首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Groundwater resources in Mahdia-Ksour Essef region, located in the central-eastern part of Tunisia, suffer from intensive exploitation and degradation of water quality. The assessment of groundwater vulnerability, the well-understanding of geochemical processes and the investigation of groundwater quality variations are of particular importance for water resources management in this semi-arid region. The results of this multi-disciplinary investigation show that groundwaters of Mahdia-Ksour Essef region are flowing from El Jem and Boumerdes regions in the South, towards the Mediterranean Sea and the sebkha of Moknine in the North. The groundwaters are classified as either Na-Cl or Ca-SO4. Stable oxygen and hydrogen isotope compositions (δ18O and δ2H) confirm a recharge by rapid water infiltration, evaporate surface water and water-rock interaction processes in the salinity increase. The rock-water interaction processes of the mineralization of groundwaters include the cation-exchange reactions and the dissolution of carbonates and evaporate. The high values of the water quality index (WQI) and of the total dissolved solids (TDS) (3.7–11 g/L) of these groundwaters indicate their unsuitability for drinking purpose. Moreover, the combination of the WQI, TDS and nitrate results prove the vulnerability of the studied groundwater to the anthropogenic pollution linked to agriculture and domestic activities and to the salt water contamination.  相似文献   

2.
Stable isotopic (δDVSMOW and δ18OVSMOW) and geochemical signatures were employed to constrain the geochemical evolution and sources of groundwater recharge in the arid Shule River Basin, Northwestern China, where extensive groundwater extraction occurs for agricultural and domestic supply. Springs in the mountain front of the Qilian Mountains, the Yumen‐Tashi groundwater (YTG), and the Guazhou groundwater (GZG) were Ca‐HCO3, Ca‐Mg‐HCO3‐SO4 and Na‐Mg‐SO4‐Cl type waters, respectively. Total dissolved solids (TDS) and major ion (Mg2+, Na+, Ca2+, K+, SO42?, Cl? and NO3?) concentrations of groundwater gradually increase from the mountain front to the lower reaches of the Guazhou Basin. Geochemical evolution in groundwater was possibly due to a combination of mineral dissolution, mixing processes and evapotranspiration along groundwater flow paths. The isotopic and geochemical variations in melt water, springs, river water, YTG and GZG, together with the end‐member mixing analysis (EMMA) indicate that the springs in the mountain front mainly originate from precipitation, the infiltration of melt water and river in the upper reaches; the lateral groundwater from the mountain front and river water in the middle reaches are probably effective recharge sources for the YTG, while contribution of precipitation to YTG is extremely limited; the GZG is mainly recharged by lateral groundwater flow from the Yumen‐Tashi Basin and irrigation return flow. The general characteristics of groundwater in the Shule River Basin have been initially identified, and the results should facilitate integrated management of groundwater and surface water resources in the study area. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
High-elevation mountains often constitute for basins important groundwater recharge sources through mountain-front recharge processes. These processes include streamflow losses and subsurface inflow from the mountain block. However, another key recharge process is from irrigation practices, where mountain streamflow is distributed across the irrigated piedmont. In this study, coupled groundwater fluctuation measurements and environmental tracers (18O, 2H, and major ions) were used to identify and compare the natural mountain-front recharge to the anthropogenically induced irrigation recharge. Within the High Atlas mountain front of the Ourika Basin, Central Morocco, the groundwater fluctuation mapping from the dry to wet season showed that recharge beneath the irrigated area was higher than the recharge along the streambed. Irrigation practices in the region divert more than 65% of the stream water, thereby reducing the potential for in-stream groundwater recharge. In addition, the irrigation areas close to the mountain front had greater water table increases (up to 3.5 m) compared with the downstream irrigation areas (<1 m increase). Upstream crops have priority to irrigation with stream water over downstream areas. The latter are only irrigated via stream water during large flood events and are otherwise supplemented by groundwater resources. These changes in water resources used for irrigation practices between upstream and downstream areas are reflected in the spatiotemporal evolution of the stable isotopes of groundwater. In the upstream irrigation area, the groundwater stable isotope values (δ18O: −8.4‰ to −7.4‰) reflect recharge by the diverted stream water. In the downstream irrigation area, the groundwater isotope values are lower (δ18O: −8.1‰ to −8.4‰) due to recharge via the flood water. In the nonirrigation area, the groundwater has the highest stable isotope values (δ18O: −6.8‰ to −4.8‰). This might be due to recharge via subsurface inflow from the mountain block to the mountain front and/or recharge via local low altitude rainfall. These findings highlight that irrigation practices can result in the dominant mountain-front recharge process for groundwater.  相似文献   

4.
