首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
2.
Paul Tammetta 《Ground water》2016,54(5):646-655
Accurate estimation of the change in groundwater storage capacity (S) above mined longwall panels is vital for analysis of postmining void water level recovery in coal mines, and assessment of water quality impacts. At present, there is no generalized representation of the spatial distribution of changes in S around a panel. Current estimates are generally bulk averages with high uncertainty, precluding calculation of groundwater velocities in various parts of the subsurface. In this work, a recently published hydrogeological conceptual model of longwall caving is used in conjunction with observations from borehole extensometers, goaf height measurements, and pumping/drawdown records for mine pools to develop a subsurface spatial distribution of changes in S following longwall caving, with reduced uncertainty in their magnitudes. The assumption of saturation in the disturbed zone proved critical for obtaining accurate results and in reconciling widely varying published estimates of S. Results indicate that the goaf and collapsed zones each absorb over 30% of the mined volume, and about 20% is absorbed by the surface subsidence trough. The increase in S in the collapsed zone is inversely proportional to the amount of surface subsidence. The conceptual model is updated with these results to present the spatial distribution of S after caving. The results allow calculation of water velocities in various zones, and may provide greater accuracy in estimation of water level rebound and water quality processes. Most of the S participating in groundwater flows is provided by defects rather than the matrix.  相似文献   

3.
Remediation of subsurface contamination requires an understanding of the contaminant (history, source location, plume extent and concentration, etc.), and, knowledge of the spatial distribution of hydraulic conductivity (K) that governs groundwater flow and solute transport. Many methods exist for characterizing K heterogeneity, but most if not all methods require the collection of a large number of small‐scale data and its interpolation. In this study, we conduct a hydraulic tomography survey at a highly heterogeneous glaciofluvial deposit at the North Campus Research Site (NCRS) located at the University of Waterloo, Waterloo, Ontario, Canada to sequentially interpret four pumping tests using the steady‐state form of the Sequential Successive Linear Estimator (SSLE) ( Yeh and Liu 2000 ). The resulting three‐dimensional (3D) K distribution (or K‐tomogram) is compared against: ( 1 ) K distributions obtained through the inverse modeling of individual pumping tests using SSLE, and ( 2 ) effective hydraulic conductivity (Keff) estimates obtained by automatically calibrating a groundwater flow model while treating the medium to be homogeneous. Such a Keff is often used for designing remediation operations, and thus is used as the basis for comparison with the K‐tomogram. Our results clearly show that hydraulic tomography is superior to the inversions of single pumping tests or Keff estimates. This is particularly significant for contaminated sites where an accurate representation of the flow field is critical for simulating contaminant transport and injection of chemical and biological agents used for active remediation of contaminant source zones and plumes.  相似文献   

