首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Soil heterogeneity plays an important role in determining surface runoff generation mechanisms. At the spatial scales represented by land surface models used in regional climate model and/or global general circulation models (GCMs) for numerical weather prediction and climate studies, both infiltration excess (Horton) and saturation excess (Dunne) runoff may be present within a studied area or a model grid cell. Proper modeling of surface runoff is essential to a reasonable representation of feedbacks in the land–atmosphere system. In this paper, a new surface runoff parameterization that dynamically represents both Horton and Dunne runoff generation mechanisms within a model grid cell is presented. The new parameterization takes into account of effects of soil heterogeneity on Horton and Dunne runoff. A series of numerical experiments are conducted to study the effects of soil heterogeneity on Horton and Dunne runoff and on soil moisture storage under different soil and precipitation conditions. The new parameterization is implemented into the current version of the hydrologically based variable infiltration capacity (VIC) land surface model and tested over three watersheds in Pennsylvania. Results show that the new parameterization plays a very important role in partitioning the water budget between surface runoff and soil moisture in the atmosphere–land coupling system. Significant underestimation of the surface runoff and overestimation of subsurface runoff and soil moisture could be resulted if the Horton runoff mechanism were not taken into account. Also, the results show that the Horton runoff mechanism should be considered within the context of subgrid-scale spatial variability of soil properties and precipitation. An assumption of time-invariant spatial distribution of potential infiltration rate may result in large errors in surface runoff and soil moisture. In addition, the total surface runoff from the new parameterization is less sensitive to the choice of the soil moisture shape parameter of the distribution.  相似文献   

3.
It is commonly assumed that biophysically based soil-vegetation-atmosphere transfer (SVAT) models are scale-invariant with respect to the initial boundary conditions of topography, vegetation condition and soil moisture. In practice, SVAT models that have been developed and tested at the local scale (a few meters or a few tens of meters) are applied almost unmodified within general circulation models (GCMs) of the atmosphere, which have grid areas of 50–500 km2. This study, which draws much of its substantive material from the papers of Sellers et al. (1992c, J. Geophys. Res., 97(D17): 19033–19060) and Sellers et al. (1995, J. Geophys. Res., 100(D12): 25607–25629), explores the validity of doing this. The work makes use of the FIFE-89 data set which was collected over a 2 km × 15 km grassland area in Kansas. The site was characterized by high variability in soil moisture and vegetation condition during the late growing season of 1989. The area also has moderate topography.

The 2 km × 15 km ‘testbed’ area was divided into 68 × 501 pixels of 30 m × 30 m spatial resolution, each of which could be assigned topographic, vegetation condition and soil moisture parameters from satellite and in situ observations gathered in FIFE-89. One or more of these surface fields was area-averaged in a series of simulation runs to determine the impact of using large-area means of these initial or boundary conditions on the area-integrated (aggregated) surface fluxes. The results of the study can be summarized as follows:

1. 1. analyses and some of the simulations indicated that the relationships describing the effects of moderate topography on the surface radiation budget are near-linear and thus largely scale-invariant. The relationships linking the simple ratio vegetation index (SR), the canopy conductance parameter (F) and the canopy transpiration flux are also near-linear and similarly scale-invariant to first order. Because of this, it appears that simple area-averaging operations can be applied to these fields with relatively little impact on the calculated surface heat flux.
2. 2. The relationships linking surface and root-zone soil wetness to the soil surface and canopy transpiration rates are non-linear. However, simulation results and observations indicate that soil moisture variability decreases significantly as an area dries out, which partially cancels out the effects of these non-linear functions.In conclusion, it appears that simple averages of topographic slope and vegetation parameters can be used to calculate surface energy and heat fluxes over a wide range of spatial scales, from a few meters up to many kilometers at least for grassland sites and areas with moderate topography. Although the relationships between soil moisture and evapotranspiration are non-linear for intermediate soil wetnesses, the dynamics of soil drying act to progressively reduce soil moisture variability and thus the impacts of these non-linearities on the area-averaged surface fluxes. These findings indicate that we may be able to use mean values of topography, vegetation condition and soil moisture to calculate the surface-atmosphere fluxes of energy, heat and moisture at larger length scales, to within an acceptable accuracy for climate modeling work. However, further tests over areas with different vegetation types, soils and more extreme topography are required to improve our confidence in this approach.
  相似文献   

