首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aging bridges coupled with increasing traffic loads are producing a severe toll on the nation's infrastructure. This has made it necessary to take a closer look at the health of existing bridges and develop automated damage identification methods if possible. Recent works in the field of structural dynamics have shown that damage detection techniques utilizing parameters like mode shapes, modal frequencies and damping ratios can be used to identify damage in structural systems. It is, however, important to be able to establish a baseline model for the structure first, and then a model updating technique can be utilized to evaluate the condition of the structure from time to time. It is with this goal in mind that the authors have decided to establish the process for obtaining a baseline model for a long span bridge. Based on the actual design drawings of a bridge, finite element (FE) models of the bridge in question are developed using SDRC-IDEAS. Three models of the bridge are simulated using Normal Mode Dynamics solver in SDRC-IDEAS to obtain the modal parameters of interest, in this case the modal frequencies and the mode shapes. A modal assurance criteria (MAC) is utilized to compare the different simulated mode shapes and, finally, the modal frequencies that have been obtained from the FE analysis are compared to frequencies that have been obtained from some preliminary field tests.  相似文献   

2.
In this study, we determine an updated finite element model of a reinforced concrete building—which was damaged from shaking during 1994 Northridge earthquake—using forced‐vibration test data and a novel model‐updating technique. Developed and verified in the companion paper (viz. BVLSrc, Earthquake Eng. Struct. Dyn. 2006; this issue), this iterative technique incorporates novel sensitivity‐based relative constraints to avoid ill conditioning that results from spatial incompleteness of measured data. We used frequency response functions and natural frequencies as input for the model‐updating problem. These data were extracted from measurements obtained during a white‐noise excitation applied at the roof of the building using a linear inertial shaker. Flexural stiffness values of properly grouped structural members, modal damping ratios, and translational and rotational mass values were chosen as the updating parameters, so that the converged results had direct physical interpretations, and thus, comparisons with common parameters used in seismic design and evaluation of buildings could be made. We investigated the veracity of the updated finite element model by comparing the predicted and measured dynamic responses under a second, and different type of forced (sine‐sweep) vibration, test. These results indicate that the updated model replicates the dynamic behaviour of the building reasonably well. Furthermore, the updated stiffness factors appear to be well correlated with the observed building damage patterns (i.e. their location and severity). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
荣超  陈勇  周瑜 《地震工程学报》2019,41(2):539-544
参数化的装配式钢混组合结构建筑信息模型缺少结构信息描述,无法实现装配式钢混组合结构图档的修正和自主更新,对结构构件的损伤评估效果差,抗震加固性能差。据此提出用于装配式钢混组合结构抗震加固的建筑信息模型,模型框架包括建筑设计模型、结构设计模型、结构抗震加固设计和损伤评估;通过结构构件的实体定义、属性定义和关联性定义,全面描述柱、梁、板和墙等钢混组合结构构件的抗震加固性能信息;采用模糊加固评估方法获取精准的结构构建综合损伤指数,评估结构构件的加固等级,提高抗震加固性能。经实验证明,所设计模型得到的结构损伤指数与实际损伤指数的误差低于0.03,说明该模型分析装配式钢混组合结构抗震加固性能准确性较高。  相似文献   

4.
建筑结构响应是有效反映结构动力特性的最直接参数,开展结构动力响应实时监测可为结构抗震韧性评估提供准确的地震动输入。本文基于非结构构件损失构建结构抗震韧性评估方法,研究确定位移敏感型和加速度敏感型非结构构件的易损性模型。选择某六层钢筋混凝土框架结构进行实时监测系统建设,基于监测数据开展结构抗震韧性评估。通过构建建筑信息模型(BIM),并在有限元分析软件OpenSees中建立结构弹塑性分析模型,利用实时监测数据实现结构模型更新,直至监测数据与模型分析结果一致。由于实时监测数据峰值较低,结构不会发生塑性变形,因此选择10条双向非脉冲地震动模拟实时监测地震记录。根据层间位移角和楼面加速度分布,开展结构功能损失评估,得到该建筑结构的抗震韧性得分。分析表明,该结构抗震性能较好,在遭受地震破坏后,会发生非结构构件脱落,需要采取有效措施进一步提升建筑抗震韧性水平。  相似文献   