4.
Estimates of groundwater volumes available in semiarid regions that rely on water balance calculations require the determination of both surface to groundwater lag times and volumes from irrigation or rainfall initiated recharge. Subsurface geologic material hydraulic properties (e.g. hydraulic conductivities, water retention functions) necessary for unsaturated flow modelling are rarely available as are the instrumented field tests that might determine such lag times. Here we develop a simple two‐parameter (specific yield, Sy, and pore‐size distribution index, λ), one‐dimensional unsaturated flow model from simplifications of the Richards equation (using the Brooks‐Corey relationships) to determine lag times from agricultural deep drainage associated with the irrigation of alfalfa hay and various row crops in the Antelope Valley of California, USA. Model‐predicted lag times to depths of 85 m bgs (below ground surface) were similar to that measured in a 2‐year ponded recharge field trial, slightly overestimating that measured by approximately 15% (0.51 vs 0.44 years). Lag time estimates were most sensitive to estimated deep percolation rates and roughly equally sensitive to the model hydraulic parameters. Generally, as subsurface material textures coarsen towards larger Sy and λ values for all Sy >10%, lag times progressively increase; however, at Sy <10%, lag times decrease substantially suggesting that particular combinations of Sy and λ values that may be associated with similarly textured materials can result in the prediction of different lag times for Sy approximately 10%. Overall, lag times of 1–3 years to a depth of 69 m bgs were estimated from deep drainage of agricultural irrigation across a variety of irrigation schedules and subsurface materials. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Fractured rocks have presented formidable challenges for accurately predicting groundwater flow and contaminant transport. This is mainly due to our difficulty in mapping the fracture‐rock matrix system, their hydraulic properties and connectivity at resolutions that are meaningful for groundwater modeling. Over the last several decades, considerable effort has gone into creating maps of subsurface heterogeneity in hydraulic conductivity (K) and specific storage (Ss) of fractured rocks. Developed methods include kriging, stochastic simulation, stochastic inverse modeling, and hydraulic tomography. In this article, I review the evolution of various heterogeneity mapping approaches and contend that hydraulic tomography, a recently developed aquifer characterization technique for unconsolidated deposits, is also a promising approach in yielding robust maps (or tomograms) of K and Ss heterogeneity for fractured rocks. While hydraulic tomography has recently been shown to be a robust technique, the resolution of the K and Ss tomograms mainly depends on the density of pumping and monitoring locations and the quality of data. The resolution will be improved through the development of new devices for higher density monitoring of pressure responses at discrete intervals in boreholes and potentially through the integration of other data from single‐hole tests, borehole flowmeter profiling, and tracer tests. Other data from temperature and geophysical surveys as well as geological investigations may improve the accuracy of the maps, but more research is needed. Technological advances will undoubtedly lead to more accurate maps. However, more effort should go into evaluating these maps so that one can gain more confidence in their reliability.  相似文献   

6.
The estimation of recharge through groundwater model calibration is hampered by the nonuniqueness of recharge and aquifer parameter values. It has been shown recently that the estimability of spatially distributed recharge through calibration of steady‐state models for practical situations (i.e., real‐world, field‐scale aquifer settings) is limited by the need for excessive amounts of hydraulic‐parameter and groundwater‐level data. However, the extent to which temporal recharge variability can be informed through transient model calibration, which involves larger water‐level datasets, but requires the additional consideration of storage parameters, is presently unknown for practical situations. In this study, time‐varying recharge estimates, inferred through calibration of a field‐scale highly parameterized groundwater model, are systematically investigated subject to changes in (1) the degree to which hydraulic parameters including hydraulic conductivity (K) and specific yield (Sy) are constrained, (2) the number of water‐level calibration targets, and (3) the temporal resolution (up to monthly time steps) at which recharge is estimated. The analysis involves the use of a synthetic reality (a reference model) based on a groundwater model of Uley South Basin, South Australia. Identifiability statistics are used to evaluate the ability of recharge and hydraulic parameters to be estimated uniquely. Results show that reasonable estimates of monthly recharge (<30% recharge root‐mean‐squared error) require a considerable amount of transient water‐level data, and that the spatial distribution of K is known. Joint estimation of recharge, Sy and K, however, precludes reasonable inference of recharge and hydraulic parameter values. We conclude that the estimation of temporal recharge variability through calibration may be impractical for real‐world settings.  相似文献   

7.
The vertical hydraulic conductivity (Kv), elastic (Sske), and inelastic (Sskv) skeletal specific storage of aquitards are three of the most critical parameters in land subsidence investigations. Two new analytic methods are proposed to estimate the three parameters. The first analytic method is based on a new concept of delay time ratio for estimating Kv and Sske of an aquitard subject to long‐term stable, cyclic hydraulic head changes at boundaries. The second analytic method estimates the Sskv of the aquitard subject to linearly declining hydraulic heads at boundaries. Both methods are based on analytical solutions for flow within the aquitard, and they are jointly employed to obtain the three parameter estimates. This joint analytic method is applied to estimate the Kv, Sske, and Sskv of a 34.54‐m thick aquitard for which the deformation progress has been recorded by an extensometer located in Shanghai, China. The estimated results are then calibrated by PEST (Doherty 2005), a parameter estimation code coupled with a one‐dimensional aquitard‐drainage model. The Kv and Sske estimated by the joint analytic method are quite close to those estimated via inverse modeling and performed much better in simulating elastic deformation than the estimates obtained from the stress‐strain diagram method of Ye and Xue (2005). The newly proposed joint analytic method is an effective tool that provides reasonable initial values for calibrating land subsidence models.  相似文献   

