首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although extensive data exist on runoff erosion and rates for non‐sandy hillslopes, data for arid dune slopes are scarce, owing to the widespread perception that the high infiltrability of sand will reduce runoff. However, runoff is generated on sandy dunes in the Hallamish dune field, western Negev Desert, Israel (P ≈ 95 mm) due to the presence of a thin (usually 1–3 mm) microbiotic crust. The runoff in turn produces erosion. Sediment yield was measured on ten plots (140–1640 m2) on the north‐ and south‐facing slopes of longitudinal dunes. Two plots facing north and two facing south were subdivided into three subplots. The subplots represented the crest of the active dune devoid of crust, the extensively crusted footslope of the dune, and the midslope section characterized by a patchy crust. The remaining plots extended the full length of the dune slope. No runoff and consequently no water‐eroded sediments were obtained from the crest subplots devoid of crust. However, runoff and sediment were obtained from the mid‐ and footslope crusted subplots. Sediment yield from the footslope subplots was much higher than from the midslopes, despite the higher sediment concentration that characterized the midslope subplots. The mean annual sediment yield at the Hallamish dune field was 432 g per metre width and was associated with high average annual concentrations of 32 g l?1. The data indicate that owing to the presence of a thin microbiotic crust, runoff and water erosion may occur even within arid sandy dune fields. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Soil surface roughness contains two elementary forms, depressions and mounds, which affect water flow on the surface differently. While depressions serve as temporary water storage, mounds divert water away from their local summits. Although roughness impacts on runoff and sediment production have been studied, almost no studies have been designed explicitly to quantify the evolution of depressions and mounds and how this impacts runoff generation and sediment delivery. The objectives of this study were to analyze how different surface forms affect runoff and sediment delivery and to measure the changes in surface depressions and mounds during rainfall events. A smooth surface was used as the control. Both mounds and depressions delayed the runoff initiating time, but to differing degrees; and slightly reduced surface runoff when compared to the runoff process from the smooth surface. Surface mounds significantly increased sediment delivery, whilst depressions provided surface storage and hence reduced sediment delivery. However, as rainfall continued and rainfall intensity increased, the depression effect on runoff and erosion gradually decreased and produced even higher sediment delivery than the smooth surface. Depressions and mounds also impacted the particle size distribution of the discharged sediments. Many more sand‐sized particles were transported from the surface with mounds than with depressions. The morphology of mounds and depressions changed significantly due to rainfall, but to different extents. The difference in change had a spatial scale effect, i.e. erosion from each mound contributed to its own morphological change while sediments deposited in a depression came from a runoff contributing area above the depression, hence a much greater source area than a single mound. The results provide a mechanistic understanding of how soil roughness affects runoff and sediment production. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
An association between salt pans or dry lake beds and distinctive crescentic lake-floor sand mounds (1–10 m high, tens to hundreds of metres wide) is commonplace in desert systems. In the Makgadikgadi Basin of northern Botswana, a debate about the formative processes of these landforms has persisted despite numerous morphometric, sedimentary and geochronological analyses, with mound landforms variously inferred to be aeolian dunes, subaqueous dunes, spring mounds or shoreline remnants. We propose a new formative mechanism which draws on the interaction between uneven moisture distribution on the pan surface and mobile aeolian sediments. We use a numerical model (ViSTA), which couples vegetation and aeolian sand transport dynamics, together with optically stimulated luminescence (OSL) dating of a mound in the Makgadikgadi Basin to investigate the feasibility of this ‘sticky mound hypothesis’. We find that under a range of modelled environmental conditions, uneven moisture distribution on the pan surface can lead to the development and stabilization of crescentic aeolian dunes, with these dunes growing upwind from the point of initial deposition, corresponding with the chronological data gained from OSL dating of a mound feature. On removal of this moisture, the modelled dunes erode and dissipate. These findings suggest that the formative mechanism of the mounds could be dependent on the interaction between differential drying of the pan surface and the competence of the aeolian sediment transport system across the pan floor.  相似文献   

4.
