首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions of surface water and groundwater (SW–GW) play an important role in the physical, chemical, and ecological processes of riparian zones. The main objective of this study was to describe the two‐dimensional characteristics of riverbank SW–GW interactions and to quantify their influence factors. The SW–GW exchange fluxes for six sections (S1 to S6) of the Qinhuai River, China, were estimated using a heat tracing method, and field hydrogeological and thermodynamic parameters were obtained via inverse modelling. Global sensitivity analysis was performed to compare the effects of layered heterogeneity of hydraulic conductivity and river stage variation on SW–GW exchange. Under the condition of varied river stage, only the lateral exchange fluxes at S1 apparently decreased during the monitoring period, probably resulting from its relatively higher hydraulic conductivity. Meanwhile, the SW–GW exchanges for the other five sections were quite stable over time. The lateral exchange fluxes were higher than the vertical ones. The riverbank groundwater flow showed different spatial variation characteristics for the six sections, but most of the higher exchange fluxes occurred in the lower area of a section. The section with larger hydraulic conductivity has an apparent dynamic response to surface water and groundwater level differences, whereas lower permeabilities severely reduced the response of groundwater flow. The influence of boundary conditions on SW–GW interactions was restricted to a limited extent, and the impact extent will expand with the increase of peak water level and hydraulic conductivity. The SW–GW head difference was the main influence factors in SW–GW interactions, and the influence of both SW–GW head difference and hydraulic conductivity decreased with an increase of the distance from the surface water boundary. For each layer of riverbank sediment, its hydraulic conductivity had greater influence on its groundwater flow than the other layers, whereas it had negligible effects on its overlying/underlying layers. Consequently, the variations in river stage and hydraulic conductivity were the main factors influencing the spatial and temporal characteristics of riverbank groundwater flow, respectively.  相似文献   

2.
The spatial and temporal variability of groundwater–surface‐water (GW–SW) interactions was investigated in an intensively utilized salmon spawning riffle. Hydrochemical tracers, were used along with high‐resolution hydraulic head and temperature data to assess hyporheic dynamics. Surface and subsurface hydrochemistry were monitored at three locations where salmon spawning had been observed in previous years. Temperature and hydraulic head were monitored in three nests of three piezometers located to characterize the head, the run and the tail‐out of the riffle feature. Hydrochemical gradients between surface and subsurface water indicated increasing GW influence with depth into the hyporheic zone. Surface water was characterized by high dissolved oxygen (DO) concentrations, low alkalinity and conductivity. Hyporheic water was generally characterized by high levels of alkalinity and conductivity indicative of longer residence times, and low DO, indicative of reducing conditions. Hydrochemical and temperature gradients varied spatially over the riffle in response to changes in local GW–SW interactions at the depths investigated. Groundwater inputs dominated the head and tail of the riffle. The influence of SW increased in the area of accelerating flow and decreasing water depth through the run of the riffle. Temporal GW–SW interactions also varied in response to changing hydrological conditions. Gross changes in hyporheic hydrochemistry were observed at the weekly scale in response to changing flow conditions and surface water inputs to the hyporheic zone. During low flows, caused by freezing or dry weather, hyporheic hydrochemistry was dominated by GW inputs. During higher flows hyporheic hydrochemistry indicated that SW contributions increased. In addition, high‐resolution hydraulic head data indicated that rapid changes in GW–SW interactions occurred during hydrological events. The spatial, and possibly the temporal, variability of GW–SW interactions had a marked effect on the survival of salmon ova. It is concluded that hyporheic dynamics and their effect on stream ecology should be given increased consideration by fisheries and water resource managers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
《Advances in water resources》2003,26(10):1041-1060
A new technique for generating coarse scale models of highly heterogeneous subsurface formations is developed and applied. The method uses generic global coarse scale simulations to determine the boundary conditions for the local calculation of upscaled properties (permeability or transmissibility). An iteration procedure assures consistency between the local and global calculations. Transport processes are simulated using a subgrid velocity reconstruction technique applied in conjunction with the local–global upscaling procedure. For highly heterogeneous (e.g., channelized) systems, the new method is shown to provide considerably more accurate coarse scale models for flow and transport, relative to reference fine scale results, than do existing local (and extended local) upscaling techniques. The applicability of the upscaled models for different global boundary conditions is also considered.  相似文献   

