首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Coupled modeling of currents and wind waves in the Kerch Strait   总被引:1,自引:0,他引:1  
We present a numerical model of the dynamics of the Kerch Strait allowing one to perform the coordinated analysis of the fields of currents and wind waves. The model includes the spectral wave module and the hydrodynamic block of currents. The influence of waves on the currents is taken into account in the hydrodynamic block both via the surface and bottom tangential stresses and via the radiation stresses. In order to take into account the inverse influence of currents upon the waves, we use the fields of currents and sea level from the hydrodynamic block in the wave module. The specific features of the structure of currents and wind waves in the strait are studied for the typical wave situations. The results of the coupled and separate simulation are compared and the importance of taking into account the mechanisms of interaction between waves and currents in the analysis of the dynamic processes in the strait is demonstrated. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 5, pp. 3–20, September–October, 2007.  相似文献   

2.
Wave-tide-surge coupled simulation for typhoon Maemi   总被引:1,自引:0,他引:1  
The main task of this study focuses on studying the effect of wave-current interaction on currents, storm surge and wind wave as well as effects of current induced wave refraction and current on waves by using numerical models which consider the bottom boundary layer and sea surface roughness parameter for shallow and smooth bed area around Korean Peninsula. The coupled system (unstructured-mesh SWAN wave and ADCIRC) run on the same unstructured mesh. This identical and homogeneous mesh allows the physics of wave-circulation interactions to be correctly resolved in both models. The unstructured mesh can be applied to a large domain allowing all energy from deep to shallow waters to be seamlessly followed. There is no nesting or overlapping of structured wave meshes, and no interpolation is required. In response to typhoon Maemi (2003), all model components were validated independently, and shown to provide a faithful representation of the system’s response to this storm. The waves and storm surge were allowed to develop on the continental shelf and interact with the complex nearshore environment. The resulting modeling system can be used extensively for prediction of the typhoon surge. The result show that it is important to incorporate the wave-current interaction effect into coastal area in the wave-tide-surge coupled model. At the same time, it should consider effects of depth-induced wave breaking, wind field, currents and sea surface elevation in prediction of waves. Specially, we found that: (1) wave radiation stress enhanced the current and surge elevation otherwise wave enhanced nonlinear bottom boundary layer decreased that, (2) wind wave was significantly controlled by sea surface roughness thus we cautiously took the experimental expression. The resulting modeling system can be used for hindcasting (prediction) the wave-tide-surge coupled environments at complex coastline, shallow water and fine sediment area like areas around Korean Peninsula.  相似文献   

3.
It is generally accepted that the stationary wind circulation in the lower layer of a two-layer sea is negligibly weak even if the bottom topography is taken into account. This opinion is true for the oceanic scales where the bottom topography has no global slope along the meridian. However, in the case of circulation in closed and semiclosed seas, the trenchlike structure of the bottom topography together with the beta-effect can significantly affect the intensity of currents in the bottom layer of the sea. In the present work, we use a simple model to consider an example of intensification of deep-water wind-induced circulation under the influence of the meridional slope of the bottom. The discovered effect enables us, in particular, to make an assumption that the deep-water circulation in the Black Sea is much more intense than it was supposed earlier. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 2, pp. 3–10, March–April, 2005.  相似文献   

4.
A coupling model for calculating wind-driven currents and waves in a shallow basin with allowance for current-wave interactions is introduced. The model is constructed on the basis of the three-dimensional σ-coordinate model of currents [3] and the SWAN (Simulating Waves Nearshore) spectral wave model [4]. The effect of waves on currents is taken into account in the coefficients of surface and bottom friction through roughness parameters. Results of combined modeling of stationary fields of currents and waves generated by spatially homogeneous wind are correlated with the corresponding results of separate modeling for a cylindrical basin of constant depth and the water area of Lake Donuzlav (the northwestern coast of the Crimea). The allowance for the effect of waves during calculation of tangential wind stresses in the model of currents is shown to be among major factors intensifying water circulation and forming spatial inhomogeneities of the vortex type. In addition, some cases of local decreases in tangential wind stresses are revealed; they appear when the lake is penetrated from the side of the open sea by relatively long waves, which significantly decrease the roughness of the water surface.  相似文献   

