-way time for border faults. Fault length varies between ∼410 m and 1750 m, with border faults ranging from 1250 m to 1750 m. This work shows that border faults accommodated most of the strain associated with salt growth and collapse. The growth history of crestal faults favours an isolated fault propagation model with fault segment linkage being associated with the lateral propagation of discrete fault segments. Importantly, two episodes of fault growth are identified as synchronous to two phases of seafloor erosion, rendering local unconformities as competent markers of fault reactivation at a local scale. This paper has crucial implications for the understanding of fault growth as a means to assess drilling risk and oil and gas migration on continental margins. As a corollary, this work demonstrates that: 1) a certain degree of spatial organisation occurs in crestal fault systems; 2) transverse accommodation zones can form regions in which fault propagation is enhanced and regional dips of faults change in 4D.  相似文献   

10.
东营凹陷盐底辟作用与中央隆起带断裂构造成因   总被引:23,自引:10,他引:13  
华北渤海湾盆地济阳坳陷的东营凹陷中央隆起带同生断层非常发育,断层数量较多。主干正断层的下降盘上形成“逆牵引”构造,组成“负花状”地堑断裂系。这些断裂系将中央隆起带分割为一系列小断块。本文将这些断裂系和相关的小断块划分为3个构造,分别称为辛镇、东营和郝家—现河庄(简称郝—现)构造。研究证明,复杂断裂与断块组合构造主要为盐底辟作用的结果,伴生的逆牵引作用形成“包心状”的复杂断裂构造形态,总体上,东营凹陷中央隆起带构造成因是区域北北西—南南东向伸展作用下局部底辟作用和逆牵引作用共同形成的,而不是走滑成因。据强度,底辟构造可分为低幅度隆起和隐刺穿构造。其形成时期主要为沙河街组三段沉积期开始持续到馆陶组沉积前。底辟物质由盐岩为主的塑性层组成。  相似文献   

11.
Salt tectonics in pull-apart basins with application to the Dead Sea Basin   总被引:1,自引:0,他引:1  
The Dead Sea Basin displays a broad range of salt-related structures that developed in a sinistral strike-slip tectonic environment: en échelon salt ridges, large salt diapirs, transverse oblique normal faults, salt walls and rollovers. Laboratory experiments are used to investigate the mechanics of salt tectonics in pull-apart systems. The results show that in an elongated pull-apart basin the basin fill, although decoupled from the underlying basement by a salt layer, remains frictionally coupled to the boundary. The basin fill, therefore, undergoes a strike-slip shear couple that simultaneously generates en échelon fold trains and oblique normal faults, trending mutually perpendicular. According to the orientation of basin boundaries, sedimentary cover deformation can be dominantly contractional or extensional, at the extremities of pull-apart basins forming either folds and thrusts or normal faults, respectively. These guidelines, applied to the analysis of the Dead Sea Basin, show that the various salt-related structures form a coherent set in the frame of a sinistral strike-slip shearing deformation of the sedimentary basin fill.  相似文献   

12.
Extensional processes that followed the Gondwanan Orogeny rise to the development of a series of rift basins along the continental margin over older accreted Eopaleozoic terranes. Stratigraphic, structural, paleontological, and isotopic studies are presented in this work in order to constrain the ages of the sedimentary infilling and to analyze the tectosedimentary evolution of one of the Cuyo basin depocenters, known as Rincón Blanco. This asymmetrical half-graben was filled by continental sediments under a strong tectonic control. The infilling was strongly controlled by tectonics which in term produced distinctive features along the whole sedimentary sequence. Using a combination of lithological and structural data the infilling was subdivided into packages of genetically linked units bounded by regional extended surfaces. Several tuffs and acid volcanic rocks have been collected across the whole section of the Rincon Blanco sub-basin for SHRIMP and LA-MC-ICPMS U–Pb zircon dating. The ages obtained range from 246.4 ± 1.1 Ma to 230.3 ± 1.5 Ma which is the time elapsed for the deposition of three tectono-sequence units separated by regional unconformities and mainly constrained to the Middle Triassic. They are interpreted as a result of a reactivation of the extensional system that has evolved along strike as segments of faults that linked together and/or as laterally propagating faults. Regional correlation with coeval rift basins permits to establish north-south propagation in the extensional regime along the western margin of SW Gondwana. This trending started in the lowermost Triassic and extended until the latest Triassic. Two of them were precisely correlated with Cerro Puntudo and Cacheuta half-graben systems. The new data indicate that the three sequences were mostly deposited during the Middle Triassic (246 to 230 Ma), with no evidence of sedimentation during Norian and Rhaetian, which is in conflict with some previous biostratigraphic studies.  相似文献   