5.
Hybrid simulation combines numerical and experimental methods for cost‐effective, large‐scale testing of structures under simulated earthquake loading. Structural system level response can be obtained by expressing the equation of motion for the combined experimental and numerical substructures, and solved using time‐stepping integration similar to pure numerical simulations. It is often assumed that a reliable model exists for the numerical substructures while the experimental substructures correspond to parts of the structure that are difficult to model. A wealth of data becomes available during the simulation from the measured experiment response that can be used to improve upon the numerical models, particularly if a component with similar structural configuration and material properties is being tested and subjected to a comparable load pattern. To take advantage of experimental measurements, a new hybrid test framework is proposed with an updating scheme to update the initial modeling parameters of the numerical model based on the instantaneously‐measured response of the experimental substructures as the test progresses. Numerical simulations are first conducted to evaluate key algorithms for the selection and calibration of modeling parameters that can be updated. The framework is then expanded to conduct actual hybrid simulations of a structural frame model including a physical substructure in the laboratory and a numerical substructure that is updated during the tests. The effectiveness of the proposed framework is demonstrated for a simple frame structure but is extendable to more complex structural behavior and models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
传统方法一般依据静力检测数据测试居民建筑钢结构的极限承载力,对构件数量的要求较高,无法量测隐蔽构件,测试结果精度低。因此提出基于振动参数以及动力模型修正的地震区居民建筑钢结构极限承载力预测与分析方法,分析建筑钢结构振动参数与极限承载能力的关系,塑造地震区居民建筑钢结构简化以及振动方程,获取其极限载荷与振动参数间的关系。采用基于动力模型修正的极限承载力评估方法,基于动力模型修正理论,采用线性屈曲法、几何非线性法以及双重非线性分析法,对地震区居民建筑钢结构极限承载力进行检测。实验结果说明,所提方法能对居民建筑钢结构立柱轴向性和大钩荷载关系以及荷载-扰度曲线,且实施数值运算效果好,预测获取的极限承载力值精度高,建筑的钢结构状态比较稳定。  相似文献   

7.
Confined masonry (CM) is a typical building technique in Latin American countries. This technique, due to its simplicity of construction and similarity with traditional practices of reinforced concrete building, presents a potential of use in European regions with moderate-to-high seismicity. However, most of the procedures for seismic design in codes for Latin America are force-based, which appears to be inadequate due to the high dissipative response observed for CM. This paper presents a simplified numerical-analytical approach to model CM structures using pushover analysis, aiming to apply performance-based design procedures. First, a data mining process is performed on a database of experimental results collected from lateral tests on CM walls to adjust prediction models for the wall shear strength and to determine the input relevance through a sensitivity analysis. Then, an analytical model of CM structures for pushover analysis is proposed with basis on a wide-column approach that employs an adaptive shear load-displacement constitutive relation. The proposed method is compared with a discrete element model that represents explicitly the confinements-masonry interaction, against the experimental results obtained in a quasi-static test of a full-scale tridimensional CM structure. The accuracy of the predictions from both methods is very satisfactory, allowing to capture the base shear-displacement envelope and also the damage patterns of the structure, thus, demonstrating the ability of the methods to be used in performance-based seismic assessment and design of CM buildings.  相似文献   

8.
Orthotropic membrane components and structures are widely used in building structures, instruments and meters, electronic engineering, space and aeronautics, etc., because of their light weights. However, the same lightweight combined with low stiffness make membranes prone to vibration under dynamic loads, and in some cases the vibration may lead to structural failure. Herein, the undamped nonlinear vibration response of pretension rectangular orthotropic membrane structures subjected to impact loading is studied by analytical and numerical methods. The analytical solution is obtained by solving the governing equations by the Bubnov-Galerkin method and the Lindstedt-Poincaré perturbation method. Numerical analysis has also been carried out based on the same theoretical model. The analytical and numerical results have been compared and analyzed, and the infl uence of various model parameters on membrane vibration discussed. The results obtained herein provide some theoretical basis for the vibration control and dynamic design of orthotropic membrane components and structures.  相似文献   