5.
A barotropic variant of a multilevel numerical model based on primitive equations of sea dynamics is applied to calculate wind-induced circulation in the Donuzlav lake. Water exchange with the open sea is considered. The paper examines several situations involving wind forcing. It shows that a two-layer system of currents occurs in the lake. The effect of the bottom topography is essential, being traceable up to the surface. Translated by Vladimir A. Puchkin.  相似文献   

6.
A three-dimensional, nonlinear, primitive equation ocean general circulation model is used to study the response of the Gulf of Mexico to Hurricane Frederic. The model has free surface dynamics and a second order turbulence closure scheme for the mixed layer. Realistic coastlines, bottom topography and open boundary conditions are used in the study. The model has a vertical sigma coordinate with 18 levels, and a horizontal resolution of 0.2°×0.2° for the entire Gulf. The study focuses on hurricane generated sea level, current, and coastally trapped wave (CTW) responses of the Gulf. Time series of sea levels from U.S. coastal tide gauge stations and the numerical model simulation of sea levels and currents on the shelf are used to study sea level, current and CTW responses. Both model sea levels and observations from tide gauge stations show a westward progression of the surge as a CTW response. The results of the study of sea levels and currents indicate that CTW propagate to the west with phase speeds of 7–10 m s–1. There is also a strong nonlinear interaction between the Loop Current and hurricane induced currents. The surface current attains a maximum of 200 cm s–1 in the eastern Gulf. The model surface elevation at several locations is compared with tide gauge data. The current meter data at three moorings are also compared with the model currents. The model simulations show good agreement with observed data for the hurricane induced coastally trapped wave, storm surge, and current distribution in the Gulf.  相似文献   

7.
渤海波浪和潮汐风暴潮相互作用对波浪影响的数值研究   总被引:11,自引:2,他引:11  
基于依赖波浪成长状态波令的表面风应力,提出了一个波浪和风暴潮潮汐运动相互作用的联合数值模式,实现了第三代波浪模式和三维风暴潮潮汐模式联合作用的数值研究,并结合渤海典型天气个例的研究,给出了渤海波浪和风暴潮潮汐相互作用对波浪影响的机制和大小量级的定量估计。研究表明,对不同天气过程,波浪和风暴潮潮汐相互作用对波浪影响的性质和大小不同;对强寒潮过程,对波浪影响主要由风暴潮所支配波高调制可达1m,在黄河口区一般达0.5m;对弱天气过程,对波浪影响主要由潮所控制,波高调制约在0.2m,联合作用模式给出的结果与实测更吻合。  相似文献   

8.
The boundary layer characteristics beneath waves transforming on a natural beach are affected by both waves and wave-induced currents, and their predictability is more difficult and challenging than for those observed over a seabed of uniform depth. In this research, a first-order boundary layer model is developed to investigate the characteristics of bottom boundary layers in a wave–current coexisting environment beneath shoaling and breaking waves. The main difference between the present modeling approach and previous methods is in the mathematical formulation for the mean horizontal pressure gradient term in the governing equations for the cross-shore wave-induced currents. This term is obtained from the wave-averaged momentum equation, and its magnitude depends on the balance between the wave excess momentum flux gradient and the hydrostatic pressure gradient due to spatial variations in the wave field of propagating waves and mean water level fluctuations. A turbulence closure scheme is used with a modified low Reynolds number k-ε model. The model was validated with two published experimental datasets for normally incident shoaling and breaking waves over a sloping seabed. For shoaling waves, model results agree well with data for the instantaneous velocity profiles, oscillatory wave amplitudes, and mean velocity profiles. For breaking waves, a good agreement is obtained between model and data for the vertical distribution of mean shear stress. In particular, the model reproduced the local onshore mean flow near the bottom beneath shoaling waves, and the vertically decreasing pattern of mean shear stress beneath breaking waves. These successful demonstrations for wave–current bottom boundary layers are attributed to a novel formulation of the mean pressure gradient incorporated in the present model. The proposed new formulation plays an important role in modeling the boundary layer characteristics beneath shoaling and breaking waves, and ensuring that the present model is applicable to nearshore sediment transport and morphology evolution.  相似文献   