4.
In this article the relative roles of precipitation and soil moisture in influencing runoff variability in the Mekong River basin are addressed. The factors controlling runoff generation are analysed in a calibrated macro‐scale hydrologic model, and it is demonstrated that, in addition to rainfall, simulated soil moisture plays a decisive role in establishing the timing and amount of generated runoff. Soil moisture is a variable with a long memory for antecedent hydrologic fluxes that is influenced by soil hydrologic parameters, topography, and land cover type. The influence of land cover on soil moisture implies significant hydrologic consequences for large‐scale deforestation and expansion of agricultural land. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
本文采用RAMS(Regional Atmospheric Modeling System)模式模拟研究了没有背景风的情况下,土壤湿度非均匀分布的长度尺度分别为40km逐渐减小到2km时,地表通量的分布和大气边界层的响应.运用二维傅里叶变换,分析了地表通量、中尺度脉动量和中尺度通量的二维幅度谱分布,初步探讨大尺度模式中非均匀地表条件下的边界层参数化问题.分析结果显示各试验的地表水、热通量和中尺度脉动量的幅度谱的极大值都出现在与各自非均匀尺度相对应的波数处,当有不同尺度的非均匀斑块共存时,最大的非均匀尺度占主导.但是中尺度水、热通量的结果有所不同,除了在与各自非均匀尺度相对应的波数处有峰值之外,在其他波数还有多个峰值.这些结果表明地表水、热通量的空间分布尺度与非均匀尺度之间存在较好的对应关系,而中尺度水、热通量与非均匀尺度的关系并不明显,说明地表水、热通量的网格平均值的代表性较好,但是不能反映次网格脉动的影响,而中尺度通量的网格平均值的代表性较差.  相似文献   

6.
Soil surface crusts are widely reported to favour Hortonian runoff, but are not explicitly represented in most rainfall‐runoff models. The aim of this paper is to assess the impact of soil surface crusts on infiltration and runoff modelling at two spatial scales, i.e. the local scale and the plot scale. At the local scale, two separate single ring infiltration experiments are undertaken. The first is performed on the undisturbed soil, whereas the second is done after removal of the soil surface crust. The HYDRUS 2D two‐dimensional vertical infiltration model is then used in an inverse modelling approach, first to estimate the soil hydraulic properties of the crust and the subsoil, and then the effective hydraulic properties of the soil represented as a single uniform layer. The results show that the crust hydraulic conductivity is 10 times lower than that of the subsoil, thus illustrating the limiting role the crust has on infiltration. Moving up to the plot scale, a rainfall‐runoff model coupling the Richards equation to a transfer function is used to simulate Hortonian overland flow hydrographs. The previously calculated hydraulic properties are used, and a comparison is undertaken between a single‐layer and a double‐layer representation of the crusted soil. The results of the rainfall‐runoff model show that the soil hydraulic properties calculated at the local scale give acceptable results when used to model runoff at the plot scale directly, without any numerical calibration. Also, at the plot scale, no clear improvement of the results can be seen when using a double‐layer representation of the soil in comparison with a single homogeneous layer. This is due to the hydrological characteristics of Hortonian runoff, which is triggered by a rainfall intensity exceeding the saturated hydraulic conductivity of the soil surface. Consequently, the rainfall‐runoff model is more sensitive to rainfall than to the subsoil's hydrodynamic properties. Therefore, the use of a double‐layer soil model to represent runoff on a crusted soil does not seem necessary, as the increase of precision in the soil discretization is not justified by a better performance of the model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
F. Viola  D. Pumo  L. V. Noto 《水文研究》2014,28(9):3361-3372
  相似文献   

8.
The distribution of water within a soil profile can only be partly explained by the time distribution and rate of surface-water input. Observed differences in soil moisture within the unsaturated zone result from the interaction of surface-water inputs with spatially inhomogeneous soil characteristics. Water which initially percolates vertically is differentially impeded as a result of subtle textural changes in the soil, and is then preferentially retained in such zones of transition, causing large differences in soil-water content to occur. The scale of this vertical variability is of tenths of metres, whilst lateral variability of soil moisture reflects textural changes over a few metres. The observed influence of small-scale heterogeneity on soil-water content suggests that the conventional assumptions of isotropicity and homogeneity of the textural and hydraulic properties of porous media used in drainage basin and hillslope hydrological models need scrutiny, even for single stratigraphic units.  相似文献   