Rainwater, groundwater and soil-water samples were analysed to assess groundwater geochemistry and the origin of salinity in the Ochi-Narkwa basin of the Central Region of Ghana. The samples were measured for major ions and stable isotopes (δ18O, δ2H and δ13C). The Cl? content in rainwater decreased with distance from the coast. The major hydrochemical facies were Na-Cl for the shallow groundwaters and Ca-Mg-HCO3, Na-Cl and Ca-Mg-Cl-SO4 for the deep groundwaters. Groundwater salinization is caused largely by halite dissolution and to a minor extent by silicate weathering and seawater intrusion. Stable isotope composition of the groundwaters followed a slope of 3.44, suggesting a mixing line. Chloride profiles in the soil zone revealed the existence of salt crusts, which support halite dissolution in the study area. A conceptual flow model developed to explain the mechanism of salinization showed principal groundwater flow in the NW–SE direction.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR K. Heal  相似文献   

5.
The isotopic chemistry of alluvial groundwaters from two adjacent valleys are described and hydrological processes within related aquifers are identified as evidenced by oxygen-18, deuterium, tritium and chloride data. A plot of δ18O against δD values reveals isotopic enrichment of the groundwater by the recycling of spray irrigation water. A plot of tritium versus chloride concentrations displays separate linear correlations for alluvial groundwaters within the two valleys. The salinity has a common source, therefore the separate correlations are interpreted as the past transfer of low salinity groundwater from the alluvial aquifers in one valley to the underlying sandstone aquifers.  相似文献   

6.
In the Manas River basin (MRB), groundwater salinization has become a major concern, impeding groundwater use considerably. Isotopic and hydrogeochemical characteristics of 73 groundwater and 11 surface water samples from the basin were analysed to determine the salinization process and potential sources of salinity. Groundwater salinity ranged from 0.2 to 11.91 g/L, and high salinities were generally located in the discharge area, arable land irrigated by groundwater, and depression cone area. The quantitative contributions of the evaporation effect were calculated, and the various groundwater contributions of transpiration, mineral dissolution, and agricultural irrigation were identified using hydrogeochemical diagrams and δD and δ18O compositions of the groundwater and surface water samples. The average evaporation contribution ratios to salinity were 5.87% and 32.7% in groundwater and surface water, respectively. From the piedmont plain to the desert plain, the average groundwater loss by evaporation increased from 7% to 29%. However, the increases in salinity by evaporation were small according to the deuterium excess signals. Mineral dissolution, transpiration, and agricultural irrigation activities were the major causes of groundwater salinization. Isotopic information revealed that river leakage quickly infiltrated into aquifers in the piedmont area with weak evaporation effects. The recharge water interacted with the sediments and dissolved minerals and subsequently increased the salinity along the flow path. In the irrigation land, shallow groundwater salinity and Cl? concentrations increased but not δ18O, suggesting that both the leaching of soil salts due to irrigation and transpiration effect dominated in controlling the hydrogeochemistry. Depleted δ18O and high Cl? concentrations in the middle and deep groundwater revealed the combined effects of mixing with paleo‐water and mineral dissolution with a long residence time. These results could contribute to the management of groundwater sources and future utilization programs in the MRB and similar areas.  相似文献   

7.