The Badain Jaran Desert exhibits the greatest difference in altitude of all of the world’s deserts. On the slopes of megadunes in the desert, there are physical and chemical deposits produced by surface runoff. In addition, we have observed rarely-seen infiltration-excess surface runoff in the megadune depressions as well as spring streams at the base of megadunes. We used electron microscopy, energy spectrum analysis, infiltration experiments, moisture content determinations and grain-size analysis to study the mineral and chemical composition of the runoff precipitates, and grain-size of the deposits associated with the runoff, together with the hydrological balance in the megadune area, and the atmospheric precipitation mechanism responsible for groundwater recharge and for supplying water to lakes. The observations of shallow runoff and infiltration-excess surface runoff indicate the occurrence of strong and effective precipitation in summer, which would provide an important source for groundwater recharge. Several lines of evidence, such as the physical and chemical deposits resulting from shallow subsurface runoff, spring streams, infiltration-excess runoff, and gravity capillary water with a moisture content of 3–6%, demonstrate that precipitation reaches the base of the megadunes through infiltration and subsequently becomes groundwater. The chemical deposits, such as newly-formed calcite and gypsum, and gray-black physical deposits, as well as different stages in the development of fan-shaped landforms resulting from shallow subsurface runoff, indicate that groundwater recharge in the area is the result of long-term precipitation, rather than intermittent individual major rainfall events. Fine sand layers with a low infiltration capacity lead to subsurface runoff emerging at the ground surface. Five factors play an important role in maintaining a positive water balance and in replenishing groundwater via rainfall: effective rainfall as a water source, the high infiltration capacity of the sands enabling rainfall to rapidly become capillary water in the dunes, low evapotranspiration rates due to the sparse vegetation, the fact that the depth of the sand layer influenced by evaporation is shallow enough to maximize the deep infiltration of rainfall, and rapidly-moving gravity capillary water in the sandy dunes. These five factors together constitute a mechanism for groundwater recharge from rainfall, and explain the origin of the groundwater and lakes in the area. Our findings represent a significant advance in research on the hydrological cycle, including groundwater recharge conditions and recharge mechanisms, in this desert region.  相似文献   

5.
Planting of sand‐binding vegetation in the Shapotou region on the southeastern edge of the Tengger Desert began in 1956. The revegetation programme successfully stabilized formerly mobile dunes in northern China, permitting the operation of the Baotou‐Lanzhou railway. Long‐term monitoring has shown that the revegetation programme produced various ecological changes, including the formation of biological soil crusts (BSCs). To gain insight into the role of BSCs in both past ecological change and current ecological evolution at the revegetation sites, we used field measurements and HYDRUS‐1D model simulations to investigate the effects of BSCs on soil hydrological processes at revegetated sites planted in 1956 and 1964 and at an unplanted mobile dune site. The results demonstrate that the formation of BSCs has altered patterns of soil water storage, increasing the moisture content near the surface (0–5 cm) while decreasing the moisture content in deeper layers (5–120 cm). Soil evaporation at BSC sites is elevated relative to unplanted sites during periods when canopy coverage is low. Rainfall infiltration was not affected by BSCs during the very dry period that was studied (30 April to 30 September 2005); during periods with higher rainfall intensity, differences in infiltration may be expected due to runoff at BSC sites. The simulated changes in soil moisture storage and hydrological processes are consistent with ongoing plant community succession at the revegetated sites, from deep‐rooted shrubs to more shallow‐rooted herbaceous species. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
1 INTRODUCTION Soil crusting, or soil sealing, is one of the common phenomena in agricultural lands or semi-arid and arid soils. Due to the breakdown of soil aggregates by raindrops, soil surface develops a very thin, often less than a few millimeters, dense layer. Many studies indicated that such a thin layer significantly reduces infiltration capacity and increases surface runoff (i.e. McIntyre, 1958; Edward and Larson, 1969; Agassi et al., 1985; Bradford et al., 1986; Romkens et al.,…  相似文献   

7.