4.
This paper presents a novel method for assessing hyporheic water quality dynamics using advances in sensor technology. High‐resolution (15 min) dissolved oxygen (DO) and hydraulic head data were combined to assess groundwater–surface water (GW–SW) interactions in the hyporheic zone. DO concentrations varied at fine temporal and spatial scales, depending on the relative contributions of GW and SW. The effect of sample frequency on observed patterns of variability was assessed with reference to studies of the ecology of salmon spawning habitat. Conventional approaches fail to capture the full range of temporal variability in hyporheic water quality and demonstrate the need to reassess the interpretations of previous studies of the hyporheic zone. © Crown Copyright 2006. Reproduced with the permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd.  相似文献   

5.
Characterizing the spatio-temporal distribution of groundwater–surface water (GW–SW) exchange fluxes is of paramount importance in understanding catchment behavior. A wide range of field-based techniques are available for such characterization. The objective of this study is to quantify the spatio-temporal distribution of the exchange fluxes along the Çakıt stream (Niğde, Turkey) through coupling a set of geophysical techniques and in-stream measurements in a hierarchical manner. First, geological and water quality information were combined at the catchment scale to determine key areas for reach-scale focus. Second, electromagnetic induction (EMI) surveys were conducted along the reach to pinpoint potential groundwater upwelling locations. EMI anomalies guided our focus to a 665 m-long reach of the stream. Along this selected reach, a fibre-optic distributed temperature sensing (FO-DTS) system was utilized to investigate streambed temperature profiles at fine spatial and temporal scales. Furthermore, vertical hydraulic gradients and exchange fluxes were investigated using nested piezometers and vertical temperature profiles, respectively, at two potential upwelling locations and a potential downwelling location identified by previous surveys. The results of the study reveal heterogeneity of vertical water-flow components with seasonal variability. The EMI survey was successful in identifying a localized groundwater upwelling location. FO-DTS measurements revealed a warm temperature anomaly during cold air temperature and low streamflow conditions at the same upwelling site. Our point-based methods, namely vertical temperature profiles and vertical hydraulic gradient estimates, however, did not always provide consistent results with each other and with EMI and FO-DTS measurements. This study, therefore, highlights the opportunities and challenges in incorporating multi-scale observations in a hierarchical manner in characterization of the GW–SW exchange processes that are known to be highly heterogeneous in time and space. Overall, a combination of different methods helps to overcome the limitations of each single method and increases confidence in the obtained results.  相似文献   

6.
Integrated hydrological models are usually calibrated against observations of river discharge and piezometric head in groundwater aquifers. Calibration of such models against spatially distributed observations of river water level can potentially improve their reliability and predictive skill. However, traditional river gauging stations are normally spaced too far apart to capture spatial patterns in the water surface, whereas spaceborne observations have limited spatial and temporal resolution. Unmanned aerial vehicles can retrieve river water level measurements, providing (a) high spatial resolution; (b) spatially continuous profiles along or across the water body, and (c) flexible timing of sampling. A semisynthetic study was conducted to analyse the value of the new unmanned aerial vehicle‐borne datatype for improving hydrological models, in particular estimates of groundwater–surface water (GW–SW) interaction. Mølleåen River (Denmark) and its catchment were simulated using an integrated hydrological model (MIKE 11–MIKE SHE). Calibration against distributed surface water levels using the Differential Evolution Adaptive Metropolis algorithm demonstrated a significant improvement in estimating spatial patterns and time series of GW–SW interaction. After water level calibration, the sharpness of the estimates of GW–SW time series improves by ~50% and root mean square error decreases by ~75% compared with those of a model calibrated against discharge only.  相似文献   