8.
对比分析利用涡度距平法提出的2022年1月8日青海门源 MS6.9 地震震前射出长波辐射(OLR)短期异常分布和震后InSAR技术提取的门源地震同震形变空间分布,结果显示,震前红外辐射增强区与InSAR同震破裂形变区的空间位置基本吻合,扩展形式基本相似(同震破裂形变区分布在红外辐射异常区内部)。在震前的全国范围OLR空间分布上,仅青海德令哈—西宁—甘肃武威一带出现了呈“哑铃”状近WE向展布的OLR热辐射增强区,空间可辨识度高,OLR异常时空演化过程遵循了岩石应力加载破裂过程中的热异常规律,显示热异常变化与应力变化存在关联; InSAR技术提取的同震形变同样位于肃南—祁连断裂(俄堡段)、托莱山断裂和冷龙岭断裂的交汇区。InSAR同震形变结果揭示了地表形变以水平方向为主,断层运动具有典型的走滑变形特征。InSAR同震形变结果为红外遥感反映地震形变提供可检验的地质实体监测证据,验证了门源地震前辐射增强异常是地震构造地应力强度变化的遥感物理参量反映。  相似文献   

9.
Aquifer hydraulic parameters are commonly inferred from constant-rate pumping tests, while variable pumping rates are frequently encountered in actual field conditions. In this study, we propose a generally applicable dimensionless form of the analytical solution for variable-rate pumping tests in confined aquifers. In particular, we adopt a piecewise-linear fitting of variable pumping rates and propose a new type-curve method for estimating the hydraulic conductivity (K ) and specific storage (Ss ) of the investigated confined aquifer. For each test, a series of type curves, which depend on the variable pumping rates, the location of observation wells and the introduced first dimensionless inflection time, need to be provided for matching the observed drawdown data on a log-log graph. We first demonstrate the applicability and robustness of this method through a synthetic pumping test. Subsequently, we apply this method to analyze drawdown data from four pumping tests conducted within a multilayered aquifer/aquitard system in Wuxi city, Jiangsu Province, China. The parameter estimates are then compared with those reported by PEST. The K and Ss values estimated by the new type-curve method are found to be quite close to PEST-based estimates. Parameter estimation results demonstrate the difference in K and Ss values between observation wells. The difference could be attributed to the spatial heterogeneity in K and Ss . A future research topic may focus on the characterization of K and Ss heterogeneity with the currently available drawdown data from variable-rate pumping tests.  相似文献   