B Hansen 《水文研究》2000,14(7):1235-1243
During the filling of surface microrelief depressions the precipitation excess (precipitation minus infiltration and interception) is divided between surface storage and runoff, i.e. runoff starts before the surface depressions are filled. Information on the division of precipitation excess is needed for modelling surface runoff during the filling of surface depressions. Furthermore, information on the surface of the area covered with water is needed for calculating infiltration of water stored in soil surface depressions. Thirty‐two soil surface microreliefs were determined in Danish erosion study plots. The slope was c. 10% for all plots. Data were treated initially by removing the slope, after which 20 ‘artificial’ slopes (1–20%) were introduced producing 640 new data sets. Runoff during filling of the microrelief storage was calculated for each of the 640 data sets using a model developed for calculating surface storage and runoff from grid elevation measurements. Runoff started immediately after the first addition of water for all data sets. On a field scale, however, runoff has to travel some distance as overland flow and storage in smaller and larger depressions below the runoff initiation point must be taken into consideration. The runoff increases by intermittent steps. Whenever a depression starts to overflow to the border of the plot, the runoff jumps accordingly. In spite of the jumps, the distribution between surface storage and runoff was closely related to the quotient between precipitation excess and depression storage capacity. Surface area covered with water was exponentially related to the amount of water stored in surface depressions. Models for calculating surface storage and runoff from grid elevation measurements are cumbersome and require time‐consuming measurements of the soil surface microrelief. Therefore, estimation from roughness indices requiring fewer measurements is desirable. New improved equations for such estimations are suggested. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
Sunset Crater in north‐central Arizona (USA) is a 900‐year‐old scoria‐cone volcano. Wind action has redistributed its widespread tephra deposit into a variety of aeolian dune forms that serve as a terrestrial analog for similar landforms and aeolian processes on Mars. Fieldwork was conducted to collect essential geomorphological and sedimentological data, and to establish a baseline for the type and morphometry of dunes, physical properties, interactions with topography, and saltation pathways. Our analyses focused primarily on coppice dunes, falling dunes, wind ripples, and sand streaks. For all collected volcaniclastic aeolian sediment samples, the sand‐size fraction dominated, ranging from almost 100% sand to 74.6% sand. No sample contained more than 1.6% silt. The composition is overwhelmingly basaltic with non‐basaltic particles composing 2 to 6% of the total. Coppice (nebkha) dunes form where clumps of vegetation trap saltating particles and create small mounds or hummocks. Mean grain size for coppice dune samples is coarse sand. Measured dune height for 15 coppice dunes ranged from 0.3 to 3.3 m with a mean of 1 m. Mean length was 6.7 m and mean width was 4.8 m. Falling dunes identified in this study are poorly developed and thin, lacking a prominent ramp‐like structure. Mean wavelength for three sets of measured ripples ranged from 22 to 36 cm. Sand streaks extend downwind for more than a kilometer and are up to 200 m in width. They commonly occur on the lee side of mesas and similar landforms and are typically the downwind continuation of falling dunes. Falling dunes, wind ripples, and sand streaks have been identified on Mars, while coppice dunes are similar to Martian shadow or lee dunes in which sand accumulates in the lee of obstacles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Biological soil crusts (BSCs), which are widespread in arid and semiarid regions, such as sandy deserts, strongly influence terrestrial ecosystems. Once sand‐binding vegetation has been established on sand dunes, BSCs are colonized and gradually develop from cyanobacteria dominated crusts to lichen and moss dominated crusts on dune surfaces. We conducted this study to determine if the occurrence and development of BSCs in the Tengger Desert could be used to determine sand‐binding vegetation changes via altering soil moisture and water cycling using long‐term monitoring data and field experimental observation. BSCs changed the spatiotemporal pattern of soil moisture and re‐allocation by decreasing rainfall infiltration, increasing topsoil water‐holding capacity and altering evaporation. Changes in the soil moisture pattern induced shifting of sand‐binding vegetation from xerophytic shrub communities with higher coverage (35%) to complex communities dominated by shallow‐rooted herbaceous species with low shrub coverage (9%). These results imply that BSCs can be a major factor controlling floristic and structural changes in sand‐binding vegetation and suggest that the hydrological effects of BSCs must be considered when implementing large‐scale revegetation projects in sandy deserts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents the results of sprinkling experiments conducted over the lower part of vegetated and crusted linear dunes as well as over flat playa surfaces that appear in the interdune corridors. Data obtained show that these two surface units respond quickly to rainstorms. Runoff generation can be expected for any storm exceeding 2-3 mm and runoff coefficients are high. When the topsoil algal crust, 1 to 2 mm thick, is removed from the surface of the dune, infiltration increases drastically and eliminates any possibility of runoff generation under present-day rainfall conditions. This data may be of great help in the understanding of the geomorphology and sedimentary sequence of the corridors separting linear dunes.  相似文献   

11.
