首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Among the compliant platforms, the tension leg platform (TLP) is a vertically moored structure with excess buoyancy. The TLP is designed to behave in the same way as any other moored structure in horizontal plane, at the same time inheriting the stiffness of a fixed platform in the vertical plane. Dynamic response analysis of a TLP to deterministic first order wave forces is presented, considering coupling between the degrees-of-freedom surge, sway, heave, roll, pitch and yaw. The analysis considers nonlinearities produced due to changes in cable tension and due to nonlinear hydrodynamic drag forces. The wave forces on the elements of the pontoon structure are calculated using Airy's wave theory and Morison's equation ignoring diffraction effects. The nonlinear equation of motion is solved in the time domain by Newmark's beta integration scheme. The effects of different parameters that influence the response of the TLP are then investigated.  相似文献   

2.
CFD and system-based simulation are used to predict broaching, surf-riding, and periodic motion for the ONR Tumblehome model, including captive and free model test validation studies. CFD shows close agreement with EFD for calm water resistance, static heel (except for sway force and yaw moment), and static drift (except for roll moment). CFD predictions of static heel in following waves also compare well with EFD except for surge force, sway force, and pitch angle. Froude-Krylov calculations of wave-induced surge force in following waves provides good agreement for high Froude number, but significantly overestimates for Froude number less than 0.2. On the other hand, CFD successfully reproduces the reduction of the wave-induced surge force near Froude number 0.2, probably because CFD can capture the 3D wave pattern. CFD free model simulations are performed for several speeds and headings and validated for the first time for surf-riding, broaching, and periodic motions. System-based simulations are carried out based on inputs from EFD, CFD, and Froude-Krylov for a dense grid of speeds and headings to predict the instability map, which were found to produce fairly similar results.  相似文献   

3.
On the parametric rolling of ships using a numerical simulation method   总被引:2,自引:0,他引:2  
B.C. Chang   《Ocean Engineering》2008,35(5-6):447-457
This paper has shown a numerical motion simulation method which can be employed to study on parametric rolling of ships in a seaway. The method takes account of the main nonlinear terms in the rolling equation which stabilize parametric rolling, including the nonlinear shape of the righting arm curve, nonlinear damping and cross coupling among all 6 degrees of freedom. For the heave, pitch, sway and yaw motions, the method uses response amplitude operators determined by means of the strip method, whereas the roll and surge motions of the ship are simulated, using nonlinear motion equations coupled with the other 4 degrees of freedom. For computing righting arms in seaways, Grim's effective wave concept is used. Using these transfer functions of effective wave together with the heave and pitch transfer functions, the mean ship immersion, its trim and the effective regular wave height are computed for every time step during the simulation. The righting arm is interpolated from tables, computed before starting the simulation, depending on these three quantities and the heel angle. The nonlinear damping moment and the effect of bilge keels are also taken into account. The numerical simulation tool has shown to be able to model the basic mechanism of parametric rolling motions. Some main characteristics of parametric rolling of ships in a seaway can be good reproduced by means of the method. Comprehensive parametric analyses on parametric rolling amplitude in regular waves have been carried out, with that the complicated parametric rolling phenomena can be understood better.  相似文献   

4.
Real time estimation of ship motions using Kalman filtering techniques   总被引:1,自引:0,他引:1  
The estimation of the heave, pitch, roll, sway, and yaw motions of a DD-963 destroyer is studied, using Kalman filtering techniques, for application in VTOL aircraft landing. The governing equations are obtained from hydrodynamic considerations in the form of linear differential equations with frequency dependent coefficients. In addition, nonminimum phase characteristics are obtained due to the spatial integration of the water wave forces. The resulting transfer matrix function is irrational and nonminimum phase. The conditions for a finite-dimensional approximation are considered and the impact of the various parameters is assessed. A detailed numerical application for a DD-963 destroyer is presented and simulations of the estimations obtained from Kalman filters are discussed.  相似文献   