9.
The curve number (CN) method is widely used for rainfall–runoff modelling in continuous hydrologic simulation models. A sound continuous soil moisture accounting procedure is necessary for models using the CN method. For shallow soils and soils with low storage, the existing methods have limitations in their ability to reproduce the observed runoff. Therefore, a simple one‐parameter model based on the Soil Conservation Society CN procedure is developed for use in continuous hydrologic simulation. The sensitivity of the model parameter to runoff predictions was also analysed. In addition, the behaviour of the procedure developed and the existing continuous soil moisture accounting procedure used in hydrologic models, in combination with Penman–Monteith and Hargreaves evapotranspiration (ET) methods was also analysed. The new CN methodology, its behaviour and the sensitivity of the depletion coefficient (model parameter) were tested in four United States Geological Survey defined eight‐digit watersheds in different water resources regions of the USA using the SWAT model. In addition to easy parameterization for calibration, the one‐parameter model developed performed adequately in predicting runoff. When tested for shallow soils, the parameter is found to be very sensitive to surface runoff and subsurface flow and less sensitive to ET. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Many of the relationships used in coupled land–atmosphere models to describe interactions between the land surface and the atmosphere have been empirically parameterized and thus are inherently dependent on the observational scale for which they were derived and tested. However, they are often applied at scales quite different than the ones they were intended for due to practical necessity. In this paper, a study is presented on the scale-dependency of parameterizations which are nonlinear functions of variables exhibiting considerable spatial variability across a wide range of scales. For illustration purposes, we focus on parameterizations which are explicit nonlinear functions of soil moisture. We use data from the 1997 Southern Great Plains Hydrology Experiment (SGP97) to quantify the spatial variability of soil moisture as a function of scale. By assuming that a parameterization keeps its general form the same over a range of scales, we quantify how the values of its parameters should change with scale in order to preserve the spatially averaged predicted fluxes at any scale of interest. The findings of this study illustrate that if modifications are not made to nonlinear parameterizations to account for the mismatch of scales between optimization and application, then significant systematic biases may result in model-predicted water and energy fluxes.  相似文献   

11.
The analysis of the physical processes involved in a conceptual model of soil water content balance is addressed with the objective of its application as a component of rainfall–runoff modelling. The model uses routinely measured meteorological variables (rainfall and air temperature) and incorporates a limited number of significant parameters. Its performance in estimating the soil moisture temporal pattern was tested through local measurements of volumetric water content carried out continuously on an experimental plot located in central Italy. The analysis was carried out for different periods in order to test both the representation of infiltration at the short time‐scale and drainage and evapotranspiration processes at the long time‐scale. A robust conceptual model was identified that incorporated the Green–Ampt approach for infiltration and a gravity‐driven approximation for drainage. A sensitivity analysis was performed for the selected model to assess the model robustness and to identify the more significant parameters involved in the principal processes that control the soil moisture temporal pattern. The usefulness of the selected model was tested for the estimation of the initial wetness conditions for rainfall–runoff modelling at the catchment scale. Specifically, the runoff characteristics (runoff depth and peak discharge) were found to be dependent on the pre‐event surface soil moisture. Both observed values and those estimated by the model gave good results. On the contrary, with the antecedent wetness conditions furnished by two versions of the antecedent precipitation index (API), large errors were obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
A number of watershed‐scale hydrological models include Richards' equation (RE) solutions, but the literature is sparse on information as to the appropriate application of RE at the watershed scale. In most published applications of RE in distributed watershed‐scale hydrological modelling, coarse vertical resolutions are used to decrease the computational burden. Compared to point‐ or field‐scale studies, application at the watershed scale is complicated by diverse runoff production mechanisms, groundwater effects on runoff production, runon phenomena and heterogeneous watershed characteristics. An essential element of the numerical solution of RE is that the solution converges as the spatial resolution increases. Spatial convergence studies can be used to identify the proper resolution that accurately describes the solution with maximum computational efficiency, when using physically realistic parameter values. In this study, spatial convergence studies are conducted using the two‐dimensional, distributed‐parameter, gridded surface subsurface hydrological analysis (GSSHA) model, which solves RE to simulate vadose zone fluxes. Tests to determine if the required discretization is strongly a function of dominant runoff production mechanism are conducted using data from two very different watersheds, the Hortonian Goodwin Creek Experimental Watershed and the non‐Hortonian Muddy Brook watershed. Total infiltration, stream flow and evapotranspiration for the entire simulation period are used to compute comparison statistics. The influences of upper and lower boundary conditions on the solution accuracy are also explored. Results indicate that to simulate hydrological fluxes accurately at both watersheds small vertical cell sizes, of the order of 1 cm, are required near the soil surface, but not throughout the soil column. The appropriate choice of approximations for calculating the near soil‐surface unsaturated hydraulic conductivity can yield modest increases in the required cell size. Results for both watersheds are quite similar, even though the soils and runoff production mechanisms differ greatly between the two catchments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Catchment runoff is the most widely used catchment scale measurement in modelling studies, and we have a reasonable degree of confidence in its accuracy. The advent of satellites gives access to a new suite of measurements taken over a defined spatial range. These measurements, principally reflected or emitted radiation, provide hydrologists with new possibilities for quantifying the state of a catchment. Surface temperatures can be readily measured by a satellite on a scale comparable to the size of a small catchment.

