首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   1篇
地球物理   3篇
地质学   14篇
海洋学   17篇
天文学   4篇
  2018年   2篇
  2016年   2篇
  2014年   1篇
  2013年   3篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2006年   1篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1998年   3篇
  1994年   1篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1983年   3篇
排序方式: 共有38条查询结果,搜索用时 125 毫秒
1.
2.
Leachate was a major cause of high risk classification. This landfill was set as one with highest possible risk classification due to high vulnerability of private water wells to contamination from leachate flows. The aim of this study is to determine the present and possible environmental risks of the leachate spreading from solid waste dumping site in Tunceli and offer solutions for those determined environmental risks. For this purpose, the characteristics of the leachate were monitored at two station points detected in the solid waste dumping site for 7 months. The characteristics of the leachate were found for pH between 7.9 and 8.7. Oxidation reduction potential (ORP) occurred between ??143 and ??48 mV while conductivity was between 2.8 and 2.6 mS. Total solid matter (TSM) and suspended solid matter (SSM) were between 1000 and 7000 mg/l, 0.2–22.5 mg/l, respectively, while total volatile solids (TVS) occurred between 300 and 1800 mg/l for the two stations. Alkalinity was approximately between 290 and 5210 mg/l, while biological oxygen demand (BOD5) and chemical oxygen demand (COD) results were 15–606 mg/l and 60–1160 mg/l, respectively, for two stations in all sampling time. In both stations, orthophosphate, ammonium nitrogen, nitrate, sulfate, and chloride analyses stayed between 3.04 and 921.1 mg/l; 0.29–619.36 mg/l; 8.94–135.04 mg/l; 125.9–1360.9 mg/l and 99.9–1249.9 mg/l, respectively, in 6 months. As a result of the characterization studies obtained from the leachate, it was found that the amounts of water entering into the waste mass and the retention period of the water in the mass were very effective in the temporal character change of the leachate. According to the Discharge Standards for Solid Waste Assessment and Disposal Facilities and Discharge to Waste Water Infrastructure Facilities of waste management regulation, the results were found to be risky. Consequently, the site in question needs to be urgently rehabilitated when considering the environmental risks of the leachate spreading from the site.  相似文献   
3.
4.
The hydrodynamic aspects of the motion of a viscous fluid having a free surface in a rolling tank have been investigated. In a sequence of three papers, an analytical technique together with a numerical solution method will be presented to describe the sloshing phenomenon accurately and efficiently. This first paper introduces a linear theory of viscous liquid sloshing and formulates a boundary value problem subject to appropriate conditions. Viscosity is included in the problem formulation and its effects are properly accounted for. The second paper will describe a solution of the problem in function space by the truncation of infinite series. Boundary conditions are satisfied through the use of Fourier series expansions. However, the no-slip condition at the side walls can also be treated in a least-squares sense.Among the results that will be reported in the third paper are the effects of viscosity on liquid sloshing phenomenon and the dependence of viscous dissipation on the Reynolds and Froude numbers. Furthermore, the influence of the tank aspect ratio on viscous dissipation has been explored. These results demonstrate some unknown features of the functional relationships that exist between the dissipated energy and the Reynolds and Froude numbers. Similarly, the dependence of the dissipated energy on the aspect ratio has been analytically studied. The results obtained agree with the physical laws for the range of parameters investigated.  相似文献   
5.
Active faults aligning in NW–SE direction and forming flower structures of strike-slip faults were observed in shallow seismic data from the shelf offshore of Avcılar in the northern Marmara Sea. By following the parallel drainage pattern and scarps, these faults were traced as NW–SE-directed lineaments in the morphology of the northern onshore sector of the Marmara Sea (eastern Thrace Peninsula). Right-lateral displacements in two watersheds of drainage and on the coast of the Marmara Sea and Black Sea are associated with these lineaments. This right-lateral displacement along the course of these faults suggests a new, active strike-slip fault zone located at the NW extension of the northern boundary fault of the ?ınarcık Basin in the Marmara Sea. This new fault zone is interpreted as the NW extension of the northern branch of the North Anatolian Fault Zone (NAFZ), extending from the ?ınarcık Basin of the Marmara Sea to the Black Sea coast of the Thrace Peninsula, and passing through B üy ük ?ekmece and K ü ? ük ?ekmece lagoons. These data suggest that the rupture of the 17 August 1999 earthquake in the NAFZ may have extended through Avcılar. Indeed, Avcılar and İzmit, both located on the Marmara Sea coast along the rupture route, were strongly struck by the earthquake whereas the settlements between Avcılar and İzmit were much less affected. Therefore, this interpretation can explain the extraordinary damage in Avcılar, based on the newly discovered rupture of the NAFZ in the Marmara Sea. However, this suggestion needs to be confirmed by further seismological studies.  相似文献   
6.