13.
Several selected seismic lines are used to show and compare the modes of Late-Cretaceous–Early Tertiary inversion within the North German and Polish basins. These seismic data illustrate an important difference in the allocation of major zones of basement (thick-skinned) deformation and maximum uplift within both basins. The most important inversion-related uplift of the Polish Basin was localised in its axial part, the Mid-Polish Trough, whereas the basement in the axial part of the North German Basin remained virtually flat. The latter was uplifted along the SW and to a smaller degree the NE margins of the North German Basin, presently defined by the Elbe Fault System and the Grimmen High, respectively. The different location of the basement inversion and uplift within the North German and Polish basins is interpreted to reflect the position of major zones of crustal weakness represented by the WNW-ESE trending Elbe Fault System and by the NW-SE striking Teisseyre-Tornquist Zone, the latter underlying the Mid-Polish Trough. Therefore, the inversion of the Polish and North German basins demonstrates the significance of an inherited basement structure regardless of its relationship to the position of the basin axis. The inversion of the Mid-Polish Trough was connected with the reactivation of normal basement fault zones responsible for its Permo-Mesozoic subsidence. These faults zones, inverted as reverse faults, facilitated the uplift of the Mid-Polish Trough in the order of 1–3 km. In contrast, inversion of the North German Basin rarely re-used structures active during its subsidence. Basement inversion and uplift, in the range of 3–4 km, was focused at the Elbe Fault System which has remained quiescent in the Triassic and Jurassic but reproduced the direction of an earlier Variscan structural grain. In contrast, N-S oriented Mesozoic grabens and troughs in the central part of the North German Basin avoided significant inversion as they were oriented parallel to the direction of the inferred Late Cretaceous–Early Tertiary compression. The comparison of the North German and Polish basins shows that inversion structures can follow an earlier subsidence pattern only under a favourable orientation of the stress field. A thick Zechstein salt layer in the central parts of the North German Basin and the Mid-Polish Trough caused mechanical decoupling between the sub-salt basement and the supra-salt sedimentary cover. Resultant thin-skinned inversion was manifested by the formation of various structures developed entirely in the supra-salt Mesozoic–Cenozoic succession. The Zechstein salt provided a mechanical buffer accommodating compressional stress and responding to the inversion through salt mobilisation and redistribution. Only in parts of the NGB and MPT characterised by either thin or missing Zechstein evaporites, thick-skinned inversion directly controlled inversion-related deformations of the sedimentary cover. Inversion of the Permo-Mesozoic fill within the Mid-Polish Trough was achieved by a regional elevation above uplifted basement blocks. Conversely, in the North German Basin, horizontal stress must have been transferred into the salt cover across the basin from its SW margin towards the basins centre. This must be the case since compressional deformations are concentrated mostly above the salt and no significant inversion-related basement faults are seismically detected apart from the basin margins. This strain decoupling in the interior of the North German Basin was enhanced by the presence of the Elbe Fault System which allowed strain localization in the basin floor due to its orientation perpendicular to the inferred Late Cretaceous–Early Tertiary far-field compression.  相似文献   