In this paper we show that satellite sensed temperatures can provide an important measure of catchment status, which can complement runoff measurements in water balance studies. A one-dimensional model, which couples the land surface energy balance with the soil and surface water balance is tested by comparison with runoff and with remotely sensed surface temperature measurements. Simulations have been run over four years for two small catchments which have a fairly homogeneous vegetation, one being forest and its neighbour pasture. Satellite “surface” temperatures have been interpreted in terms of the energy balance, and used as a test of modelling accuracy. An “effective” surface temperature is calculated as a weighted mean of temperatures of the separate soil and leaf surfaces. This modelled “effective” temperature correlates well with Landsat TM surface temperatures.

When pasture replaces forest, the model predicts a reduction in evapotranspiration of around 30%, a three-fold increase in runoff, and an increase in mean soil moisture status. The change to pasture also results in a rise in mean effective surface temperature of about 4°C, and an increase in summer diurnal temperature range from 10 to 22°C. The winter diurnal temperature range is similar for both vegetation systems.

Inclusion of soil moisture variability in thermal properties results in an increase in mean daily maximum temperature of about 2°C in summer and winter, without much change in daily minima. The daily mean temperature is not significantly affected.  相似文献   


14.
Spatial heterogeneity is ubiquitous in nature, which may significantly affect the soil hydraulic property curves. The models of a closed‐form functional relationship of soil hydraulic property curves (e.g. VG model or exponential model) are valid at point or local scale based on a point‐scale hydrological process, but how do scale effects of heterogeneity have an influence on the parameters of these models when the models are used in a larger scale process? This paper uses a two‐dimensional variably saturated flow and solute transport finite element model (VSAFT2) to simulate variations of pressure and moisture content in the soil flume under a constant head boundary condition. By changing different numerical simulation block sizes, a quantitative evaluation of parameter variations in the VG model, resulting from the scale effects, is presented. Results show that the parameters of soil hydraulic properties are independent of scale in homogeneous media. Parameters of α and n in homogeneous media, which are estimated by using the unsaturated hydraulic conductivity curve (UHC) or the soil water retention curve (WRC), are identical. Variations of local heterogeneities strongly affect the soil hydraulic properties, and the scale affects the results of the parameter estimations when numerical experiments are conducted. Furthermore, the discrepancy of each curve becomes considerable when moisture content becomes closer to a dry situation. Parameters estimated by UHC are totally different from the ones estimated by WRC. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Particular attention is given to the reliability of hydrological modelling results. The accuracy of river runoff projection depends on the selected set of hydrological model parameters, emission scenario and global climate model. The aim of this article is to estimate the uncertainty of hydrological model parameters, to perform sensitivity analysis of the runoff projections, as well as the contribution analysis of uncertainty sources (model parameters, emission scenarios and global climate models) in forecasting Lithuanian river runoff. The impact of model parameters on the runoff modelling results was estimated using a sensitivity analysis for the selected hydrological periods (spring flood, winter and autumn flash floods, and low water). During spring flood the results of runoff modelling depended on the calibration parameters that describe snowmelt and soil moisture storage, while during the low water period—the parameter that determines river underground feeding was the most important. The estimation of climate change impact on hydrological processes in the Merkys and Neris river basins was accomplished through the combination of results from A1B, A2 and B1 emission scenarios and global climate models (ECHAM5 and HadCM3). The runoff projections of the thirty-year periods (2011–2040, 2041–2070, 2071–2100) were conducted applying the HBV software. The uncertainties introduced by hydrological model parameters, emission scenarios and global climate models were presented according to the magnitude of the expected changes in Lithuanian rivers runoff. The emission scenarios had much greater influence on the runoff projection than the global climate models. The hydrological model parameters had less impact on the reliability of the modelling results.  相似文献   