9.
The frequent time‐lapse observations from the life of field seismic system across the Valhall field provide a wealth of information. The responses from the production and injection wells can be observed through time‐shift and amplitude changes. These observations can be compared to modelled synthetic seismic responses from a reservoir simulation model of the Valhall Field. The observed differences between the observations and the modelling are used to update and improve the history match of the reservoir model. The uncertainty of the resulting model is reduced and a more confident prediction of future reservoir performance is provided. A workflow is presented to convert the reservoir model to a synthetic seismic response and compare the results to the observed time‐lapse responses for any time range and area of interest. Correlation based match quality factors are calculated to quantify the visual differences. This match quality factor allows us to quantitatively compare alternative reservoir models to help identify the parameters that best match the seismic observations. Three different case studies are shown where this workflow has helped to reduce the uncertainty range associated with specific reservoir parameters. By updating various reservoir model parameters we have been able to improve the match to the observations and thereby improve the overall reservoir model predictability. The examples show positive results in a range of different reservoir modelling issues, which indicates the flexibility of this workflow and the ability to have an impact in most reservoir modelling challenges.  相似文献   

10.
Abstract

Flood forecasting is of prime importance when it comes to reducing the possible number of lives lost to storm-induced floods. Because rainfall-runoff models are far from being perfect, hydrologists need to continuously update outputs from the rainfall-runoff model they use, in order to adapt to the actual emergency situation. This paper introduces a new updating procedure that can be combined with conceptual rainfall-runoff models for flood forecasting purposes. Conceptual models are highly nonlinear and cannot easily accommodate theoretically optimal methods such as Kalman filtering. Most methods developed so far mainly update the states of the system, i.e. the contents of the reservoirs involved in the rainfall-runoff model. The new parameter updating method proves to be superior to a standard error correction method on four watersheds whose floods can cause damage to the greater Paris area. Moreover, further developments of the approach are possible, especially along the idea of combining parameter updating with assimilation of additional data such as soil moisture data from field measurements and/or from remote sensing.  相似文献   

11.
In this report, three different models in increasing order of complexity have been used to identify the seismic behaviour of a three-storey steel structure subjected to arbitrary forcing functions, all of which excite responses within the elastic range. All of the models are constructed using system identification. In the first model, five parameters have been used to identify the frame. Treating the system as a shear building, we assign one stiffness coefficient to each floor and introduce Rayleigh-type damping with two additional parameters. The mass, assumed to be concentrated at a floor level, is kept constant throughout the study. The parameters are established using a modified Gauss-Newton algorithm. The match between measured and predicted quantities is satisfactory when these quantities are restricted to floor accelerations or displacements. To remove the constraint imposed by assuming that the frame deforms as a shear building, a second model with eight parameters is introduced, allowing rotations of the joints as independent degrees of freedom. Six of the eight parameters are related to the stiffness characteristics of the structural members while the remaining two are related to damping as before. In constructing the eight-parameter model, we learned that it is the effective lengths of the members that change during optimization. We also found that the independent response quantities, floor accelerations and joint rotations, must be used in the cost function for the optimization algorithm to converge. The match between measured and predicted quantities for the eight-parameter model is excellent. The set of parameters derived from the minimum squared error gives a model that shows very good correlation using information on the full duration of the pulse or only a portion of it. Also the same correlation exists between the coefficients obtained from different excitations. In an effort to explain the values of the parameters associated with the girders, an additional degree of freedom, namely, the pitching motion of the shaking table, is introduced as an additional degree of freedom. The paper presents, therefore, a five-, an eight- and, finally, a nine-parameter model.  相似文献   