10.
Since the 1960s, most of the studies on groundwater flow systems by analytical and numerical modelling have been based on given‐head upper boundaries. The disadvantage of the given‐head approach is that the recharge into and discharge from a basin vary with changes in hydraulic conductivity and/or basin geometry. Consequently, flow patterns simulated with given‐head boundaries but with different hydraulic conductivities and/or basin geometry may not reflect the effects of these variables. We conducted, therefore, numerical simulations of groundwater flow in theoretical drainage basins using flux as the upper boundary and realistically positioned fluid‐potential sinks while changing the infiltration intensity, hydraulic conductivities, and geometric configuration of the basin. The simulated results demonstrate that these variables are dominant factors controlling the flow pattern in a laterally closed drainage basin. The ratio of infiltration intensity to hydraulic conductivity (Ric) has been shown to be an integrated pattern‐parameter in a basin with a given geometric configuration and possible fluid‐potential‐sink distribution. Successively, the changes in flow patterns induced by stepwise reductions in Ric are identical, regardless of whether the reductions are due to a decrease in infiltration intensity or an increase in hydraulic conductivity. The calculated examples show five sequential flow patterns containing (i) only local, (ii) local–intermediate, (iii) local–intermediate–regional, (iv) local–regional, and (v) just regional flow systems. The Ric was found to determine also whether a particular sink is active or not as a site of discharge. Flux upper boundary is preferable for numerical simulation when discussing the flow patterns affected by a change of infiltration, the hydraulic conductivity, or the geometry of a basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Significant efforts have been expended for improved characterization of hydraulic conductivity (K) and specific storage (Ss) to better understand groundwater flow and contaminant transport processes. Conventional methods including grain size analyses (GSA), permeameter, slug, and pumping tests have been utilized extensively, while Direct Push-based Hydraulic Profiling Tool (HPT) surveys have been developed to obtain high-resolution K estimates. Moreover, inverse modeling approaches based on geology-based zonations, and highly parameterized Hydraulic Tomography (HT) have also been advanced to map spatial variations of K and Ss between and beyond boreholes. While different methods are available, it is unclear which one yields K estimates that are most useful for high resolution predictions of groundwater flow. Therefore, the main objective of this study is to evaluate various K estimates at a highly heterogeneous field site obtained with three categories of characterization techniques including: (1) conventional methods (GSA, permeameter, and slug tests); (2) HPT surveys; and (3) inverse modeling based on geology-based zonations and highly parameterized approaches. The performance of each approach is first qualitatively analyzed by comparing K estimates to site geology. Then, steady-state and transient groundwater flow models are employed to quantitatively assess various K estimates by simulating pumping tests not used for parameter estimation. Results reveal that inverse modeling approaches yield the best drawdown predictions under both steady and transient conditions. In contrast, conventional methods and HPT surveys yield biased predictions. Based on our research, it appears that inverse modeling and data fusion are necessary steps in predicting accurate groundwater flow behavior.  相似文献   

12.
The subsurface injection of fluid (water, gas, vapour) occurs worldwide for a variety of purposes, e.g. to enhance oil production (EOR), store gas in depleted gas/oil fields, recharge overdrafted aquifer systems (ASR), and mitigate anthropogenic land subsidence. Irrespective of the injection target, some areas have experienced an observed land uplift ranging from a few millimetres to tens of centimetres over a time period of a few months to several years depending on the quantity and spatial distribution of the fluid used, pore pressure increase, geological setting (depth, thickness, and area extent), and hydro-geomechanical properties of the injected formation. The present paper reviews the fundamental geomechanical processes that govern land upheaval due to fluid injection in the subsurface and presents a survey of some interesting examples of anthropogenic uplift measured in the past by the traditional levelling technique and in recent times with the aid of satellite technology. The examples addressed include Long Beach, Santa Clara Valley, and Santa Ana basin, California; Las Vegas Valley, Nevada; Cold Lake and other similar sites, Canada; Tokyo and Osaka, Japan; Taipei, Taiwan; Krechba, Algeria; Upper Palatinate, Germany; Chioggia and Ravenna, Italy.  相似文献   

13.
The value of subsidence data in ground water model calibration   总被引:2,自引:0,他引:2  
Yan T  Burbey TJ 《Ground water》2008,46(4):538-550
The accurate estimation of aquifer parameters such as transmissivity and specific storage is often an important objective during a ground water modeling investigation or aquifer resource evaluation. Parameter estimation is often accomplished with changes in hydraulic head data as the key and most abundant type of observation. The availability and accessibility of global positioning system and interferometric synthetic aperture radar data in heavily pumped alluvial basins can provide important subsidence observations that can greatly aid parameter estimation. The aim of this investigation is to evaluate the value of spatial and temporal subsidence data for automatically estimating parameters with and without observation error using UCODE-2005 and MODFLOW-2000. A synthetic conceptual model (24 separate cases) containing seven transmissivity zones and three zones each for elastic and inelastic skeletal specific storage was used to simulate subsidence and drawdown in an aquifer with variably thick interbeds with delayed drainage. Five pumping wells of variable rates were used to stress the system for up to 15 years. Calibration results indicate that (1) the inverse of the square of the observation values is a reasonable way to weight the observations, (2) spatially abundant subsidence data typically produce superior parameter estimates under constant pumping even with observation error, (3) only a small number of subsidence observations are required to achieve accurate parameter estimates, and (4) for seasonal pumping, accurate parameter estimates for elastic skeletal specific storage values are largely dependent on the quantity of temporal observational data and less on the quantity of available spatial data.  相似文献   