5.
This study investigates the dynamic response of a Triangular Configuration Tension Leg Platform (TLP) under random sea wave loads. The random wave has been generated synthetically using the Monte-Carlo simulation with the Peirson–Moskowitz (P–M) spectrum. Diffraction effects and second-order wave forces have not been considered. The evaluation of hydrodynamic forces is carried out using the modified Morison equation with water particle kinematics evaluated using Airy's linear wave theory. Wave forces are taken to be acting in the surge degree-of-freedom. The effect of coupling of various structural degrees-of-freedom (surge, sway, heave, roll, pitch and yaw) on the dynamic response of the TLP under random wave loads is studied. Parametric studies for random waves with different Hs and Tz under the presence of current have also been carried out. For the orientation of the TLP, surge, heave and pitch degrees-of-freedom responses are influenced significantly. The surge power spectral density function (PSDF) indicates that the mean square response is affected by the amplification at the natural frequency of the surge degree-of-freedom and also at the peak frequency of the wave loading. The PSDF of the heave response shows higher peak values near the surge frequency and near the peak frequency of the wave loading. Surge response, therefore, influences heave response to the maximum. Variable submergence seems to be a major source of nonlinearity and significantly enhances the responses in surge, heave and pitch degrees-of-freedom. In the presence of current, the response behaviour of the TLP is altered significantly introducing a non-zero mean response in all degrees-of-freedom.  相似文献   

6.
7.
For the non-negligible roll-coupling effect on ship maneuvering motion, a system-based method is used to investigate 4-DOF ship maneuvering motion in calm water for the ONR tumblehome model. A 4-DOF MMG model is employed to describe ship maneuvering motion including surge, sway, roll, and yaw. Simulations of circular motion test, static drift and heel tests are performed by solving the Reynolds-averaged Navier-Stokes (RANS) equations, after a convergence study quantifying the necessary grid spacing and time step to resolve the flow field adequately. The local flow field is analyzed for the selected cases, and the global hydrodynamic forces acting on the ship model are compared with the available experiment data. Hydrodynamic derivatives relating to sway velocity, yaw rate, and heel angle are computed from the computed force/moment data using least square method, showing good agreement with those obtained from EFD data overall. In order to investigate further the validity of these derivatives, turning circle and zigzag tests are simulated by using the 4-DOF MMG model with these derivatives. The trajectories and the time histories of the kinematic variables show satisfactory agreement with the data of free-running model tests, indicating that the system-based method coupled with CFD simulation has promising capability to predict the 4-DOF ship maneuvering motion for the unconventional vessel.  相似文献   

8.
Among compliant platforms, the tension leg platform (TLP) is a hybrid structure. With respect to the horizontal degrees of freedom, it is compliant and behaves like to a floating structure, whereas with respect to the vertical degrees of freedom, it is stiff and resembles a fixed structure and is not allowed to float freely. The greatest potential for reducing costs of a TLP in the short term is to go through previously applied design approaches, to simplify the design and reduce the conservatism that so far has been incorporated in the TLP design to accommodate for the unproven nature of this type of platform. Dynamic analysis of a triangular model TLP to regular waves is presented, considering the coupling between surge, sway, heave, roll, pitch and yaw degrees of freedom. The analysis considers various nonlinearities produced due to change in the tether tension and nonlinear hydrodynamic drag force. The wave forces on the elements of the pontoon structure are calculated using Airy's wave theory and Morison's equation, ignoring the diffraction effects. The nonlinear equation of motion is solved in the time domain using Newmark's beta integration scheme. Numerical studies are conducted to compare the coupled response of a triangular TLP with that of a square TLP and the effects of different parameters that influence the response are then investigated.  相似文献   

9.
The paper presents the results of an experimental investigation of added masses and damping coefficients of a model of a fast monohull. A model of 4.5 m length between perpendiculars was constructed of fiber glass reinforced plastic (FRP) with four segments connected by a backbone. The backbone was instrumented with load cells at the positions of the cuts. This configuration, combined with load cells measuring the force exerted by the forced motion actuators, made it possible to obtain the hydrodynamic coefficients for each of the four hull segments.