12.
Structural identification based on measured dynamic data is formulated in a multi‐objective context that allows the simultaneous minimization of the various objectives related to the fit between measured and model predicted data. Thus, the need for using arbitrary weighting factors for weighting the relative importance of each objective is eliminated. For conflicting objectives there is no longer one solution but rather a whole set of acceptable compromise solutions, known as Pareto solutions, which are optimal in the sense that they cannot be improved in any objective without causing degradation in at least one other objective. The strength Pareto evolutionary algorithm is used to estimate the set of Pareto optimal structural models and the corresponding Pareto front. The multi‐objective structural identification framework is presented for linear models and measured data consisting of modal frequencies and modeshapes. The applicability of the framework to non‐linear model identification is also addressed. The framework is illustrated by identifying the Pareto optimal models for a scaled laboratory building structure using experimentally obtained modal data. A large variability in the Pareto optimal structural models is observed. It is demonstrated that the structural reliability predictions computed from the identified Pareto optimal models may vary considerably. The proposed methodology can be used to explore the variability in such predictions and provide updated structural safety assessments, taking into consideration all Pareto structural models that are consistent with the measured data. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
A statistical method with combined uncertain frequency and mode shape data for structural damage identification is proposed. By comparing the measured vibration data before damage or analytical finite element model of the intact structure with those measured after damage, the finite element model is updated so that its vibration characteristic changes are equal to the changes in the measured data as closely as possible. The effects of uncertainties in both the measured vibration data and finite element model are considered as random variables in model updating. The statistical variations of the updated finite element model are derived with perturbation method and Monte Carlo technique. The probabilities of damage existence in the structural members are then defined. The proposed method is applied to a laboratory tested steel cantilever beam and frame structure. The results show that all the damages are identified correctly with high probabilities of damage existence. Discussions are also made on the applicability of the method when no measurement data of intact structure are available. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
A total of 116 reinforced concrete building structures were surveyed after the earthquake that devastated Wenchuan, China, in 2008. Original construction drawings were obtained for all these buildings. The buildings were ranked according to the degree of damage caused by the ground motion. Two different methods were used to define degree of damage. In both cases, strong correlation was found between the frequency of damage and a vulnerability index proposed by Hassan and Sozen. The index was first calibrated using data from Turkey and it was later tested by O’Brien et al. using data from Haiti. The observed correlation confirms that the index can be used effectively to prioritize resources for building strengthening.  相似文献   

15.
A Bayesian framework for model order selection of auto‐regressive exogenous (ARX) models is developed and applied to actual earthquake response data obtained by the structural health monitoring system of a high‐rise building. The model orders of ARX models are selected appropriately by the Bayesian framework, and differ significantly from the optimal order estimated by AIC; in fact, in many cases AIC does not even give an optimal order. A method is also proposed for consistently selecting the same ‘genuine’ modes of interest from the whole set of modes corresponding to each of the identified models from a sequence of earthquake records. In the identification analysis based on building response records from 43 earthquakes over 9 years, the modal parameters of the first four modes in each horizontal direction are estimated appropriately in all cases, showing that the developed methods are effective and robust. As the estimates of natural frequency depend significantly on the response amplitude, they are compensated by an empirical correction so that the influence of the response amplitude is removed. The compensated natural frequencies are much more stable over the nine‐year period studied, indicating that the building had no significant change in its global dynamic characteristics during this period. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
本文针对某平面不规则、立面开大洞、带高位转换层的超限复杂高层结构,首先建立了整体模型结构的非线性计算模型,根据振动台试验结果选择了材料非线性参数,进行了弹塑性时程分析,并对模型结构及参数进行了验证。用验证过的模型和参数对原型结构进行了弹塑性时程分析,并对该结构作出整体抗震性能评价。通过本文分析表明,按照试验微粒混凝土材性试验数据,考虑附加质量建立的计算模型,能较好地捕捉到整体结构初始时的频率、振型等动力特性;选择现有的软件确定构件的本构关系,将其输入通用程序进行弹塑性时程分析,能够获得结构的非线性动力反应;通过模型乃至原型结构的弹塑性时程分析,可以对该立面开大洞复杂结构整体抗震性能作出合理评价。  相似文献   