Chahardouly basin is located in the western part of Iran and is characterized by semi‐arid climatic conditions and scarcity in water resources. The main aquifer systems are developed within alluvial deposits. The availability of groundwater is rather erratic owing to the occurrence of hard rock formation and a saline zone in some parts of the area. The aquifer systems of the area show signs of depletion, which have taken place in recent years due to a decline in water levels. Groundwater samples collected from shallow and deep wells were analysed to examine the quality characteristics of groundwater. The major ion chemistry of groundwater is dominated by Ca2+ and HCO3?, while higher values of total dissolved solids (TDS) in groundwater are associated with high concentrations of all major ions. An increase in salinity is recorded in the down‐gradient part of the basin. The occurrence of saline groundwater, as witnessed by the high electrical conductivity (EC), may be attributed to the long residence time of water and the dissolution of minerals, as well as evaporation of rainfall and irrigation return flow. Based on SAR values and sodium content (%Na), salinity appears to be responsible for the poor groundwater quality, rendering most of the samples not suitable for irrigation use. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
This study demonstrates the application of multivariate statistical methods in definition of groundwater recharge and discharge areas in a sedimentary basin in Ghana. Q‐mode hierarchical cluster analysis (HCA) was applied to 57 hydrochemical data from the Buem formation in the northern part of the Volta Region in Ghana. R‐mode HCA and R‐mode factor analysis were then applied to the same dataset to reveal the processes controlling the hydrochemistry of groundwater from this hydrogeological formation. Results of both the Q‐ and R‐mode analyses were backed by graphical methods. The analyses revealed two major water types, differentiated by salinity levels into four spatial groundwater associations. The characteristics of the four groundwater types are discussed. The recharge areas are characterized by Ca? HCO3 low salinity waters which evolve through rock–water interactions to Na? HCO3 high salinity waters in the discharge areas. This study finds that the hydrochemistry of groundwater from this formation is mainly controlled by the weathering of minerals, principally silicates in the aquifer matrix. The effects of the chemistry of recharging precipitation are higher in the recharge areas, while mineral weathering tends to be severe close to the discharge areas in the groundwater flow regime. All the four spatial groundwater associations have low sodium content, but salinity levels increase towards the discharge areas, such that some of wells in the discharge areas may not be acceptable for irrigation on grounds of high salinities which might affect the osmotic potentials of plants. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
High‐salinity paleowater from low‐permeability aquitards in coastal areas can be a major threat to groundwater resources; however, such water has rarely been studied. The chemical and isotopic compositions of porewater extracted from a 200‐m‐thick Quaternary sedimentary sequence in the western coastal plain of Bohai Bay, China, were analyzed to investigate the salinity origin and chemical evolution of porewater in aquitards. Porewater samples derived at depths shallower than 32 m are characterized by Cl‐Na type saline water (total dissolved solids [TDS], 10.9–84.3 g/L), whereas those at depths greater than 32 m comprise Cl·SO4‐Na type brackish water (TDS, 2.2–6.3 g/L). Saline porewater is interpreted as evaporated seawater prior to halite saturation, as evidenced by Cl‐Br relationships. Although substantial dilution of saline porewater with meteoric water is supported by a wider Cl? range and δ2H‐δ18O covariance, the original marine waters were not completely flushed out. The deeper brackish porewater is determined to be a mixture of fresher porewater and brine groundwater and had a component of old brine of less than 10%, as indicated by a mixing model defined using δ2H and Cl? tracers. Porewater δ2H‐δ18O relationships and negative deuterium excess ranging from ?25.9‰ to ?2.9‰ indicate the existence of an arid climate since Late Pleistocene in Tianjin Plain. The aquitard porewaters were chemically modified through water‐rock interactions due to the long residence time.  相似文献   

10.