9.
一个简单的二维线性模式用于考查近海海洋对过境热带风暴的动力响应过程中的底坡度和底摩擦效应。选择了自东向西和向西后转向的两个模式风暴路径。数值试验结果表明,海底坡度与风暴引起的水位波动、风暴中心后部的尾流以及路径右侧后方面的涡旋密切相关。而底摩察是阻尼风暴潮和风暴流持续增长的重要因子。结果还表明,近海对风暴的强响应偏向于风暴轨迹的右侧,这与Chang和Anthes(1978)对深海响应的研究结论是一  相似文献   

10.
A coupled wave–tide–surge model has been developed in this study in order to investigate the effect of the interactions among tides, storm surges, and wind waves. The coupled model is based on the synchronous dynamic coupling of a third-generation wave model, WAM cycle 4, and the two-dimensional tide–surge model. The surface stress, which is generated by interactions between wind and wave, is calculated by using the WAM model directly based on an analytical approximation of the results using the quasi-linear theory of wave generation. The changes in bottom friction are created by the interactions between waves and currents and calculated by using simplified bottom boundary layer model. In consequence, the combined wave–current-induced bottom velocity and effective bottom drag coefficient were increased in the shallow waters during the strong storm conditions.  相似文献   

11.
We discuss the results of the numerical experiment aimed at the simulation of the behavior of currents and transformations of the temperature and salt modes in the Sevastopol Bay in January–February 1997. In the numerical analysis, we use actual data on the velocity and direction of the wind, sea surface temperature, and the discharge of River Chernaya. It is shown that the circulation and structure of hydrological fields are mainly connected with the direction of the wind, its intensity, and variability in the course of time. Since the analyzed water area is shallow, the currents inside the bay undergo rapid transformations (less than for an hour after changes in the wind). At the same time, the transformations of the thermohaline fields are slower. Due to the inflow of fresh waters of River Chernaya and salt waters from the open sea through the strait, the structure of thermohaline fields formed in the bay is nonuniform (both in the vertical and horizontal directions). The distribution of salinity plays the main role in the formation of the vertical stratification, which is natural for the winter season. Due to the process of freshening of water, a quite high vertical salinity gradient is formed in the upper layer of the sea. As a result, the process of cooling does not lead to the appearance of convection and inversions of temperature are formed in the case where warmer waters are located in the bottom layers. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 2, pp. 60–76, March–April, 2005.  相似文献   

12.
The Princeton Ocean Model is adapted to the water area of the Balaklava Bay for the numerical analysis of circulation. The calculations are performed with the help of the diagnostic method by using the data of the hydrological survey carried out in the bay in August 1992. We study the structure of the surface and bottom currents in the analyzed period as well as the vertical circulation of waters and the circulation averaged over the depth. The obtained three-dimensional fields of currents are used for the numerical analysis of the process of propagation of passive contaminating impurities from the sources located on the coasts of the Balaklava Bay. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 3, pp. 49–61, May–June, 2005.  相似文献   

13.
随着海南深水网箱养殖规模的不断扩大,海浪精细化预报的需求越来越紧迫。以海南岛周边海域为目标区域,基于近岸海洋模式ADCIRC(Advancedcirculationmodel)和海浪模式SWAN(Simulating WavesNearshore),建立了海南岛近岸养殖区台风浪数值预报系统。该系统采用非结构高分辨率网格,近岸分辨率达到了100m。选取2014年第9号超强台风"威马逊"(RAMMASUN)进行针对海南岛近岸养殖区的台风浪数值模拟后报。模拟结果与实测数据较为吻合。采用全球预报系统GFS(Global Forecast System)风场和气压场数据作为驱动场对2018年7月的一次热带风暴过程进行预报,48小时、24小时预报的有效波高和实测结果比较平均相对误差分别为20.75%和17.0%。总体来说,该模型的预报精度可以满足近岸养殖区台风浪预报业务的需求。  相似文献   