16.
一次冷锋过境过程的中尺度通量观测   总被引:6,自引:0,他引:6  
根据Taylor假定 ,通过对铁塔定点观测冷锋过境湍流资料的谱分析 ,分离出其中尺度过程 ,从而计算出其中尺度通量 .计算结果的分析表明 ,在强背景风场条件下 ,湍流动量输送占据绝对优势 ;当背景风较弱时 ,中尺度动量通量不能被忽视 ,它甚至强于湍流动量通量 .而中尺度感热通量的强弱受多种因素的制约 .总的说来 ,冷锋后的中尺度感热通量大大强于湍流感热通量 .对于湍流通量参数化计算的理论分析表明 ,在较长的时间尺度进行湍流通量参数化时 ,有必要考虑因中尺度扰动而产生的修正 .合理的通量计算参数化方案需要全面包含湍流通量、中尺度通量以及中尺度过程对湍流通量的修正  相似文献   

17.
With the objective of improving flood predictions, in recent years sophisticated continuous hydrologic models that include complex land‐surface sub‐models have been developed. This has produced a significant increase in parameterization; consequently, applications of distributed models to ungauged basins lacking specific data from field campaigns may become redundant. The objective of this paper is to produce a parsimonious and robust distributed hydrologic model for flood predictions in Italian alpine basins. Application is made to the Toce basin (area 1534 km2). The Toce basin was a case study of the RAPHAEL European Union research project, during which a comprehensive set of hydrologic, meteorological and physiographic data were collected, including the hydrologic analysis of the 1996–1997 period. Two major floods occurred during this period. We compare the FEST04 event model (which computes rainfall abstraction and antecedent soil moisture conditions through the simple Soil Conservation Service curve number method) and two continuous hydrologic models, SDM and TDM (which differ in soil water balance scheme, and base flow and runoff generation computations). The simple FEST04 event model demonstrated good performance in the prediction of the 1997 flood, but shows limits in the prediction of the long and moderate 1996 flood. More robust predictions are obtained with the parsimonious SDM continuous hydrologic model, which uses a simple one‐layer soil water balance model and an infiltration excess mechanism for runoff generation, and demonstrates good performance in both long‐term runoff modelling and flood predictions. Instead, the use of a more sophisticated continuous hydrologic model, the TDM, that simulates soil moisture dynamics in two layers of soil, and computes runoff and base flow using some TOPMODEL concepts, does not seem to be advantageous for this alpine basin. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Using a coupled large‐eddy simulation–land surface model framework, the impact of two‐dimensional soil moisture heterogeneity on the cloudy boundary layer under varied free‐atmosphere stabilities is investigated. Specifically, the impacts of soil moisture heterogeneity length scale and heterogeneity in terms of soil moisture gradients on micrometeorological states, surface fluxes, boundary layer characteristics, and cloud development are examined. The results show that mesoscale circulations due to surface heterogeneity in soil moisture play an important role in transferring water vapour within the boundary layer and in regulating cloud distribution at the entrainment zone, which, in turn, provides feedbacks on boundary layer/surface energy budgets. The initial domain‐averaged soil moisture is identical for all homogenous and heterogeneous cases; however, the soil moisture heterogeneity in gradient and length scale between dry and wet regions has a significant impact on the estimates of near‐surface micrometeorological properties and surface fluxes, which further affect the boundary layer states and characteristics. Both liquid water potential temperature and liquid water mixing ratio increase with an increasing soil moisture gradient, whereas the amount of specific humidity decreases. Heterogeneity length scale and free atmosphere stability also amplify these impacts on the boundary layer structure and cloud formation. In a low atmospheric stability condition that potentially allows for a deeper boundary layer and a higher entrainment rate, cloud base height and cloud thickness significantly increase as the soil moisture gradient and length scale increase. Analysis to differentiate the influences of surface heterogeneity type (i.e. length scale vs gradient) shows that in general soil moisture gradient provides a larger impact than heterogeneity length scale, although the heterogeneity length scale is large enough to initiate circulation features responsible for differences in the coupled system between homogeneous and heterogeneous soil moisture cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
This paper compares artificial neural network (ANN), fuzzy logic (FL) and linear transfer function (LTF)‐based approaches for daily rainfall‐runoff modelling. This study also investigates the potential of Takagi‐Sugeno (TS) fuzzy model and the impact of antecedent soil moisture conditions in the performance of the daily rainfall‐runoff models. Eleven different input vectors under four classes, i.e. (i) rainfall, (ii) rainfall and antecedent moisture content, (iii) rainfall and runoff and (iv) rainfall, runoff and antecedent moisture content are considered for examining the effects of input data vector on rainfall‐runoff modelling. Using the rainfall‐runoff data of the upper Narmada basin, Central India, a suitable modelling technique with appropriate model input structure is suggested on the basis of various model performance indices. The results show that the fuzzy modelling approach is uniformly outperforming the LTF and also always superior to the ANN‐based models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号