We used hydrochemistry and environmental isotope data (δ18O, δD, tritium, and 14C) to investigate the characteristics of river water, groundwater, and groundwater recharge in China's Heihe River basin. The river water and groundwater could be characterized as Ca2+? Mg2+? HCO3?? SO42? and Na+? Mg2+? SO42?? Cl? types, respectively. Hydrogeochemical modelling using PHREEQC software revealed that the main hydrogeochemical processes are dissolution (except for gypsum and anhydrite) along groundwater flow paths from the upper to middle Heihe reaches. Towards the lower reaches, dolomite and calcite tend to precipitate. The isotopic data for most of the river water and groundwater lie on the global meteoric water line (GMWL) or between the GMWL and the meteoric water line in northwestern China, indicating weak evaporation. No direct relationship existed between recharge and discharge of groundwater in the middle and lower reaches based on the isotope ratios, d‐excess, and 14C values. On the basis of tritium in precipitation and by adopting an exponential piston‐flow model, we evaluated the mean residence time of shallow groundwater with high tritium activities, which was around 50 years (a). Furthermore, based on the several popular models, it is calculated that the deep groundwaters in piedmont alluvial fan zone of the middle reaches and in southern part of the lower reaches are modern water, whereas the deep groundwaters in the edge of the middle reaches and around Juyan Lake in the lower reaches of Heihe river basin are old water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
In the Jungwon area, South Korea, two contrasting types of deep thermal groundwater (around 20–33 °C) occur together in granite. Compared to shallow groundwater and surface water, thermal groundwaters have significantly lower δ18O and δD values (> 1‰ lower in δ18O) and negligible tritium content (mostly < 2 TU), suggesting a relatively high age of these waters (at least pre-thermonuclear period) and relatively long subsurface circulation. However, the hydrochemical evolution yielded two distinct water types. CO2-rich water (PCO2 = 0.1 to 2 atm) is characterized by lower pH (5.7–6.4) and higher TDS content (up to 3300 mg/L), whereas alkaline water (PCO2 = 10− 4.1–10− 4.6 atm) has higher pH (9.1–9.5) and lower TDS (< 254 mg/L). Carbon isotope data indicate that the CO2-rich water is influenced by a local supply of deep CO2 (potentially, magmatic), which enhanced dissolution of silicate minerals in surrounding rocks and resulted in elevated concentrations of Ca2+, Na+, Mg2+, K+, HCO3 and silica under lower pH conditions. In contrast, the evolution of the alkaline water was characterized by a lesser degree of water–rock (granite) interaction under the negligible inflow of CO2. The application of chemical thermometers indicates that the alkaline water represents partially equilibrated waters coming from a geothermal reservoir with a temperature of about 40 °C, while the immature characteristics of the CO2-rich water resulted from the input of CO2 in Na–HCO3 waters and subsequent rock leaching.  相似文献   

12.
An environmental isotope and hydrochemical study was carried out to conceptualize the surface water and groundwater interaction and to explore the groundwater flow pattern in relation to the geological setting. More emphasis is given to the Afar Depression where groundwater is a vital source of water supply. Conventional field hydrogeological study and river discharge records support the isotope and hydrochemical analysis. The region is tectonically active, comprising rift volcanic terrain bordered by highlands. The result revealed that recent meteoric water is the major source of recharge. Three distinct groundwater zones were identified associated with the highlands, transitional escarpment and the rift. Towards the rift, the ionic concentration and isotopic enrichment (δ2H and δ18degO) increases following the groundwater flow paths, which is strongly controlled by axial rift faults. The groundwater flow converges to the seismically active volcano–tectonic depressions with internal drainage and to the Awash River. Within the Afar Depression, at least four groundwater regimen are identified: (1) fresh and shallow groundwater associated with alluvial deposits ultimately recharged by isotopically depleted recent highland rainfall and the evaporated Awash River; (2) cold and relatively younger groundwater within localized fractured volcanics showing mixed origin in axial fault zones; (3) old groundwater with very high ionic concentration and low isotopic signature localized in deep volcanic aquifers; and (4) old and hot saline groundwaters connected to geothermal systems. The study demonstrated that dependable groundwater can only be obtained from the first two aquifer types in aerially restricted zones in flat plains following river courses, local wadis and volcano–tectonic depressions. The conventional hydrogeological survey and discharge records indicate substantial channel losses from the Awash River, which becomes a more dominant source of recharge in central and lower Awash valleys. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The aim of this study is to evaluate the impact of the application of industrial fertilizers and liquid swine manure in groundwater in two pilot agricultural areas, San Pedro and Pichidegua, which have been under long‐term historic use of fertilizers. A comprehensive hydrogeological investigation was carried out to define the geology and the groundwater flow system. Chemical and isotopic tools were used to evaluate the distribution and behavior of the nitrate in the groundwater. The isotopic tools included δ18O, δ2H, and 3H, which provide information about the origin and residence time of the groundwater; δ15N‐NO3? and δ18O‐NO3?, which provide information about nitrate sources and processes that can affect nitrate along the groundwater flow system. The application rate of liquid manure and other fertilizers all together with land uses was also evaluated. The hydrogeological investigation identified the presence of a confined aquifer underneath a thick low‐permeability aquitard, whose extension covers most of the two study areas. The nitrate concentration data, excepting a few points in zones located near recharge areas in the upper part of the basins and lower areas at the valley outlets (San Pedro), showed nitrate concentration below 10 mgN/L at the regional scale. The isotope data for nitrate showed no influence of the liquid swine manure in the groundwater at the regional scale, except for the high part of the basins and the outlet of the San Pedro valley, which are areas fertilized by manure. This data showed that the regional aquifer on both pilot study areas is protected by the thick low‐permeability aquitard, which is playing an important role on nitrate attenuation. Evidence of denitrification was also found on both shallow and deep groundwater in the Pichidegua site. This study showed that a comprehensive hydrogeological characterization complemented by chemical and isotope data is key for understanding nitrate distribution and concentration in aquifers from areas with intensive agriculture activities.  相似文献   

14.
Saline seepage zone development, and hence the onset of dryland salinity, is a major environmental problem occurring within the Spicers Creek catchment. The primary objective of this paper was to identify previously unmapped faults and show the correlation between these faults and groundwater salinization. As identified from this study, there is a close association between geological structural features and the formation of saline seepage zones. The most saline groundwaters in the catchment were encountered where two geological structures join and form a fault intersection. These saline groundwaters are found at various depths within the fractured aquifers, and changes in groundwater chemistry in the aquifers are associated with the presence of fault zones. 18O and δ2H stable isotopes, together with 87Sr/86Sr isotopic ratios, indicate that groundwaters within the fault zones are enriched in 18O and have a strontium signature similar to seawater. This study identifies several geological structures in the Spicers Creek catchment and demonstrates that groundwaters with the highest salinity arise where fault intersections occur. The results of this study may be used to interpret further the mechanisms leading to seepage zone formation in dryland salinity‐affected catchments located throughout the Central West region of New South Wales, Australia. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Shallow groundwater plays a key role in agro‐hydrological processes of arid areas. Groundwater often supplies a necessary part of the water requirement of crops and surrounding native vegetation, such as groundwater‐dependent ecosystems. However, the impact of water‐saving irrigation on cropland water balance, such as the contribution of shallow groundwater to field evapotranspiration, requires further investigation. Increased understanding of quantitative evaluation of field‐scale water productivity under different irrigation methods aids policy and decision‐making. In this study, high‐resolution water table depth and soil water content in field maize were monitored under conditions of flood irrigation (FI) and drip irrigation (DI), respectively. Groundwater evapotranspiration (ETg) was estimated by the combination of the water table fluctuation method and an empirical groundwater–soil–atmosphere continuum model. The results indicate that daily ETg at different growth stages varies under the two irrigation methods. Between two consecutive irrigation events of the FI site, daily ETg rate increases from zero to greater than that of the DI site. Maize under DI steadily consumes more groundwater than FI, accounting for 16.4% and 14.5% of ETa, respectively. Overall, FI recharges groundwater, whereas DI extracts water from shallow groundwater. The yield under DI increases compared with that under FI, with less ETa (526 mm) compared with FI (578 mm), and irrigation water productivity improves from 3.51 kg m?3 (FI) to 4.58 kg m?3 (DI) through reducing deep drainage and soil evaporation by DI. These results highlight the critical role of irrigation method and groundwater on crop water consumption and productivity. This study provides important information to aid the development of agricultural irrigation schemes in arid areas with shallow groundwater.  相似文献   

16.
