首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   1篇
大气科学   2篇
地球物理   10篇
地质学   36篇
海洋学   1篇
天文学   1篇
自然地理   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   4篇
  2013年   8篇
  2012年   1篇
  2011年   7篇
  2010年   2篇
  2009年   1篇
  2008年   5篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
排序方式: 共有52条查询结果,搜索用时 292 毫秒
1.
Natural Resources Research - The northwest of Iran is considered as a promising geothermal zone owing to its geographical properties, tectonic features, and thermal activities, particularly in...  相似文献   
2.
In regional exploration programs, the distribution of elements in known mineral deposits can be used as a guide for the classification of deposits, search for new prospects and modeling ore deposit patterns. The Sanandaj–Sirjan Zone (SSZ) is a major metallogenic zone in Iran, containing lead and zinc, iron, gold, copper deposits. In the central part of the SSZ, lead and zinc mineralization is widespread and hitherto exploration has been based on geological criteria. In this study, we used clustering techniques applied to element distribution for classification lead and zinc deposits in the central part of the SSZ. The hierarchical clustering technique was used to characterize the elemental pattern. Elements associated with lead and zinc deposits were separated into four clusters, encompassing both ore elements and their host rock-forming elements. It is shown that lead and zinc deposits in the central SSZ belong to two genetic groups: a MVT type hosted by limestone and dolomites and a SEDEX type hosted by shale, volcanic rocks and sandstone. The results of elemental clustering were used for pattern recognition by the K-means method and the respective deposits were classified into four distinct categories. K-means clustering also reveals that the elemental associations and spatial distribution of the lead and zinc deposits exhibit zoning in the central part of the SSZ. The ratios of ore-forming elements (Sb, Cd, and Zn) vs. (Pb and Ag) show zoning along an E–W trend, while host rock-forming elements (Mn, Ca, and Mg) vs. (Ba and Sr) show a zoning along a SE–NW trend. Large and medium deposits occur mainly in the center of the studied area, which justify further exploration around occurrences and abandoned mines in this area. The application of a pattern recognition method based on geochemical data from known mineralization in the central SSZ, and the classification derived from it, uncover elemental zoning, identify key elemental associations for further geochemical exploration and the potential to discover possible target areas for large to medium size ore deposits. This methodology can be applied in a similar way to search for new ore deposits in a wide range of known metallogenic zones.  相似文献   
3.
High-elevation mountains often constitute for basins important groundwater recharge sources through mountain-front recharge processes. These processes include streamflow losses and subsurface inflow from the mountain block. However, another key recharge process is from irrigation practices, where mountain streamflow is distributed across the irrigated piedmont. In this study, coupled groundwater fluctuation measurements and environmental tracers (18O, 2H, and major ions) were used to identify and compare the natural mountain-front recharge to the anthropogenically induced irrigation recharge. Within the High Atlas mountain front of the Ourika Basin, Central Morocco, the groundwater fluctuation mapping from the dry to wet season showed that recharge beneath the irrigated area was higher than the recharge along the streambed. Irrigation practices in the region divert more than 65% of the stream water, thereby reducing the potential for in-stream groundwater recharge. In addition, the irrigation areas close to the mountain front had greater water table increases (up to 3.5 m) compared with the downstream irrigation areas (<1 m increase). Upstream crops have priority to irrigation with stream water over downstream areas. The latter are only irrigated via stream water during large flood events and are otherwise supplemented by groundwater resources. These changes in water resources used for irrigation practices between upstream and downstream areas are reflected in the spatiotemporal evolution of the stable isotopes of groundwater. In the upstream irrigation area, the groundwater stable isotope values (δ18O: −8.4‰ to −7.4‰) reflect recharge by the diverted stream water. In the downstream irrigation area, the groundwater isotope values are lower (δ18O: −8.1‰ to −8.4‰) due to recharge via the flood water. In the nonirrigation area, the groundwater has the highest stable isotope values (δ18O: −6.8‰ to −4.8‰). This might be due to recharge via subsurface inflow from the mountain block to the mountain front and/or recharge via local low altitude rainfall. These findings highlight that irrigation practices can result in the dominant mountain-front recharge process for groundwater.  相似文献   
4.
Current methods to estimate snow accumulation and ablation at the plot and watershed levels can be improved as new technologies offer alternative approaches to more accurately monitor snow dynamics and their drivers. Here we conduct a meta‐analysis of snow and vegetation data collected in British Columbia to explore the relationships between a wide range of forest structure variables – obtained from Light Detection and Ranging (LiDAR), hemispherical photography (HP) and Landsat Thematic Mapper – and several indicators of snow accumulation and ablation estimated from manual snow surveys and ultrasonic range sensors. By merging and standardizing all the ground plot information available in the study area, we demonstrate how LiDAR‐derived forest cover above 0.5 m was the variable explaining the highest percentage of absolute peak snow water equivalent (SWE) (33%), while HP‐derived leaf area index and gap fraction (45° angle of view) were the best potential predictors of snow ablation rate (explaining 57% of variance). This study reveals how continuous SWE data from ultrasonic sensors are fundamental to obtain statistically significant relationships between snow indicators and structural metrics by increasing mean r2 by 20% when compared to manual surveys. The relationships between vegetation and spectral indices from Landsat and snow indicators, not explored before, were almost as high as those shown by LiDAR or HP and thus point towards a new line of research with important practical implications. While the use of different data sources from two snow seasons prevented us from developing models with predictive capacity, a large sample size helped to identify outliers that weakened the relationships and suggest improvements for future research. A concise overview of the limitations of this and previous studies is provided along with propositions to consistently improve experimental designs to take advantage of remote sensing technologies, and better represent spatial and temporal variations of snow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
5.
