首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic soil-tunnel interaction is studied by indirect boundary element method (IBEM), using the model of a rigid tunnel in layered half-space, which is simplified to a single soil layer on elastic bedrock, subjected to incident plane SH waves. The accuracy of the results is verified through comparison with the analytical solution. It is shown that soil-tunnel interaction in layered half-space is larger than that in homogeneous half-space and this interaction mechanism is essentially different from that of soil-foundation-superstructure interaction.  相似文献   

2.
为研究地震作用下非均质场地各个土层放大效应以及分层土-隧道的地震响应,以大连某实际工程为背景,基于地震作用下隧道结构动力响应的理论,采用收敛约束法,通过ABAQUS构建分层土-隧道三维有限元模型,并结合振动台试验,验证模拟的准确性;将自由场与有隧道场地进行对比,并结合加速度和傅里叶曲线对模拟数据进行分析。结果表明:(1)土体性质和激励大小对地震波的传递有影响,随着场地由浅到深逐渐增加,峰值加速度逐渐放大,不同分层介质的主要频率和频谱形状发生明显变化;(2)隧道会放大远场的加速度响应,略微降低近场的动力响应;(3)软弱夹层的存在对地震动的放大作用也有明显影响,不同分层介质的不同特性导致土层刚度不同,从而影响地震作用下层状土-隧道的动力相互作用。  相似文献   

3.
利用黏弹性人工边界和等效地震荷载时域波动输入方法,结合土层和半空间的精确动力刚度矩阵,实现了地震波斜入射下层状场地地下综合管廊地震反应分析,建立了不同场地条件下地下综合管廊分析模型。计算结果表明:地震波倾斜入射情况下,综合管廊结构地震响应与垂直入射时具有显著差异,一般SV波以30°临界角附近入射时结构地震反应最为剧烈;地下综合管廊动应力集中主要分布在管廊角部、中柱上下端;成层土波速结构变化对地下综合管廊地震反应亦具有显著影响。总体上看:当穿越软夹层时管廊结构地震反应更为剧烈,且覆盖层越厚,管廊结构内力幅值越大。因此地下综合管廊结构抗震设计宜考虑地震波倾斜入射及场地土层性质的影响。  相似文献   

4.
This paper describes a systematic study on the fundamental features of seismic soil pressure on underground tunnels, in terms of its magnitude and distribution, and further identifi es the dominant factors that signifi cantly infl uence the seismic soil pressure. A tunnel embedded in water-saturated poroelastic half-space is considered, with a large variety of model and excitation parameters. The primary features of both the total soil pressure and the pore pressure are investigated. Taking a circular tunnel as an example, the results are presented using a fi nite element-indirect boundary element(FE-IBE) method, which can account for dynamic soil-tunnel interaction and solid frame-pore water coupling. The effects of tunnel stiffness, tunnel buried depth and input motions on the seismic soil pressure and pore pressure are also examined. It is shown that the most crucial factors that dominate the magnitude and distribution of the soil pressure are the tunnel stiffness and dynamic soil-tunnel interaction. Moreover, the solid frame-pore water coupling has a prominent infl uence on the magnitude of the pore pressure. The fi ndings are benefi cial to obtain insight into the seismic soil pressure on underground tunnels, thus facilitating more accurate estimation of the seismic soil pressure.  相似文献   

5.
The scattering of plane harmonic P and SV waves by a pair of vertically overlapping lined tunnels buried in an elastic half space is solved using a semi-analytic indirect boundary integration equation method. Then the effect of the distance between the two tunnels, the stiffness and density of the lining material, and the incident frequency on the seismic response of the tunnels is investigated. Numerical results demonstrate that the dynamic interaction between the twin tunnels cannot be ignored and the lower tunnel has a significant shielding effect on the upper tunnel for high-frequency incident waves, resulting in great decrease of the dynamic hoop stress in the upper tunnel; for the low-frequency incident waves, in contrast, the lower tunnel can lead to amplification effect on the upper tunnel. It also reveals that the frequency-spectrum characteristics of dynamic stress of the lower tunnel are significantly different from those of the upper tunnel. In addition, for incident P waves in low-frequency region, the soft lining tunnels have significant amplification effect on the surface displacement amplitude, which is slightly larger than that of the corresponding single tunnel.  相似文献   