Groundwater is a very significant water source used for irrigation and drinking purposes in the karst region, and therefore understanding the hydrogeochemistry of karst water is extremely important. Surface water and groundwater were collected, and major chemical compositions and environmental isotopes in the water were measured in order to reveal the geochemical processes affecting water quality in the Gaoping karst basin, southwest China. Dominated by Ca2+, Mg2+, HCO3? and SO42?, the groundwater is typically characterized by Ca? Mg? HCO3 type in a shallow aquifer, and Ca? Mg? SO4 type in a deeper aquifer. Dissolution of dolomite aquifer with gypsiferous rocks and dedolomitization in karst aquifers are important processes for chemical compositions of water in the study basin, and produce water with increased Mg2+, Ca2+ and SO42? concentrations, and also increased TDS in surface water and groundwater. Mg2+/Ca2+ molar ratios in groundwater decrease slightly due to dedolomitization, while the mixing of discharge of groundwater with high Mg2+/Ca2+ ratios may be responsible for Mg2+/Ca2+ ratios obviously increasing in surface water, and Mg2+/Ca2+ ratios in both surface water and groundwater finally tending to a constant. In combination with environmental isotopic analyses, the major mechanism responsible for the water chemistry and its geochemical evolution in the study basin can be revealed as being mainly from the water–rock interaction in karst aquifers, the agricultural irrigation and its infiltration, the mixing of surface water and groundwater and the water movement along faults and joints in the karst basin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
We characterize the precipitation and groundwater in a mountainous (peaks slightly above 3000 m a.s.l.), semi‐arid river basin in SE Spain in terms of the isotopes 18O and 2H. This basin, with an extension of about 7000 km2, is an ideal site for such a study because fronts from the Atlantic and the Mediterranean converge here. Much of the land is farmed and irrigated both by groundwater and runoff water collected in reservoirs. A total of approximately 100 water samples from precipitation and 300 from groundwater have been analysed. To sample precipitation we set up a network of 39 stations at different altitudes (800–1700 m a.s.l.), with which we were able to collect the rain and snowfall from 29 separate events between July 2005 and April 2007 and take monthly samples during the periods of maximum recharge of the aquifers. To characterize the groundwater we set up a control network of 43 points (23 springs and 20 wells) to sample every 3 months the main aquifers and both the thermal and non‐thermal groundwater. We also sampled two shallow‐water sites (a reservoir and a river). The isotope composition of the precipitation forms a local meteoric water line (LMWL) characterized by the equation δD = 7·72δ18O + 9·90, with mean values for δ18O and δD of − 10·28‰ and − 69·33‰, respectively, and 12·9‰ for the d‐excess value. To correlate the isotope composition of the rainfall water with groundwater we calculated the weighted local meteoric water line (WLMWL), characterized by the equation δD = 7·40δ18O + 7·24, which takes into account the quantity of water precipitated during each event. These values of (dδD/dδ18O)< 8 and d‐excess (δD–8δ18O)< 10 in each curve bear witness to the ‘amount effect’, an effect which is more manifest between May and September, when the ground temperature is higher. Other effects noted in the basin were those of altitude and the continental influence. The isotopic compositions of the groundwater are