7.
D. Yu  S. N. Lane 《水文研究》2011,25(1):36-53
Numerical modelling of flood inundation over large and complex floodplains often requires mesh resolutions coarser than the structural features (e.g. buildings) that are known to influence the inundation process. Recent research has shown that this mismatch is not well represented by conventional roughness treatments, but that finer‐scale features can be represented through porosity‐based subgrid‐scale treatments. This paper develops this work by testing the interactions between feature representation, subgrid‐scale resolution and mesh resolution. It uses as the basis for this testing a 2D diffusion‐based flood inundation model which is applied to a 2004 flood event in a topologically complex upland floodplain in northern England. This study formulated simulations with different grid mesh resolution and subgrid mesh ratio. The sensitivity of the model to mesh resolution and roughness specification was investigated. Model validation and verification suggest that the subgrid treatment with higher subgrid mesh ratio can give much improved predictions of flood propagation, in particular, in terms of the predicted water depth. This study also highlighted the limitation of using at‐a‐point in time inundation extent for validation of flood models of this type. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Groundwater‐surface water (GW‐SW) interaction in numerical groundwater flow models is generally simulated using a Cauchy boundary condition, which relates the flow between the surface water and the groundwater to the product of the head difference between the node and the surface water level, and a coefficient, often referred to as the “conductance.” Previous studies have shown that in models with a low grid resolution, the resistance to GW‐SW interaction below the surface water bed should often be accounted for in the parameterization of the conductance, in addition to the resistance across the surface water bed. Three conductance expressions that take this resistance into account were investigated: two that were presented by Mehl and Hill (2010) and the one that was presented by De Lange (1999). Their accuracy in low‐resolution models regarding salt and water fluxes to a dense drainage network in a confined aquifer system was determined. For a wide range of hydrogeological conditions, the influence of (1) variable groundwater density; (2) vertical grid discretization; and (3) simulation of both ditches and tile drains in a single model cell was investigated. The results indicate that the conductance expression of De Lange (1999) should be used in similar hydrogeological conditions as considered in this paper, as it is better taking into account the resistance to flow below the surface water bed. For the cases that were considered, the influence of variable groundwater density and vertical grid discretization on the accuracy of the conductance expression of De Lange (1999) is small.  相似文献   

9.
It is well known that snow plays an important role in land surface energy balance; however, modelling the subgrid variability of snow is still a challenge in large‐scale hydrological and land surface models. High‐resolution snow depth data and statistical methods can reveal some characteristics of the subgrid variability of snow depth, which can be useful in developing models for representing such subgrid variability. In this study, snow depth was measured by airborne Lidar at 0.5‐m resolution over two mountainous areas in south‐western Wyoming, Snowy Range and Laramie Range. To characterize subgrid snow depth spatial distribution, measured snow depth data of these two areas were meshed into 284 grids of 1‐km × 1‐km. Also, nine representative grids of 1‐km × 1‐km were selected for detailed analyses on the geostatistical structure and probability density function of snow depth. It was verified that land cover is one of the important factors controlling spatial variability of snow depth at the 1‐km scale. Probability density functions of snow depth tend to be Gaussian distributions in the forest areas. However, they are eventually skewed as non‐Gaussian distribution, largely due to the no‐snow areas effect, mainly caused by snow redistribution and snow melt. Our findings show the characteristics of subgrid variability of snow depth and clarify the potential factors that need to be considered in modelling subgrid variability of snow depth.  相似文献   

10.
In this work we propose upscaling method for nonlinear Forchheimer flow in heterogeneous porous media. The generalized Forchheimer law is considered for incompressible and slightly-compressible single-phase flows. We use recently developed analytical results (Aulisa et al., 2009) [1] and formulate the resulting system in terms of a degenerate nonlinear flow equation for the pressure with the nonlinearity depending on the pressure gradient. The coarse scale parameters for the steady state problem are determined so that the volumetric average of velocity of the flow in the domain on fine scale and on coarse scale are close. A flow-based coarsening approach is used, where the equivalent permeability tensor is first evaluated following streamline methods for linear cases, and modified in order to take into account the nonlinear effects. Compared to previous works (Garibotti and Peszynska, 2009) [2], (Durlofsky and Karimi-Fard) [3], this approach can be combined with rigorous mathematical upscaling theory for monotone operators, (Efendiev et al., 2004) [4], using our recent theoretical results (Aulisa et al., 2009) [1]. The developed upscaling algorithm for nonlinear steady state problems is effectively used for variety of heterogeneities in the domain of computation. Direct numerical computations for average velocity and productivity index justify the usage of the coarse scale parameters obtained for the special steady state case in the fully transient problem. For nonlinear case analytical upscaling formulas in stratified domain are obtained. Numerical results were compared to these analytical formulas and proved to be highly accurate.  相似文献   