14.
We report site response in Las Vegas Valley (LVV) from historical recordings of Nevada Test Site (NTS) nuclear explosions and earthquake recordings from permanent and temporary seismic stations. Our data set significantly improves the spatial coverage of LVV over previous studies, especially in the northern, deeper parts of the basin. Site response at stations in LVV was measured for frequencies in the range 0.2–5.0 Hz using Standard Spectral Ratios (SSR) and Horizontal-Vertical Spectral Ratios (HVR). For the SSR measurements we used a reference site (approximately NEHRP B ``rock' classification) located on Frenchman Mountain outside the basin. Site response at sedimentary sites is variable in LVV with average amplifications approaching a factor of 10 at some frequencies. We observed peaks in the site response curves at frequencies clustered near 0.6, 1.2 and 2.0 Hz, with some sites showing additional lower amplitude peaks at higher frequencies. The spatial pattern of site response is strongly correlated with the reported depth to basement for frequencies between 0.2 and 3.0 Hz, although the frequency of peak amplification does not show a similar correlation. For a few sites where we have geotechnical shear velocities, the amplification shows a correlation with the average upper 30-meter shear velocities, V30. We performed two-dimensional finite difference simulations and reproduced the observed peak site amplifications at 0.6 and 1.2 Hz with a low velocity near-surface layer with shear velocities 600–750 m/s and a thickness of 100–200 m. These modeling results indicate that the amplitude and frequencies of site response peaks in LVV are strongly controlled by shallow velocity structure.  相似文献   

15.
The White method is a simple but the most frequently applied approach to estimate groundwater evapotranspiration (ETg) from groundwater level diurnal signals. Because of a lack of direct measurements of ETg, it is difficult to evaluate the performance of the White method, particularly in field environments with variable groundwater fluctuations. A 2‐year field observation in a hyper‐arid riparian tamarisk (Tamarix spp.) stand with deep groundwater depth in the lower Tarim River basin of China was conducted to measure the surface evapotranspiration (ETs) and groundwater table. The performance of the White method and the influences of the variable groundwater fluctuations on the determinations of the specific yield (Sy) and recharge rate of groundwater (r) in the White method were investigated. The results showed that the readily available Sy determined by Loheide's method was feasible but must be finely determined based on the soil textures in the layers in which the groundwater level fluctuated. A constant Sy value for a defined porous medium could be assumed regardless of the discharge or recharge processes of groundwater. The time span of 0000 h to 0600 h for r estimation for the White method worked best than other time spans. A 2‐day moving average of r values further enhance ETg estimation. Slight effects of environmental or anthropogenic disturbances on the diurnal fluctuations of groundwater level did not influence the ETg estimations by the White method. Our results provide valuable references to the application of the White method for estimating daily ETg in desert riparian forests with deep groundwater depth. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Actual pumping tests may involve continuously decreasing rates over a certain period of time, and the hydraulic conductivity (K) and specific storage (Ss) of the tested confined aquifer cannot be interpreted from the classical constant‐rate test model. In this study, we revisit the aquifer drawdown characteristics of a pumping test with an exponentially decreasing rate using the dimensionless analytical solution for such a variable‐rate model. The drawdown may decrease with time for a short period of time at intermediate pumping times for such pumping tests. A larger ratio of initial to final pumping rate and a smaller radial distance of the observation well will enhance the decreasing feature. A larger decay constant results in an earlier decrease, but it weakens the extent of such a decrease. Based on the proposed dimensionless transformation, we have proposed two graphical methods for estimating K and Ss of the tested aquifer. The first is a new type curve method that does not employ the well function as commonly done in standard type curve analysis. Another is a new analytic method that takes advantage of the decreasing features of aquifer drawdown during the intermediate pumping stage. We have demonstrated the applicability and robustness of the two new graphical methods for aquifer characterization through a synthetic pumping test.  相似文献   