Teboursouk region, Northwestern Tunisia, is characterized by the diversity of its natural resources (petroleum, groundwater and minerals). It constitutes a particular site widely studied, especially from a tectonic stand point as it exhibits a complex architecture dominated by multi-scale synclinals and Triassic extrusions. It has typical karst landform that constitutes important water resources devoted for human consumption and agriculture activities, besides to the exploitation of the Mio-Plio-Quaternary aquifer (MPQ). Thus, hydrogeological investigations play a significant role in the assessment of groundwater mineralization and the evaluation of the used water quality for different purposes. Hence, the current study based on a combined geochemical–statistical investigation of 50 groundwater samples from the multilayered aquifer system in the study area give crucial information about the principal factors and processes influencing groundwater chemistry. The chemical analysis of the water samples showed that Teboursouk groundwater is dominantly of Ca–Mg–Cl–SO4 water type with little contribution of Ca–Mg–HCO3, Na–K–Cl–SO4 and Na–K–HCO3. The total dissolved solids (TDS) values range from 0.37 to 3.58 g/l. The highest values are located near the Triassic outcrops. Furthermore, the hydrogeochemistry of the studied system was linked with various processes such as carbonates weathering, evaporites dissolution of Triassic outcrops and anthropogenic activities (nitrate contamination). Additionally, the main processes controlling Teboursouk water system were examined by means of multivariate statistical analysis (PCA and HCA) applied in this study based on 10 physicochemical parameters (TDS, pH, SO4, HCO3, pCO2, Ca, Mg, Na, K, Cl and NO3). Two principal components were extracted from PCA accounting 61% of total variance and revealing that the chemical characteristics of groundwater in the region were acquired through carbonates and evaporite dissolution besides to nitrate contamination. Similarly, according to Cluster analysis using Ward’s method and squared Euclidean distance, groundwater from the studied basin belongs to five different groups suggesting that the geochemical evolution of Teboursouk groundwater is controlled by dissolution of carbonates minerals, chemical weathering of Triassic evaporite outcrops, cation exchange and anthropogenic activities (nitrate contamination).  相似文献   
6.
Geotechnical and Geological Engineering - Soil erosion is one of the major environmental problems in the Middle East and North Africa (MENA) region. Favoured by the harmful effects of climate...  相似文献   
7.
Air quality transcends all scales with in the atmosphere from the local to the global with handovers and feedbacks at each scale interaction. Air quality has manifold effects on health, ecosystems, heritage and climate. New insights into the characterisation of both natural and anthropogenic emissions are reviewed looking at both natural (e.g. dust and lightning) as well as plant emissions. In the phosphate mining area (El Guettar–M’Dilla basin: Southwestern Tunisia), several diseases have been known as cancer, respiratory, allergies, cardiovascular, dental fluorosis, stress, etc. These diseases are directly related with the installation of the industrial sector of the CPG (from 1896) and the deforestation and the ecosystem degradation (fauna and flora).  相似文献   
8.
Modelling contaminant transfer with biological/chemical/radioactive processes needs appropriate numerical methods able to reproduce sharp concentration fronts. In this work, we develop a new Eulerian–Lagrangian Localized Adjoint Method (ELLAM) for solving the reactive transport equation with non-constant coefficients. To avoid interpolation (leading to errors), we use a moving grid to define the solution and test functions. The method is used to simulate first the infiltration of solute into a column of unsaturated porous medium and second the multispecies transport. The developed ELLAM gives accurate results without non-physical oscillations or numerical diffusion, even when using large time steps. To cite this article: A. Younes, C. R. Geoscience 336 (2004).  相似文献   
9.
The aim of this study is to identify geochemical anomalies using power spectrum–area (S–A) method based on the grade values of Cu, Mo and Au in 2709 soil samples collected from Kahang porphyry-type Cu deposit, Central Iran. S–A log–log plots indicated that there are three stages of Cu, Mo and Au enrichment. The third enrichment was considered as the main stage for the presence of Cu, Mo and Au at the concentrations above 416 ppm, 23 ppm and 71 ppb, respectively. Elemental anomalies are positively associated with monzo–granite–diorite and breccias units which are in the central and western parts of the deposit. The anomalies are located within the potassic, phyllic and argillic alteration types and also there is the positive correlation between the anomalies and nearing faults in the studied area. The results obtained via fractal model were interpreted accordingly to incorporate the information for the mineralized areas including detailed geological map, structural analysis and alterations. The results show that S–A multifractal modeling is applicable for anomalies delineation based on soil data.  相似文献   
10.
Groundwater pumped from the semi-confined Complex Terminal (CT) aquifer is an important production factor in irrigated oases agriculture in southern Tunisia. A rise in the groundwater salinity has been observed as a consequence of increasing abstraction from the aquifer during the last few decades. All sources of contamination were investigated using hydrochemical data available from the 1990s. Water samples were taken from wells tapping both the CT and the shallow aquifers and analyzed with regard to chemistry tracers. Hydrochemical and water quality data obtained through a sampling period (December 2010) and analysis program indicate that nitrate pollution can be a serious problem affecting groundwater due to the use of nitrogen (N) fertilizers–pesticides in agriculture. The concentration of nitrate in an groundwater-irrigated area in Gafsa oases basin was studied, where abstraction from an unconfined CT aquifer has increased threefold over 25 years to 34 million m3/year; groundwater levels are falling at up to 0.7 m/year; and groundwater is increasingly mineralised (TDS increase from 500 to 4,000 mg/L), with nitrate concentrations ranging from 16 to 320 mg/L.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号