11.
The present work examines the possible use of major ion chemistry and multivariate statistical techniques as a rapid and relatively cost‐effective method of identifying the extent of groundwater and surface water (GW–SW) interaction in an urban setting. The original hydrogeochemical dataset consists of groundwater (n = 114), stream water (n = 42) and drain water (n = 24) samples, collected twice in a year for the pre‐ and post‐monsoon seasons, for three successive years along an 8 km reach of the Delhi segment of River Yamuna, India. The dynamic and similar seasonal changes of hydro‐geochemical facies and major ion trends of river, drain and groundwater samples indicate the existence of an empirical relationship between GW and SW. Results of both R‐ and Q‐mode factor and cluster analyses highlight multi‐scale control of the fluid exchange distributions, with distinct seasonal alteration in mode and extent of GW–SW interaction, namely, the influence of the mixing zones between urban river and groundwater and the pattern of groundwater flow through the river bed. Hierarchical cluster analysis (HCA) of sampling locations efficiently illustrates different groups that comprise samples severely influenced by contaminated surface water downstream and the upstream fresh water samples. These results substantiate the strong exchange processes between GW and SW all along the stretch. The study shows that the combination of an empirical and statistical relationship between different ionic species and sampling locations can provide greater confidence in identifying the extent of GW–SW interaction/exchange processes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Land surface schemes (LSSs) represent the interface between land surface and the atmosphere in general circulation models (GCMs). Errors in LSS‐simulated heat and moisture fluxes can result from inadequate representation of hydrological features and the derivation of effective surface parameters for large heterogeneous GCM gridboxes from small‐scale observations. Previous assessments of LSS performance have generally compared simulated heat and moisture fluxes to observations over a defined experimental domain for a limited period. A different approach has been evaluated in this study, which uses a fine‐resolution calibrated hydrological model of the study basin to provide a quasi‐observed runoff series for direct comparison with simulated runoff from a selected LSS at GCM scale. The approach is tested on two GCM gridboxes covering two contrasting regions within the Nile Basin. Performance is mixed; output from the LSS is generally compatible with that of the fine‐resolution model for one gridbox while it cannot reproduce the runoff dynamics for the other. The results also demonstrate the high sensitivity of runoff and evapotranspiration to radiation and precipitation inputs and show the importance of subtle issues such as temporal disaggregation of climatic inputs. We conclude that the use of a fine‐resolution calibrated model to evaluate a LSS has several advantages, can be generalized to other areas to improve the performance of global models and provides useful data that can be used to constrain LSS parameterizations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The variation in soil texture, surface moisture or vertical soil moisture gradient in larger scale atmospheric models may lead to significant variations in simulated surface fluxes of water and heat. The parameterization of soil moisture fluxes at spatial scales compatible with the grid size of distributed hydrological models and mesoscale atmospheric models ( 100 km2) faces principal problems which relate to the underlying microscopic or field scale heterogeneity in soil characteristics.

The most widely used parameterization in soil hydrology, the Darcy-Richards (DR) equation, is gaining increasing importance in mesoscale and climate modelling. This is mainly due to the need to introduce plant-interactive soil water depletion and stomatal conductance parameterizations and to improve the calculation of deep percolation and runoff. Covering a grid of several hundreds of square kilometres, the DR parameterization in soil-vegetation-atmosphere-transfer schemes (SVATs) is assumed to be scale-invariant. The parameters describing the non-linear, area-average soil hydraulic functions in this scale-invariant DR-equation should be treated as calibration-parameters, which do not necessarily have a physical meaning. The saturated hydraulic conductivity is one of the soil parameters to which the models show very high sensitivity. It is shown that saturated hydraulic conductivity can be scaled in both vertical and horizontal directions for large flow domains.