The investigation focused on the vertical motions. Thus, the experimental program included forced harmonic heave and pitch motions in calm water (no incident waves). Subtracting inertial and restoring forces from total measured forces, one obtained the hydrodynamic component, which then resulted in the hydrodynamic coefficients. The effects of steady forward speed on the radiation forces were investigated by conducting model tests at four forward speeds. Finally, nonlinear effects were assessed by conducting model tests for three amplitudes of forced heave and forced pitch motions.  相似文献   


10.
S.K. Lee  H. Choi  S. Surendran 《Ocean Engineering》2006,33(17-18):2454-2465
The effects of free-surface waves on the floating structures are of great importance in the offshore industry. Among the six degrees of motions of a surface ship the absence of restoring forces in surge, sway and yaw led to critical situations for moored ships in the recent times. The order of forces in horizontal plane and their exciting frequencies are matters of interest. The resonance with the presence of moored chains led to many accidents in the recent past. The lines in dry conditions may not give good damping and in wet condition they may trigger the system to chaotic motions and jumps. Two different loading conditions of a container ship model are tested with waves in laboratory conditions in two different drafts. The mooring lines are chosen as per scale law and the energy under the response spectrum is determined from the plots. The results give new insights into the movement of a berthed ships subjected to waves. Response of the moored ship to different loading conditions in different water depths are discussed in this paper. The paper gives the order of energy due to first-order and slowly varying movement of a berthed container model in a towing tank.  相似文献   

11.
Attitude control systems for autonomous underwater vehicles are often implemented with separate controllers for pitch motion in the vertical plane and yaw motion in the horizontal plane. We propose a novel time-varying model for a streamlined autonomous underwater vehicle that explicitly displays the coupling between yaw and pitch motion due to nonzero roll angle and/or roll rate. The model facilitates the use of a multi-input multi-output H control design that is robust to yaw-pitch coupling. The efficacy of our approach is demonstrated with field trials.  相似文献   

12.
The ability of a sailing yacht to re-right due to the effect of a breaking wave is investigated experimentally. Free and constrained physical models with varying mast height and centre of gravity were tested. To investigate the influence of retained mast height on sway force and roll moment, models were constrained by attachment to a force balance for sway motion tests in calm water and stationary tests in regular and breaking waves. Free model testing, with varying mast height and centre of gravity position, were carried out in breaking waves. For these tests, model motions in six degrees of freedom were measured using photogrammetry. The constrained tests showed that while the mast height had little effect on forces when stationary in waves it had a large effect when in sway motion. As models experience large sway motions when subject to a breaking wave the mast remnant plays a critical role in re-righting dynamics. This work demonstrates that re-righting probability is more dependent on mast height retention and wave characteristics than vertical centre of gravity. This conclusion has direct implications on re-righting safety assessment as the dominant design feature in most safety standards is the vertical centre of gravity.  相似文献   

13.
《Coastal Engineering》2006,53(10):799-815
Using the volume of fluid (VOF) method, a numerical model is developed to estimate the nonlinear dynamics of a pontoon type moored submerged breakwater under wave action and the forces acting on the mooring lines, for both the vertical and inclined mooring alignments. The model is developed for a two-dimensional wave field in a vertical plane. The finite displacements of the breakwater such as sway, heave and roll in a very small time step are considered and the numerical grid cells intersected by the breakwater surfaces for changing its position due to wave action are treated using the concept of porous body model. Also, two-dimensional experimental studies are carried out to investigate the performance of the proposed model. The comparison of the computed and measured results reveals that the developed numerical model can reproduce well the dynamics of the floating body and the mooring line forces.  相似文献   

14.
K. D. Do  J. Pan  Z. P. Jiang   《Ocean Engineering》2003,30(17):2201-2225
This paper addresses an important problem in ship control application—the robust stabilization of underactuated ships on a linear course with comfort. Specifically, we develop a multivariable controller to stabilize ocean surface ships without a sway actuator on a linear course and to reduce roll and pitch simultaneously. The controller adapts to unknown parameters of the ship and constant environmental disturbances induced by wave, ocean current and wind. It is also robust to time-varying environmental disturbances, time-varying change in ship parameters and other motions of the ship such as surge and heave. The roll and pitch can be made arbitrarily small while the heading angle and sway are kept to be in reasonably small bounds. The controller development is based on Lyapunov’s direct method and backstepping technique. A Lipschitz continuous projection algorithm is used to update the estimate of the unknown parameters to avoid the parameters’ drift due to time-varying environmental disturbances. Simulations on a full-scale catamaran illustrate the effectiveness of our proposed controller.  相似文献   

15.
This note brings together and extends previously known results for the added masses and dampings of surface-piercing or completely submerged horizontal circular cylinders. For vertical (heave) motions, but not horizontal (sway) motions, a striking qualitative change occurs in these hydrodynamic coefficients when the cylinder breaks the surface. This is simply explained in terms of low-frequency asymptotics and the equivalent wavemaker method.  相似文献   