17.
The preliminary research results of vertical deformation dislocation model of GongheM S =6.9 earthquake show that, the causative structure is a hidden fault with strike N60°W, dipping S47°W, which lies near the current subsidence center of Gonghe basin. The rupture length and width are 30km and 14km, the upper and lower bound depth of the fault in width direction are 3km and 17km respectively. The maximum coseismic and preseismic vertical deformation of GongheM S =6.9 earthquake are 247mm and about 100mm. The reasons why there existed rapid postseismic uplift are also given a tentative discussion. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 289–295, 1993.  相似文献   

18.
Streambed hydraulic conductivity is one of the main factors controlling variability in surface water‐groundwater interactions, but only few studies aim at quantifying its spatial and temporal variability in different stream morphologies. Streambed horizontal hydraulic conductivities (Kh) were therefore determined from in‐stream slug tests, vertical hydraulic conductivities (Kv) were calculated with in‐stream permeameter tests and hydraulic heads were measured to obtain vertical head gradients at eight transects, each comprising five test locations, in a groundwater‐dominated stream. Seasonal small‐scale measurements were taken in December 2011 and August 2012, both in a straight stream channel with homogeneous elevation and downstream of a channel meander with heterogeneous elevation. All streambed attributes showed large spatial variability. Kh values were the highest at the depositional inner bend of the stream, whereas high Kv values were observed at the erosional outer bend and near the middle of the channel. Calculated Kv values were related to the thickness of the organic streambed sediment layer and also showed higher temporal variability than Kh because of sedimentation and scouring processes affecting the upper layers of the streambed. Test locations at the channel bend showed a more heterogeneous distribution of streambed properties than test locations in the straight channel, whereas within the channel bend, higher spatial variability in streambed attributes was observed across the stream than along the stream channel. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Rapid urbanization in the Jakarta area has become a severe subsurface environmental issue as it entails groundwater level decline and land subsidence caused by excessive groundwater pumping. In this study, apparent groundwater age rejuvenation in the deep aquifer under DKI Jakarta was found by comparing 14C activities between 1985 and 2008. We discussed the use of a numerical groundwater flow model to evaluate the rejuvenation process in this urbanized area. When considering the deep aquifer in the DKI Jakarta area, we can assume six direction fluxes toward the aquifer: two vertical fluxes (downward and upward flux) and four horizontal fluxes (northern, southern, western, and eastern flux). Results of model calculations show that the greatest groundwater flux among six flux directions became ‘vertical downward flux’, which means that shallower groundwater intrudes into the deep one because of excessive groundwater pumping from the mid‐1980s. This flux grows about 50% during the 2000s. This result is consistent with the detection of CFC‐12 and SF6, which functions as an indicator of young groundwater even in the deep groundwater. The rejuvenation ratio ‘R’ was determined using 14C activity in the groundwater; R increases with the CFC‐12 concentration and both show good correlation. Furthermore, we estimated the ‘vertical downward flux’ at each well's screen depth using model estimation. Results show that this flux is greater in the urban groundwater depression area and especially at shallower parts of the deep aquifer, and that it affects the magnitude of the shallow groundwater intrusion. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A three‐dimensional numerical modelling system is developed to study transformation processes of water resources in alluvial fan and river basin along the middle reaches of the Heihe River Basin, Northwest China, an arid and semi‐arid region. Integrating land utilization, remote sensing and geographic information systems, we have developed a numerical modelling system that can be used to quantify the effects of land use and anthropogenic activities on the groundwater system as well as to investigate the interaction between surface water and groundwater. Various hydraulic measurements are used to identify and calibrate the hydraulic boundary conditions and spatial distributions of hydraulic parameters. In the modelling study, various water exchanges and human effects on the watershed system are considered. These include water exchange between surface water and groundwater, groundwater pumping, lateral water recharges from mountain areas, land utilization, and infiltration and evaporation in the irrigation and non‐irrigation areas. The modelling system provides a quantitative method to describe spatial and temporal distributions and transformations between various water resources, and it has application to other watersheds in arid and semi‐arid areas. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号