14.
Numerical studies of ductile deformations induced by salt movements have, until now, been restricted to two-dimensional (2D) modelling of diapirism. This paper suggests a numerical approach to model the evolution of three-dimensional (3D) salt structures toward increasing maturity. This approach is also used here to restore the evolution of salt structures through successive earlier stages. The numerical methodology is applied to study several model examples. We analyse a model of salt diapirs that develop from an initial random perturbation of the interface between salt and its overburden and restore the evolved salt diapirs to their initial stages. We show that the average restoration errors are less than 1%. An evolutionary model of a 2D salt wall loaded by a 2D pile of sediments predicts a decomposition of the salt wall into 3D diapiric structures when the overburden of salt is supplied by 3D synkinematic wedge of sediments. We model salt extrusion feeding a gravity current over the depositional surface and estimate an average rate of extrusion and horizontal velocity of salt spreading. Faulting of the overburden to salt overhangs initiates new secondary diapirs, and we analyse the growth of these secondary diapirs. We also study how lateral flow effects the evolution of salt diapirs. The shape of a salt diapir can be very different if the rate of horizontal flow is much greater than the initial rate of diapiric growth solely due to gravity. We discuss the applicability of the results of the models to the evolution of Late Permian salt structures in the Pricaspian basin (Russia and Kazakhstan). These structures are distinguishable into a variety of styles representing different stages of growth: salt pillows, diapirs, giant salt massifs, 2D diapiric walls and 3D stocks complicated by large overhangs. The different sizes, shapes and maturities of salt structures in different parts of the Pricaspian basin reflect areal differences in salt thickness and loading history. Our results suggest that the numerical methodology can be employed to analyse the evolution of all salt structures that have upbuilt through younger ductile overburdens.  相似文献   

15.
Coastal lagoons are a typical feature of the landscape in central Denmark. The lagoons formed when basins within the inherited glacial topography were flooded by the mid‐Holocene sea‐level rise. The transgression initiated coastal geomorphological processes and prompted marine sedimentation in the inundated areas. Despite their common occurrence and wide distribution in the area, coastal lagoons and their deposits have rarely been studied as sedimentary archives. The absolute chronology established for the basal marine deposits in sediment cores retrieved from coastal lagoons on the island of Samsø, southern Kattegat Sea, central Denmark, is evidence of a nearly synchronous onset of marine sedimentation at different elevations. This is interpreted as a new indication of a period of very rapid relative sea‐level (RSL) rise between 7.6 and 7.2 ka BP. Following a period of RSL highstand, a marked facies change in the deposits from an inactive lagoon yields consistent ages of around 4.1 ka BP and may be an indication of a marked RSL fall. This study illustrates the potential of coastal lagoons as sedimentary archives for the reconstruction of RSL in SW Scandinavia and in similar coastal environments elsewhere.  相似文献   

16.
Determining the relative influence of eustasy versus local sedimentary processes on strata formation is a fundamental challenge in the study of continental margin stratigraphy. In this paper, the relative contribution of these factors on continental margin evolution during the Middle to Late Pleistocene is evaluated using samples from Integrated Ocean Drilling Program Expedition 317. Core‐logging, biostratigraphy and quantitative X‐ray diffraction mineralogy are used to delineate continental shelf sedimentary systems. Major lithological unconformities bound stratigraphic sequences that contain recurring compositional patterns and that resemble other examples of Middle to Upper Pleistocene sequences. However, a preliminary chronology suggests that sequence boundary formation cannot be linked ‘one to one’ with eustatic cycles and therefore these sequences can contain multiple ca 100 ka eustatic cycles. Smaller amplitude, higher frequency transitions in sediment composition are interpreted as stratigraphic sequences driven by more rapid perturbations in the interplay of accommodation and sediment supply; their stratigraphy is variable in time and across the shelf, suggesting a strong influence of local sedimentary forcing in their formation. Changes in sediment composition after the Middle Pleistocene Transition indicate that sediment transfer from onshore sources in the glaciated Southern Alps to the middle‐shelf occurred over a single 100 ka glacio‐eustatic cycle, with an additional 100 ka lag before the mineralogical signal was preserved on the outer‐shelf. This phenomenon is coincident with rapid shelf progradation in this basin, suggesting a causal relation between across‐shelf sediment transport and margin progradation. This is one of very few studies that provide insights at the core scale into the processes driving continental margin evolution during the Middle to Late Pleistocene. This work shows that compositional changes in mud‐dominated successions can lead to a sequence stratigraphic interpretation and the identification of high‐frequency sequences, which may not be possible using a conventional stratigraphic approach.  相似文献   