16.
Equations of yaw, sway, roll and rudder motions are formulated to represent realistic maneuvering behavior of high-speed ships such as destroyers. Important coupling terms between yaw, sway, roll and rudder were included on the basis of recent captive model test results of a high-speed ship. A series of computer runs was made by using equations of yaw, sway, roll and rudder motions. Results indicate substantial coupling effects between yaw, roll, and rudder, which introduce changes in maneuvering characteristics and reduce course stability in high-speed operation. These effects together with relatively small GM (which is typical for certain high-speed ships) produce large rolling motions in a seaway as frequently observed in actual operations. Results of digital simulations and captive model tests clearly indicate the major contributing factors to such excessive rolling motions at sea.  相似文献   

17.
Wave forces on two side-by-side boxes in close proximity under wave actions were analyzed using the OpenFOAM package. The upstream box heaved freely under wave actions, whereas the downstream box remained fixed. For comparison, a configuration in which both boxes were fixed was also considered. The effects of the heave motion of the upstream box on the wave loads, including the horizontal wave forces, vertical wave forces, and moments on the boxes, were the focus of this study. Numerical analyses showed that all frequencies at which the maximum horizontal wave forces, maximum vertical wave forces, and maximum moment appeared are dependent on the heave motion of the upstream box and that the effects of the heave motion on these frequencies are different. Furthermore,these frequencies were observed to deviate from the corresponding fluid resonant frequency. Moreover, the heave motion of the upstream box reduced the wave forces acting on both boxes and altered the variation trends of the wave forces with the incident wave frequency.  相似文献   

18.
The problem of approximating the dynamics of a floating structure in a transient wave environment with a set of constant-coefficient differential equations is explored. It is assumed that the solutions of the corresponding steady-state time-harmonic radiation and diffraction problems are available. It is proposed to fit the frequency responses associated with the ‘radiation impedance' and wave-exciting forces with appropriate analytic functions. In the case of the radiation problem, these possess certain properties corresponding to the passivity of the radiation mapping. By choosing rational approximations, the transformation from the frequency to the time domain is facilitated. The method is illustrated for both two-dimensional and three-dimensional problems using a floating cylinder, sphere, and a model of Salter's Duck which exhibits hydrodynamic coupling between sway, heave, and pitch motions.  相似文献   

19.
For general dynamic positioning systems, controllers are mainly based on the feedback of motions only in the horizontal plane. However, for marine structures with a small water plane area and low metacentric height,undesirable surge and pitch oscillations may be induced by the thruster actions. In this paper, three control laws are investigated to suppress the induced pitch motion by adding pitch rate, pitch angle or pitch acceleration into the feedback control loop. Extensive numerical simulations are conducted with a semi-submersible platform for each control law. The influences of additional terms on surge-pitch coupled motions are analyzed in both frequency and time domain. The mechanical constraints of the thrust allocation and the frequency characters of external forces are simultaneously considered. It is concluded that adding pitch angle or pitch acceleration into the feedback loop changes the natural frequency in pitch, and its performance is highly dependent on the frequency distribution of external forces, while adding pitch rate into the feedback loop is always effective in mitigating surge-pitch coupled motions.  相似文献   

20.
Large volume semi-submersible units may present significant wave induced resonant motions in heave, roll and pitch. Evaluating the slow motions of such systems is important from the initial stages of their designs and therefore requires a model that is both accurate and expedite enough. In the present article, different options for modeling the second-order hydrodynamic forces and induced motions are discussed using as a case-study the PETROBRAS 52 unit—P-52. Computations of the low frequency forces are performed in the frequency domain by means of a commercial Boundary Element Method (BEM) code. Different hydrodynamic approximations are tested and evaluated by directly comparing the predicted responses with those measured in small-scale tests performed in a wave-basin. From the results obtained in theses comparisons, a methodology based on a white-noise approach of the force spectrum is proposed. The validity of such approximation is attributable to the typically low damping levels in heave, roll and pitch motions. Furthermore, results also indicate that the second order forces may be calculated disregarding the free-surface forcing components, an option that helps to reduce the computational burden even more, rendering the procedure suitable for preliminary design calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号