6.
采用刚度矩阵方法结合Hankel积分变换,求解了层状黏弹性半空间中球面SH、P和SV波的自由波场.首先,在柱坐标系下建立层状黏弹性半空间的反轴对称(柱面SH波)和轴对称(柱面P-SV波)情况精确动力刚度矩阵.进而由Hankel变换将空间域内的球面波展开为波数域内柱面波的叠加,然后将球面波源所在层的上下端面固定,求得固定层内的动力响应和固定端面反力,将固端反力反向施加到层状黏弹性半空间上,采用直接刚度法求得固端反力的动力响应,叠加固定层内和固端反力动力响应,求得波数域内球面波源动力响应.最后由Hankel积分逆变换求得频率-空间域内球面波源自由场,时域结果由傅里叶逆变换求得.文中验证了方法的正确性,并以均匀半空间和基岩上单一土层中球面SH、P和SV波为例分别在频域和时域内进行了数值计算分析.研究表明基岩上单一土层中球面波自由场与均匀半空间情况有着本质差异;基岩上单一土层中球面波位移频谱峰值频率与场地固有频率相对应,基岩面的存在使得基岩上单一土层地表点的位移时程非常复杂,振动持续时间明显增长;阻尼的增大显著降低了动力响应的峰值,同时也显著减少了波在土层的往复次数.  相似文献   

7.
在ABAQUS黏弹性人工边界时域波动方法的基础上,首先运用等效应力输入方法实现地震SV波倾斜入射,半空间算例验证该方法具有较好的计算精度,进而基于所建立的斜入射方法研究地震波斜入射对海河沉管隧道地震响应的影响。计算结果表明:SV波斜入射情况下,沉管隧道的地震响应规律与垂直入射时具有明显差异;随入射角增加,沉管隧道结构应力增大,应力较大点出现在沉管隧道的四个角点及隔墙与底板、顶板的连接处,其中中隔墙为最薄弱点;随入射角增加,侧墙和隔墙的相对最大水平位移增大,其中中隔墙位移最大;随入射角增加,沉管隧道结构竖向加速度峰值明显增大。因此在沉管隧道结构抗震设计中应考虑地震波斜入射的影响。  相似文献   

8.
The seismic motion in sediment-filled valleys due to incident SH-waves has been studied exhaustively. However, the response of such geologic structures to incident SV- and P-waves has not been studied as thoroughly. The response of a 2-D model of the valley of Caracas, Venezuela—a NS cross-section through the Palos Grandes district—to incident plane SV- and P-waves is investigated using the discrete wave number boundary element method. It is observed that the differences in the predictions of the 1-D and 2-D models are more pronounced for SV-waves than for SH-waves, especially when SV-waves are incident at (or near) the critical angle ic. The valley responds very strongly to the horizontally propagating P-wave (SP-wave) which is induced when SV-waves, incident at the critical angle, interact with the free surface of the half-space. However, the SP-wave, being a wave diffracted at a boundary, is likely to be sensitive to impedance contrasts, to the presence of other interfaces in the medium, and to the topography surrounding the valley. These aspects of the problem need further investigation.  相似文献   

9.
弹性层状半空间中凸起地形对入射平面SH波的放大作用   总被引:7,自引:0,他引:7  
对Wolf理论进行拓展,使之可解决凸起地形对波的散射问题,进而利用间接边界元法,求解了弹性层状半空间中凸起地形对入射平面SH波的放大作用问题。本文模型的显著特点之一是考虑了层状半空间的动力特性以及层状半空间和凸起地形的阻尼;特点之二是计算精度高。文中以基岩上单一土层中半圆凸起地形对入射平面SH波的放大作用为例进行了数值计算分析。研究表明,基岩上单一土层中凸起地形对入射平面SH波放大作用和均匀半空间中凸起地形有着本质的差别;土层动力特性不仅影响凸起地形地表位移的幅值,还会影响地表位移的频谱;阻尼会显著降低凸起地形对高频波的放大作用。  相似文献   

10.
The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane dynamic stiffness matrix of the layered TI half-space is established and the free fields are solved by using the direct stiffness method. Then, Green’s functions are derived for uniformly distributed loads acting on an inclined line in a layered TI half-space and the scattered fields are constructed with the deduced Green’s functions. Finally, the free fields are added to the scattered ones to obtain the global dynamic responses. The method is verified by comparing results with the published isotropic ones. Both the steady-state and transient dynamic responses are evaluated and discussed. Numerical results in the frequency domain show that surface motions for the TI media can be significantly different from those for the isotropic case, which are strongly dependent on the anisotropy property, incident angle and incident frequency. Results in the time domain show that the material anisotropy has important effects on the maximum duration and maximum amplitudes of the time histories.  相似文献   