17.
Sedimentary cyclic sequences deposited during the Late Palaeozoic Ice Age are widespread. Glacio‐eustatic control of the cyclic patterns is commonly accepted, and the durations of the cyclothems generally match the short‐ and long‐eccentricity Milankovitch orbital parameters. Nevertheless, geochemical fingerprints of orbital parameters are poorly documented in deep‐time sedimentary records. Here, we report on well‐exposed Bashkirian cyclothems of c. 123 ka and c. 400 ka durations from the Valdorria platform. The shorter‐term cyclothems can be grouped into longer‐term composite sequences that are consistent with generally accepted durations of c. 125 ka and c. 400 ka for Milankovitch eccentricity cycles. The stratigraphic pattern is mirrored by the isotope geochemical signals, which show distinct recurring trends. These trends are confirmed by statistical tests. Whereas intrinsic factors and/or subaerial exposure related to sea‐level lowstands might have truncated cycle patterns in tectonically stable basins, rapid subsidence of the Valdorria platform's foreland basin appears to have contributed to a faithful recording of cyclothems of different orders. The patterns and biostratigraphic constraint revealed in this study demonstrate the power of orbital forcing in imprinting sedimentary and geochemical signals in the rock record.  相似文献   

18.
I. Zak  R. Freund 《Tectonophysics》1981,80(1-4):27-38
The Dead Sea depression sensu stricto, forms the deepest continental part of the Dead Sea rift, a transfer which separates the Levanthine and Arabian plates. It is occupied by three distinct sedimentary bodies, deposited in basins whose depocenters are displaced northward with time. They are: the continental red beds of the Hazeva Formation (Miocene), the Bira-Lido-Gesher marls and the exceptionally thick rocksalt of the Sedom Formation (Pliocene—Early Pleistocene), and the successive Amora, Lisan and Dead Sea evaporites and clastics (Early Pleistocene—Recent). Lengthwise and crosswise asymmetries of these sedimentary basins and their respective depocenters are due to: leftlateral shear combined with anticlockwise rotation of the Arabian (eastern) plate; steeper faulting of the crustal eastern margin than of the western sedimentary margin, and modification of depositional pattern by twice filling up of basins, by Hazeva red beds during Late Miocene pause of shear and by Sedom rocksalt during Pliocene marine ingression.  相似文献   

19.
The Pénestin section (southern Brittany) presents large regular undulations, commonly interpreted as evidence of periglacial pingos. It is an upper Neogene palaeoestuary of the Vilaine River reactivated during the middle Quaternary (middle terrace). It is incised into a thick kaolinitic saprolite and deformed by saprolite diapirs. This paper presents the arguments leading to a mechanistic interpretation of the deformations at Pénestin. Neither recent transpressive tectonics nor diagnostic evidence of periglacial pingo have been found despite evidence for a late paleo-permafrost. The major deformational process is shale diapirism, initially triggered by co-seismic water supply, with further loading and lateral spreading on an already deformed and deeply weathered basement, which allowed the shale diapirism to develop. Deformations are favoured by the liquefaction of the saprolite and a seaward mass movement and recorded, rather distant, effects of an earthquake (c. 280 ka B.P.) resulting from the progressive subsidence of the southern Armorican margin. These deformations triggered by an earthquake are similar to those induced by classical shale diapirism. They are probably common in tectonically active continental environments with shallow water table.  相似文献   

20.
Subic Bay sediments and faults identified in seismic-reflection profiles were dated using sea-level curves. The oldest sedimentary packages are marine sediments subaerially exposed and eroded 20 ka. Fluvio-marine to wholly marine sediments were deposited during the ensuing transgression, and prograding units were deposited during stillstands or minor sea-level falls. Faults within the bay have three age ranges. The oldest set cuts through the pre-δ18O Stage 2 rock units, >18 ka; a second disrupts 10.2–11.3 ka sediments; and the youngest, which cut the uppermost sedimentary package, show that movements occurred about every 2 ky, most recently about 3 ka. Northwest–southeast faults that parallel onshore structures associated with Paleogene emplacement of the Zambales Ophiolite Complex to the west and north likely represent rejuvenated tectonism. The northern coastline and north–south-trending axial bay islands appear related to a lineament that dissects Mt Pinatubo farther northeast. A breach in the caldera of Mt Natib is the most likely source of a presumed pyroclastic deposit in the eastern bay that is associated with sediments about 11.3–18 ka, indicating that a Natib eruption occurred much more recently than previously documented for this volcano.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号