represented by the equation δD = 4·79δ18O − 18·64. The groundwater is richer in heavy isotopes than the rainfall, with mean values of − 8·48‰ for δ18O and − 59·27‰ for δD. The isotope enrichment processes detected include a higher rate of evaporation from detrital aquifers than from carbonate ones, the effects of recharging aquifers from irrigation return flow and/or from reservoirs' leakage and enrichment in δ18O from thermal water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Water samples were collected from cold and warm karst springs for stable isotopes (δ18O and δD) and 3H from SE of Kashmir valley (western Himalayas) to distinguish the sources of recharge and infer their recharge areas. The spring water samples were most depleted in heavier isotopes in May (average δ18O: ?8.87‰ and δD: ?50.3‰) and enriched in September (average δ18O: ?7.58‰ and δD: ?48.1‰). The depleted 18O and 2H of spring waters bear the signatures of winter precipitation while as the enriched 18O and 2H of spring waters bear the signature of summer rainfall. D‐excess and 3H corroborate with the stable isotope results that the spring flow in spring season (May) and autumn (September) is dominantly controlled by the melting of winter snowmelt and summer rainfall, respectively. The results showed that unlike δD, the δ18O value in the karst spring waters decreases in January suggesting δ18O shift. The spring water samples also fall above the Local Meteoric Water Line and Global Meteoric Water Line indicating the δ18O shift due to interaction of groundwater with the host carbonate rocks during its traverse. The mean elevation of the recharge areas of the springs using δ18O and δD tracers was also estimated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
淮北临涣矿采煤沉陷区不同水体水化学特征及其影响因素   总被引:3,自引:0,他引:3  
为研究淮北临涣矿采煤沉陷区不同水体的补给水源及溶质来源,在现场调查的基础上,系统采集丰水期、平水期、枯水期沉陷区积水、地表河水和浅层地下水样进行测试分析,采用Piper三线图、Gibbs图和因子分析方法,对不同水体水化学特征及其影响因素进行讨论.结果表明:地表水水体总溶解性固体(TDS)质量浓度表现为枯水期丰水期平水期,浅层地下水表现为枯水期平水期丰水期,地表水TDS质量浓度明显高于浅层地下水.地表水中主要阴阳离子为Na~+、Cl~-和SO_4~(2-),水化学类型主要为SO_4~(2-)-Cl~--Na~+型;浅层地下水离子以HCO_3~-、Ca~(2+)和Mg~(2+)为主,表现为HCO_3~--Ca~(2+)-Mg~(2+)型.结合Gibbs图和因子分析可知,地表水受蒸发作用、地表径流以及采煤活动等因素影响,浅层地下水在一定程度上体现出大气降水和地表水补给的特点,受岩石风化作用影响较为明显.  相似文献   

20.
In the arid to semi-arid district of Chengcheng, Weinan City, in central Shaanxi Province, diminishing groundwater reserves in the shallow Quaternary (QLB) aquifer and elevated fluoride in the similarly shallow Permo-Triassic (PTF) aquifer, have promoted interest in the development of groundwater resources in the deep but poorly understood Cambrian-Ordovician carbonate aquifer system (COC). To investigate the origin of the COC groundwaters and the relationship between the deep and shallower systems, a hydrochemical study was undertaken involving 179 major and minor ion analyses, 39 stable isotope analyses (δD and δ18O), and 14 carbon isotope analyses (14C and δ13C). PHREEQC 3.0 was used to investigate mixing. Hydrochemical data support the presence of a well-connected regional flow system extending southwards from the more mountainous north. Stable isotope data indicate that the COC groundwaters originate as soil zone infiltration, under a much cooler regime than is found locally today. This is confirmed by 14C, which indicates the groundwater to be palaeowater recharged during the late Pleistocene (∼10–12 ka B.P.). The presence of nitrate in the COC groundwaters suggests leakage from overlying shallow aquifers currently provides an additional source of COC recharge, with major faults possibly providing the primary pathways for downward vertical flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号