11.
The system damping, the system frequency, the relative building response and the base rocking response peak amplitudes are studied, as those depend on the building mass and height, the flexibility of the soil, the structural damping, the type of incident waves and their angle of incidence. A linear two-dimensional model is used, which assumes the soil to be a homogeneous isotropic half-space, the foundation supporting the building to be a rigid embedded cylinder, and in which the building model is an equivalent single-degree-of-freedom oscillator. The system frequency and the system damping ratio are determined by measuring the width and the frequency of the peak in the transfer function of the oscillator relative response, using the analogy with the half-power method for a single-degree-of-freedom fixed-base oscillator. Previous similar studies are for dynamic soil-structure interaction only, and for simplified models in which the stiffness of the soil and the damping due to radiation are represented by springs and dashpots. The study in this paper differs from the previous studies in that the wave passage effects (or the kinematic interaction) are also included, and that no additional simplifications of the model are made. Results are shown for excitation by plane P- and SV-waves.  相似文献   

12.
The zero-stress boundary conditions at the surface of the half-space in the presence of surface and sub-surface cavities for in-plane, incident cylindrical P- and SV-waves have always posed challenging problems. The outgoing cylindrical P- and SV-waves can be represented by Hankel functions of radial distance coupled with the sine and cosine functions of angle. Together, at the half-space surface the P- and SV-wave functions are not orthogonal over the semi-infinite radial distance from 0 to infinity. Thus, to simultaneously satisfy the zero in-plane, normal, and shear stresses, an approximation of the geometry is often made. This paper presents an analytical formulation of the boundary-valued problem, where the Hankel wave functions are expressed in integral form, changing the representation from cylindrical to rectangular coordinates, so that the zero-stress boundary conditions at the half-space surface can be applied in a more straightforward way.  相似文献   

13.
We present a closed-form frequency-wave number (ω – k) Green’s function for a layered, elastic half-space under SH wave propagation. It is shown that for every (ω – k) pair, the fundamental solution exhibits two distinctive features: (1) the original layered system can be reduced to a system composed by the uppermost superficial layer over an equivalent half-space; (2) the fundamental solution can be partitioned into three different fundamental solutions, each one carrying out a different physical interpretation, i.e., an equivalent half-space, source image impact, and dispersive wave effect, respectively. Such an interpretation allows the proper use of analytical and numerical integration schemes, and ensures the correct assessment of Cauchy principal value integrals. Our method is based upon a stiffness-matrix scheme, and as a first approach we assume that observation points and the impulsive SH line-source are spatially located within the uppermost superficial layer. We use a discrete wave number boundary element strategy to test the benefits of our fundamental solution. We benchmark our results against reported solutions for an infinitely long circular canyon subjected to oblique incident SH waves within a homogeneous half-space. Our results show an almost exact agreement with previous studies. We further shed light on the impact of horizontal strata by examining the dynamic response of the circular canyon to oblique incident SH waves under different layered half-space configurations and incident angles. Our results show that modifications in the layering structure manifest by larger peak ground responses, and stronger spatial variability due to interactions of the canyon geometry with trapped Love waves in combination with impedance contrast effects.  相似文献   

14.
通过建立不同场地条件下隧道-土-上部结构相互作用的模型,研究有、无上部结构存在、场地条件和地震波频谱特性对隧道-土-上部结构体系地震响应的影响.计算结果表明:(1)对于隧道等地下结构,其地震响应主要受场地条件影响,不同场地条件隧道动内力值相差巨大,设计时应引起足够重视,相比之下有、无邻近上部结构对其影响较小;(2)S波...  相似文献   

15.
斜入射条件下地下结构时域地震反应分析初探   总被引:9,自引:1,他引:8  
通过采用平面波和远场散射波混合透射的应力人工边界条件,得到了地震波斜入射的解析方式,以此为基础建立了地震波斜入射条件下,土体与地下结构动力相互作用的时域计算分析模型。以实际建设的南京地铁某车站结构为研究对象,应用大型通用有限元分析软件ANSYS,进行了地震波斜入射条件下地下结构时域地震反应的计算和分析。初步结果表明:在地震波斜入射的情况下,地下结构的动力反应与地震波垂直入射时有较为明显的差异。  相似文献   