The Baluti Formation is exposed succession of the Rhaetian age (Upper Triassic). These strata are interpreted herein for the first time to redeposit in a deep marine setting (distally steepened carbonate ramp/medial to distal slope) on the northwestern margin of the Neo-Tethys. The Galley Derash section is apparently continuous with no evidence for either subaerial exposure or submarine erosion. The absence of erosional scours in the study area confirms emplacement of these strata below both fair-weather and storm wave base. Event beds, particularly those resulting from sediment gravity flows, dominate the Rhaetian interval. The Upper Rhaetian strata are primarily assigned to the Galley Derash Valley. It records an upward transition from moderate-scale, olistolith-bearing debris flow deposits (debrite) to medium-/thin-bedded turbidites remobilized as sediment slumps/slides. The succession is dominated by medium- to thin-bedded calcareous turbidites and hemipelagic suspension deposits. Very low fossil assemblages, particularly stromatolite fragments, and planktonic bivalves occur within some intervals in the section. Rapid and relatively continuous sedimentation is attested to by the thickness of the section, the abundance of calcareous turbidites, and the thin nature of the intercalated hemipelagic beds. Low content of badly preserved fossils and evidence of continuous and rapid sedimentation refer to alteration by tectonic disturbances or diagenesis. This makes the Baluti Beds as a supplementary section for the Rhaetian successions in Iraq.  相似文献   
7.
Active faults aligning in NW–SE direction and forming flower structures of strike-slip faults were observed in shallow seismic data from the shelf offshore of Avc?lar in the northern Marmara Sea. By following the parallel drainage pattern and scarps, these faults were traced as NW–SE-directed lineaments in the morphology of the northern onshore sector of the Marmara Sea (eastern Thrace Peninsula). Right-lateral displacements in two watersheds of drainage and on the coast of the Marmara Sea and Black Sea are associated with these lineaments. This right-lateral displacement along the course of these faults suggests a new, active strike-slip fault zone located at the NW extension of the northern boundary fault of the Ç?narc?k Basin in the Marmara Sea. This new fault zone is interpreted as the NW extension of the northern branch of the North Anatolian Fault Zone (NAFZ), extending from the Ç?narc?k Basin of the Marmara Sea to the Black Sea coast of the Thrace Peninsula, and passing through B üy ük çekmece and K ü ç ük çekmece lagoons. These data suggest that the rupture of the 17 August 1999 earthquake in the NAFZ may have extended through Avc?lar. Indeed, Avc?lar and ?zmit, both located on the Marmara Sea coast along the rupture route, were strongly struck by the earthquake whereas the settlements between Avc?lar and ?zmit were much less affected. Therefore, this interpretation can explain the extraordinary damage in Avc?lar, based on the newly discovered rupture of the NAFZ in the Marmara Sea. However, this suggestion needs to be confirmed by further seismological studies.  相似文献   
8.
Palaeo- and Neo-Tethyan-related magmatic and metamorphic units crop out in Konya region in the south central Anatolia. The Neotethyan assemblage is characterized by mélange and ophiolitic units of Late Cretaceous age. They tectonically overlie the Middle Triassic–Upper Cretaceous neritic to pelagic carbonates of the Tauride platform. The metamorphic sole rocks within the Konya mélange crop out as thin slices beneath the sheared serpentinites and harzburgites. The rock types in the metamorphic sole are amphibolite, epidote-amphibolite, garnet-amphibole schist, plagioclase-amphibole schist, plagioclase-epidote-amphibole schist and quartz-amphibole schist. The geochemistry of the metamorphic sole rocks suggests that they were derived from the alkaline (seamount) and tholeiitic (E-MORB, IAT and boninitic type) magmatic rocks from the upper part of the Neotethyan oceanic crust. Four samples from the amphibolitic rocks yielded 40Ar/39Ar isotopic ages, ranging from 87.04 ± .36 Ma to 84.66 ± .30 Ma. Comparison of geochemistry and geochronology for the amphibolitic rocks suggests that the alkaline amphibolite (seamount-type) cooled below 510 ± 25 °C at 87 Ma whereas the tholeiitic amphibolites at 85 Ma during intraoceanic thrusting/subduction. When all the evidence combined together, the intraoceanic subduction initiated in the vicinity of an off-axis plume or a plume-centered spreading ridge in the Inner Tauride Ocean at 87 Ma. During the later stage of the steady-state subduction, the E-MORB volcanics on the top of the down-going slab and the arc-type basalts (IAT/boninitic) detached from the leading edge of the overriding plate, entered the subduction zone after ~2 my and metamorphosed to amphibolite facies in the Inner Tauride Ocean. Duration of the intraoceanic detachment (~87 Ma) and ophiolite emplacement onto the Tauride-Anatolide Platform (Tav?anl? Zone), followed by subsequent HP/LT metamorphism (~82 Ma) spanned ~5 my in the western part of the Inner Tauride Ocean.  相似文献   
9.
10.
Significant seismic events have occurred around the world during winter months in regions where cold temperatures cause ground freezing. Current seismic design practice does not address the effects of cold temperatures in the seasonally frozen areas. Since many elevated water tank structures in cold regions are located in seismic active zones, determining the effect of seasonally frozen soil on the stochastic response of elevated water tank structures subjected to random seismic excitation is an important structural consideration. A three dimensional finite element model, which considers viscous boundaries, was built up to obtain the stochastic seismic behavior of an elevated water tank–fluid–soil interaction system for frozen soil condition. For this model, the power spectral density function represents random ground motion applied to each support point of the three dimensional finite element model of the elevated water tank–fluid–soil interaction system. Numerical results show that the soil temperature affects the seismic response of the elevated water tank; whereas the variation in the thickness of the frozen soil causes insignificant changes on the response. In addition, the effect of the variation in water tank’s fullness on the stochastic response of the coupled system is investigated in the study. As a result, the seasonal frost changes the foundation soil stiffness and may impact seismic behavior of the water tank.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号