14.
In this paper, the water waves and wave-induced longshore currents in Obaky coastal water which is located at the Mediterranean coast of Turkey were numerically studied. The numerical model is based on the parabolic mild-slope equation for coastal water waves and the nonlinear shallow water equation for the wave-induced currents. The wave transformation under the effects of shoaling, refraction, diffraction and breaking is considered, and the wave provides radiation stresses for driving currents in the model. The numerical results for the water wave-induced longshore currents were validated by the measured data to demonstrate the efficiency of the numerical model. Then the water waves and longshore currents induced by the waves from main directions were numerically simulated and analyzed based on the numerical results. The numerical results show that the movement of the longshore currents was different while the wave propagated to a coastal zone from different directions.  相似文献   

15.
Within the framework of the linear theory of long waves, with regard for the turbulent viscosity, we study the development of tidal currents in a basin of variable depth with two straits. The problem is solved numerically. The velocity field on the strait-basin boundary is regarded as known. The numerical analysis is performed for different depths of the straits. We study the influence of the geometric characteristics of the basin on the amplitudes of the profile of free surface and wave velocity and establish the dependences of the wave characteristics on the period of current velocities in the strait and the parameters of the basin. In particular, it is shown that the increase in the period of current velocities in the strait leads to significant changes in the level and structure of currents. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 4, pp. 3–12, July–August, 2007.  相似文献   

16.
We present the results of numerical simulation of currents and sea level for the Sea of Azov. In calculations, we use a three-dimensional nonlinear mathematical model taking into account the tangential wind stresses. We present the results of numerical analysis of the fields of currents and the amplitudes of oscillations of the sea level at the coastal stations as functions of the maximum velocity and the period of constant action of the west wind. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 1, pp. 12–25, January–February, 2008.  相似文献   

17.
The seasonal climatic circulation of the sea reconstructed on the basis of assimilation of new arrays of many-year average hydrological data in a model is analyzed. Five layers are discovered in the structure of climatic currents in the sea in depth: the surface Ekman layer (∼ 10 m), a layer with small vertical gradients of the kinetic energy (∼ 10–60 m), a layer with relatively high vertical gradients of the kinetic energy (∼ 60–150 m), a layer with gradual decrease in the kinetic energy and intensification (from 250–350 m) of the east cyclonic gyre and Batumi anticyclonic eddy (∼ 150–1000 m), and an abyssal layer characterized by an almost barotropic velocity (∼ 1000–2000 m). The specific features of the seasonal evolution of currents at these depths are investigated. It is shown that the key role in the formation of deep-water circulation of the sea is played by the south east flow, east cyclonic gyre, and Batumi anticyclonic eddy. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 6, pp. 28–45, November–December, 2005.  相似文献   

18.
19.
An artificial sand wave on the Dutch shoreface of the North Sea has been studied in conditions with relatively strong tidal currents in the range of 0.5 to 1 m/s and sediments in the medium sand size range of 0.2 to 0.5 mm. The sand wave is perpendicular to the tidal current and has a maximum height and length of the order of 5 m and 1 km, respectively. The sand wave is dynamically active and shows migration rates of the order of a few metres per year. A numerical morphodynamic model (DELFT3D model) has been used to simulate the morphological behaviour of the sand wave in the North Sea. This model approach is based on the numerical solution of the three-dimensional shallow water equations in combination with a surface wave propagation model (wind waves) and the advection–diffusion equation for the sediment particles with online bed updating after each time step. The model results show that the sand wave grows in the case of dominant bed-load transport (weak tidal currents; relatively coarse sediment; small roughness height; low waves) and that the sand wave decays in the case of dominant suspended transport (strong currents, relatively fine sediment, large roughness height; storm waves).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号