17.
Blind predictions for the response of the 1/4-scale reinforced concrete Hualien (Taiwan) containment model during forced vibration tests are compared with the observed data. The predictions obtained by the CLASSI approach reflect the experimental conditions prior to and after backfill of the soil surrounding the embedded foundation. The experimental data show a strong and unexpected coupling between the response in the NS and EW directions which is not present in the results for the axisymmetric theoretical models. Also, significant differences can be seen between the experimental responses in the two orthogonal horizontal directions which minimize cross-axis coupling. Although these differences are not accounted for in the theoretical models, the discrepancies between predictions and observations are within the uncertainty of the structural and geotechnical data. The obtained differences between predictions and observations give an excellent measure of the prediction error that can be expected in this type of analysis from uncertainty in the data. A detailed assessment of the initial structural and geotechnical data based on extensive comparisons with the results of previous identification studies is also presented. Finally, comparisons between the observed response and calculations based on revised models for the structure and the soil show that current methods of analysis can account accurately for the observed response.  相似文献   

18.
Accurate and high-fidelity finite element (FE) models are in great demand in the design, performance assessment, and life-cycle maintenance of long-span cable-stayed bridges. The structural system of a long-span cable-stayed bridge is often huge in size and complex with many components connected and various materials constituted. Therefore, the FE model of a long-span cable-stayed bridge involves a large number of elements and nodes with many uncertainties. The model updating of the FE model to best represent a real bridge is necessary but very challenging. One of the challenging issues is that the numerical computation needed for searching the global optimum of a large set of structural parameters is so extensive that the existing FE (not surrogate) model-based updating methods cannot fulfill this task. In this study, a cluster computing-aided FE model updating framework is proposed for the high-performance FE model updating of large and complex structures. In the framework, several computer software packages, including MSC.Marc, Python, and MATLAB, are interconnected for making use of their respective functions of strength. The shake table test of a scaled physical structure of the Sutong cable-stayed bridge in China is used to validate the accuracy and efficiency of the proposed framework. The simulated bridge responses based on the updated FE model are in good agreement with the measured ones from the shake table test. The successful application of the proposed framework provides a reference for the model updating of other types of large and complex structures.  相似文献   

19.
ABSTRACT

Poorly monitored catchments could pose a challenge in the provision of accurate flood predictions by hydrological models, especially in urbanized areas subject to heavy rainfall events. Data assimilation techniques have been widely used in hydraulic and hydrological models for model updating (typically updating model states) to provide a more reliable prediction. However, in the case of nonlinear systems, such procedures are quite complex and time-consuming, making them unsuitable for real-time forecasting. In this study, we present a data assimilation procedure, which corrects the uncertain inputs (rainfall), rather than states, of an urban catchment model by assimilating water-level data. Five rainfall correction methods are proposed and their effectiveness is explored under different scenarios for assimilating data from one or multiple sensors. The methodology is adopted in the city of São Carlos, Brazil. The results show a significant improvement in the simulation accuracy.  相似文献   

20.
基于向上延拓的航空重力向下解析延拓解   总被引:2,自引:0,他引:2       下载免费PDF全文
位场向下与向上延拓之间存在固有的内在联系,向上延拓解算具有稳定可靠的优良特性,本文据此提出了借助向上延拓信息实现航空重力向下延拓稳定解算的两种方法,分别建立了点对点向下解析延拓模型和最小二乘向下解析延拓模型.其核心思想是,依据泰勒级数展开模型,将位场向下延拓解算过程转换为向上延拓计算和垂向偏导数解算两个步骤,通过第一步的处理有效抑制数据观测噪声对解算结果的干扰,通过第二步的处理成功实现向下延拓反问题的稳定解算,较好地解决了向下延拓解算固有的不适定性问题.分析研究了两种解析延拓模型的计算精度及适用条件,利用超高阶位模型EGM2008建立的模拟标准场数据对两种模型解算结果的合理性和有效性进行了数值验证,证明本文新方法实用易行,具有较高的应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号