In this paper, a distinction is made between effective and aggregated soil parameters. Effective parameters are defined as area-average values or distributions over a domain with a single, distinct textural soil type. They can be obtained by scaling or inverse modelling. Aggregated soil parameters represent grid-domains with several textural soil types. In soil science dimensional methods have been developed to scale up soil hydraulic characteristics. With some specific assumptions, these techniques can be extrapolated from classical field-scale problems in soil heterogeneity to larger domains, compatible with the grid-size of large scale models. Particularly promising is the estimation of effective soil hydraulic parameters from area averaging measurements through inverse modelling of the unsaturated flow.

Techniques to scale and aggregate the soil characteristics presented in this paper qualify for direct or indirect use in large scale meteorological models. One of the interesting results is the effective behaviour of the reference curve, which can be obtained from similar media scaling. If the conclusions of this paper survive further studies, a relatively simple method will become available to parameterize soil variability at large scales. The inverse technique is found to provide effective soil parameters which perform well in predicting both the area-average evaporation and the area-average soil moisture fluxes, such as subsurface runoff. This is not the case for aggregated soil parameters. Obtained from regression relationships between soil textural composition and hydraulic characteristics, these aggregated parameters predict evaporation fluxes well, but fail to predict water balance terms such as percolation and runoff. This is a serious drawback which could eventually hamper the improvement of the representation of the hydrological cycle in mesoscale atmospheric models and in GCMs.  相似文献   