16.
The paper discusses the seismic response of circular tunnels in dry sand and investigates the efficiency of current seismic analysis methods at extreme lining flexibilities. Initially, a dynamic centrifuge test on a flexible circular model tunnel, embedded in dry sand, is analyzed by means of rigorous full dynamic analysis of the coupled soil–tunnel system, applying various non-linear soil and soil–tunnel interface models. The numerical results are compared to the experimental ones, aiming to better understand the recorded response and calibrate the numerical models. Then a series of numerical analyses are conducted using the validated numerical model, in order to investigate the effect of the tunnel lining rigidity on the dynamic response of the soil–tunnel system. In parallel, the accuracy of currently used simplified analysis methods is evaluated, by comparing their predictions with the results of the a priori more accurate and well validated numerical models. The comparative analyses allow us to highlight and discuss several crucial aspects of the soil-tunnel system seismic response, including (1) the post-earthquake residual values of the lining forces, which are amplified with the increase of the flexibility of the tunnel and (2) the importance of the soil-tunnel interface conditions. It is finally concluded that simplified analysis methods may provide a reasonable framework for the analysis at a preliminary stage, under certain conditions.  相似文献   

17.
The response of single piles and pile groups under vertically and obliquely incident seismic waves is obtained using the hybrid boundary element (BEM) formulation. The piles are represented by compressible beam-column elements and the soil as a hysteretic viscoelastic half-space. A recently developed Green function corresponding to the dynamic Mindlin problem is implemented in the numerical formulation. Exact analytical solutions for the differential equations for the piles under distributed harmonic excitations are used. Treating the half-space as a three-dimensional elastic continuum, the interaction problem is formulated by satisfying equilibrium and displacement compatibility along the pile-soil interface. Solutions adopted for the seismic waves are obtained by direct integration of the differential equations in terms of amplitudes. Salient features of the seismic response are identified in several non-dimensional plots. Results of the analyses compare favourably with the limited data available in the literature.  相似文献   

18.
基于JC法的地下结构动力可靠性研究   总被引:1,自引:0,他引:1  
左熹  ;陈国兴 《地震学刊》2014,(5):583-588
基于JC法提出了地下结构的动力可靠性分析方法,建立地基土-地铁隧道非线性动力相互作用的有限元分析模型,将地基土-地铁隧道结构体系视为平面应变问题,采用Davidenkov动力本构模型和动塑性损伤模型,分别模拟土体和车站结构混凝土的动力特性,分析在地震动作用下地铁隧道结构的应力特性,进一步研究其动力可靠性,得到隧道结构的可靠度和可靠指标,以此评价地铁隧道结构的可靠性。结果表明:隧道结构上部右侧45°位置处的可靠性最低,下部右侧45°位置处的可靠性较低,这与隧道结构的拉应力反应的分析结果一致;基岩输入近断层地震动Northridge波和Chi-chi波时,由于地震波的脉冲效应,隧道结构的动力可靠性最低;总体而言,在0.1 g和0.2 g地震动作用下,隧道结构的可靠性足够,结构安全可靠。  相似文献   

19.
Scattering and diffraction of elastic in-plane P- and SV-waves by a surface topography such as an elastic canyon at the surface of a half-space is a classical problem which has been studied by earthquake engineers and strong motion seismologists for over forty years. The case of out-of-plane SH-waves on the same elastic canyon that is semicircular in shape on the half-space surface is the first such problem that was solved by analytic closed-form solutions over forty years ago by Trifunac. The corresponding case of in-plane P- and SV-waves on the same circular canyon is a much more complicated problem because the in-plane P- and SV- scattered waves have different wave speeds and together they must have zero normal and shear stresses at the half-space surface. It is not until recently in 2014 that analytic solution for such problem is found by Lee and Liu. This paper uses their technique of defining these stress-free scattered waves, which Brandow and Lee previously used to solve the problem of the scattering and diffraction of these in-plane waves on an almost-circular surface canyon that is arbitrary in shape, to the study of the scattering and diffraction of these in-plane waves on an almost circular arbitrary-shaped alluvial valley.  相似文献   

20.
Scattering and diffraction of elastic in-plane P-and SV-waves by a surface topography such as an elastic canyon at the surface of a half-space is a classical problem which has been studied by earthquake engineers and strong motion seismologists for over forty years. The case of out-ofplane SH-waves on the same elastic canyon that is semicircular in shape on the half-space surface is the first such problem that was solved by analytic closed-form solutions over forty years ago by Trifunac. The corresponding case of in-plane P-and SV-waves on the same circular canyon is a much more complicated problem because the in-plane P-and SV-scattered waves have different wave speeds and together they must have zero normal and shear stresses at the half-space surface. It is not until recently in 2014 that analytic solution for such problem is found by Lee and Liu. This paper uses their technique of defining these stress-free scattered waves, which Brandow and Lee previously used to solve the problem of the scattering and diffraction of these in-plane waves on an almost-circular surface canyon that is arbitrary in shape, to the study of the scattering and diffraction of these in-plane waves on an almost circular arbitrary-shaped alluvial valley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号