14.
A key problem in computational fluid dynamics (CFD) modelling of gravel‐bed rivers is the representation of multi‐scale roughness, which spans the range from grain size, through bedforms, to channel topography. These different elements of roughness do not clearly map onto a model mesh and use of simple grain‐scale roughness parameters may create numerical problems. This paper presents CFD simulations for three cases: a plane bed of fine gravel, a plane bed of fine gravel including large, widely‐spaced pebble clusters, and a plane gravel bed with smaller, more frequent, protruding elements. The plane bed of fine gravel is modelled using the conventional wall function approach. The plane bed of fine gravel including large, widely‐spaced pebble clusters is modelled using the wall function coupled with an explicit high‐resolution topographic representation of the pebble clusters. In these cases, the three‐dimensional Reynolds‐averaged continuity and Navier–Stokes equations are solved using the standard k ? ε turbulence model, and model performance is assessed by comparing predicted results with experimental data. For gravel‐bed rivers in the field, it is generally impractical to map the bed topography in sufficient detail to enable the use of an explicit high‐resolution topography. Accordingly, an alternative model based on double‐averaging is developed. Here, the flow calculations are performed by solving the three‐dimensional double‐averaged continuity and Navier‐Stokes equations with the spatially‐averaged 〈k ? ε〉 turbulence model. For the plane bed of fine gravel including large, widely‐spaced pebble clusters, the model performance is assessed by comparing the spatially‐averaged velocity with the experimental data. The case of a plane gravel bed with smaller, more frequent, protruding elements is represented by a series of idealized hypothetical cases. Here, the spatially‐averaged velocity and eddy viscosity are used to investigate the applicability of the model, compared with using the explicit high‐resolution topography. The results show the ability of the model to capture the spatially‐averaged flow field and, thus, illustrate its potential for representing flow processes in natural gravel‐bed rivers. Finally, practical data requirements for implementing such a model for a field example are given. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Spatial and temporal variability of hydrological responses affecting surface water dissolved organic carbon (DOC) concentrations are important for determining upscaling patterns of DOC export within larger catchments. Annual and intra‐annual variations in DOC concentrations and fluxes were assessed over 2 years at 12 sites (3·40–1837 km2) within the River Dee basin in NE Scotland. Mean annual DOC fluxes, primarily correlated with catchment soil coverage, ranged from 3·41 to 9·48 g m?2 yr?1. Periods of seasonal (summer–autumn and winter–spring) DOC concentrations (production) were delineated and related to discharge. Although antecedent temperature mainly determined the timing of switchover between periods of high DOC in the summer‐autumn and low DOC in winter‐spring, inter‐annual variability of export within the same season was largely dependent on its associated water flux. DOC fluxes ranged from 1·39 to 4·80 g m?2 season?1 during summer–autumn and 1·43 to 4·15 g m?2 season?1 in winter–spring.Relationships between DOC areal fluxes and catchment scale indicated that mainstem fluxes reflect the averaging of highly heterogeneous inputs from contrasting headwater catchments, leading to convergent DOC fluxes at catchment sizes of ca 100 km2. However, during summer–autumn periods, in contrast to winter–spring, longitudinal mainstem DOC fluxes continue to decrease, most likely because of increasing biological processes. This highlights the importance of considering seasonal as well as annual changes in DOC fluxes with catchment scale. This study increases our understanding of the temporal variability of DOC upscaling patterns reflecting cumulative changes across different catchment scales and aids modelling of carbon budgets at different stages of riverine systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The Beerkan method based on in situ single‐ring water infiltration experiments along with the relevant specific Beerkan estimation of soil transfer parameters (BEST) algorithm is attractive for simple soil hydraulic characterization. However, the BEST algorithm may lead to erroneous or null values for the saturated hydraulic conductivity and sorptivity especially when there are only few infiltration data points under the transient flow state, either for sandy soil or soils in wet conditions. This study developed an alternative algorithm for analysis of the Beerkan infiltration experiment referred to as BEST‐generalized likelihood uncertainty estimation (GLUE). The proposed method estimates the scale parameters of van Genuchten water retention and Brooks–Corey hydraulic conductivity functions through the GLUE methodology. The GLUE method is a Bayesian Monte Carlo parameter estimation technique that makes use of a likelihood function to measure the goodness‐of‐fit between modelled and observed data. The results showed that using a combination of three different likelihood measurements based on observed transient flow, steady‐state flow and experimental steady‐state infiltration rate made the BEST‐GLUE procedure capable of performing an efficient inverse analysis of Beerkan infiltration experiments. Therefore, it is more applicable for a wider range of soils with contrasting texture, structure, and initial and saturated water content. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Coal measures (coal bearing rock strata) can contain large reserves of methane. These reserves are being exploited at a rapidly increasing rate in many parts of the world. To extract coal seam gas, thousands of wells are drilled at relatively small spacing to depressurize coal seams to induce desorption and allow subsequent capture of the gas. To manage this process effectively, the effect of coal bed methane (CBM) extraction on regional aquifer systems must be properly understood and managed. Groundwater modeling is an integral part of this management process. However, modeling of CBM impacts presents some unique challenges, as processes that are operative at two very different scales must be adequately represented in the models. The impacts of large‐scale gas extraction may be felt over a large area, yet despite the significant upscaling that accompanies construction of a regional model, near‐well conditions and processes cannot be ignored. These include the highly heterogeneous nature of many coal measures, and the dual‐phase flow of water and gas that is induced by coal seam depressurization. To understand these challenges, a fine‐scale model was constructed incorporating a detailed representation of lithological heterogeneity to ensure that near‐well processes and conditions could be examined. The detail of this heterogeneity was at a level not previously employed in models built to assess groundwater impacts arising from CBM extraction. A dual‐phase reservoir simulator was used to examine depressurization and water desaturation processes in the vicinity of an extractive wellfield within this fine‐scale model. A single‐phase simulator was then employed so that depressurization errors incurred by neglecting near‐well, dual‐phase flow could be explored. Two models with fewer lithological details were then constructed in order to examine the nature of depressurization errors incurred by upscaling and to assess the interaction of the upscaling process with the requirement for adequate representation of near‐source, dual‐phase processes.  相似文献   

18.
Gerard Govers  Jan Diels 《水文研究》2013,27(25):3777-3790
Experimental work has clearly shown that the effective hydraulic conductivity (Ke) or effective infiltration rate (fe) on the local scale of a plot cannot be considered as constant but are dependent on water depth and rainfall intensity because non‐random microtopography‐related variations in hydraulic conductivity occur. Rainfall–runoff models generally do not account for this: models assume that excess water is uniformly spread over the soil surface and within‐plot variations are neglected. In the present study, we propose a model that is based on the concepts of microtopography‐related water depth‐dependent infiltration and partial contributing area. Expressions for the plot scale Ke and fe were developed that depend on rainfall intensity and runon from upslope (and thus on water depth). To calibrate and validate the model, steady state infiltration experiments were conducted on maize fields on silt loam soils in Belgium, with different stages and combinations of rainfall intensity and inflow, simulating rainfall and runon. Water depth–discharge and depth–inundation relationships were established and used to estimate the effect of inundation on Ke. Although inflow‐only experiments were found to be unsuitable for calibration, the model was successfully calibrated and validated with the rainfall simulation data and combined rainfall–runon data (R²: 0.43–0.91). Calibrated and validated with steady state infiltration experiments, the model was combined with the Green–Ampt infiltration equation and can be applied within a two‐dimensional distributed rainfall–runoff model. The effect of water depth–dependency and rainfall intensity on infiltration was illustrated for a hillslope. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The seasonally‐dry climate of Northern California imposes significant water stress on ecosystems and water resources during the dry summer months. Frequently during summer, the only water inputs occur as non‐rainfall water, in the form of fog and dew. However, due to spatially heterogeneous fog interaction within a watershed, estimating fog water fluxes to understand watershed‐scale hydrologic effects remains challenging. In this study, we characterized the role of coastal fog, a dominant feature of Northern Californian coastal ecosystems, in a San Francisco Peninsula watershed. To monitor fog occurrence, intensity, and spatial extent, we focused on the mechanisms through which fog can affect the water balance: throughfall following canopy interception of fog, soil moisture, streamflow, and meteorological variables. A stratified sampling design was used to capture the watershed's spatial heterogeneities in relation to fog events. We developed a novel spatial averaging scheme to upscale local observations of throughfall inputs and evapotranspiration suppression and make watershed‐scale estimates of fog water fluxes. Inputs from fog water throughfall (10–30 mm/year) and fog suppression of evapotranspiration (125 mm/year) reduced dry‐season water deficits by 25% at watershed scales. Evapotranspiration suppression was much more important for this reduction in water deficit than were direct inputs of fog water. The new upscaling scheme was analyzed to explore the sensitivity of its results to the methodology (data type and interpolation method) employed. This evaluation suggests that our combination of sensors and remote sensing allows an improved incorporation of spatially‐averaged fog fluxes into the water balance than traditional interpolation approaches.  相似文献   

20.
Subsurface formations are characterized by heterogeneity over multiple length scales, which can have a strong impact on flow and transport. In this paper, we present a new upscaling approach, based on time-of-flight (TOF), to generate upscaled two-phase flow functions. The method focuses on more accurate representations of local saturation boundary conditions, which are found to have a dominant impact (in comparison to the pressure boundary conditions) on the upscaled two-phase flow models. The TOF-based upscaling approach effectively incorporates single-phase flow and transport information into local upscaling calculations, accounting for the global flow effects on saturation, as well as the local variations due to subgrid heterogeneity. The method can be categorized into quasi-global upscaling techniques, as the global single-phase flow and transport information is incorporated in the local boundary conditions. The TOF-based two-phase upscaling can be readily integrated into any existing local two-phase upscaling framework, thus more flexible than local–global two-phase upscaling approaches developed recently. The method was applied to permeability fields with different correlation lengths and various fluid-mobility ratios. It was shown that the new method consistently outperforms existing local two-phase upscaling techniques, including recently developed methods with improved local boundary conditions (such as effective flux boundary conditions), and provides accurate coarse-scale models for both flow and transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号