The evolution of barchan-to-parabolic dunes can be driven by vegetation establishment, which may be linked to climate change and/or human activity. However, little is known of the impact of changes in wind strength on vegetation development and the resulting impacts on the evolution of dune morphology and sedimentological characteristics. To address this issue, we studied the morphology and grain-size characteristics of barchan, barchan-to-parabolic and parabolic dunes in the Mu Us Desert in north China, which was combined with an analysis of changes in normalized difference vegetation index (NDVI) and climatic variables during 1982–2018. The results reveal a trend of increasing growing-season NDVI which was related to a significant decrease in drift potential (DP). Therefore, we suggest that the initiation of dune transformation was caused by the reduced wind strength which favored the establishment and development of vegetation. To reveal the response of sedimentological reorganization during the processes of dune transformation, grain-size characteristics along the longitudinal profile of the three different types of dunes were examined. The decreasing wind strength led to the transport of fine sands on the upper part of the windward face of the dunes, resulting in a progressive coarsening of the grain-size distribution (GSD) and a reduction in dune height at the crest area. No distinct trend in sorting and mean grain-size was observed on the windward slope of the barchan-to-parabolic dune, indicating that the sand in transit had little influence on the GSD. Conversely, progressive sorting and coarsening of the sand occurred towards the crest of the parabolic dune. This indicates that vegetation development limited the transport of sand from upwind of the dune, and affected a shift in the dune source material to the underlying source deposits, or to reworked pre-existing aeolian deposits, and resulted in the trapping of sand in the crest area. © 2020 John Wiley & Sons, Ltd.  相似文献   

12.
Soil and nutrient loss play a vital role in eutrophication of water bodies. Several simulated rainfall experiments have been conducted to investigate the effects of a single controlling factor on soil and nutrient loss. However, the role of precipitation and vegetation coverage in quantifying soil and nutrient loss is still unclear. We monitored runoff, soil loss, and soil nutrient loss under natural rainfall conditions from 2004 to 2015 for 50–100 m2 runoff plots around Beijing. Results showed that soil erosion was significantly reduced when vegetation coverage reached 20% and 60%. At levels below 30%, nutrient loss did not differ among different vegetation cover levels. Minimum soil N and P losses were observed at cover levels above 60%. Irrespective of the management measure, soil nutrient losses were higher at high-intensity rainfall (Imax30>15 mm/h) events compared to low-intensity events (p < 0.05). We applied structural equation modelling (SEM) to systematically analyze the relative effects of rainfall characteristics and environmental factors on runoff, soil loss, and soil nutrient loss. At high-intensity rainfall events, neither vegetation cover nor antecedent soil moisture content (ASMC) affected runoff and soil loss. After log-transformation, soil nutrient loss was significantly linearly correlated with runoff and soil loss (p < 0.01). In addition, we identified the direct and indirect relationships among the influencing factors of soil nutrient loss on runoff plots and constructed a structural diagram of these relationships. The factors positively impacting soil nutrient loss were runoff (44%–48%), maximum rainfall intensity over a 30-min period (18%–29%), rainfall depth (20%–27%), and soil loss (10%–14%). Studying the effects of rainfall and vegetation coverage factors on runoff, soil loss, and nutrient loss can improve our understanding of the underlying mechanism of slope non-point source pollution.  相似文献   

13.
Giora J. Kidron 《水文研究》1999,13(11):1665-1682
Runoff is one of the main water sources responsible for water redistribution within a given ecosystem. Water redistribution is especially important in arid regions, and may be of great importance on sandy dunes, where the likelihood of runoff is low owing to the high infiltration rates of sand. Redistribution of water may significantly affect plant and animal distribution, and may explain vegetation patterns within an ecosystem. Runoff yield over sandy dune slopes in the western Negev Desert was measured under natural conditions during 1990–1994. The magnitude of runoff yield on different slope sections and on north and south exposures was established. The results demonstrate that while slope position controlled the microbiotic crust cover, crust cover and crust biomass controlled the amounts of runoff obtained. Whereas no runoff was measured on the upper dune sections devoid of crust, only meagre quantities were measured on the midslope sections, characterized by discontinuous crust cover. Substantially larger amounts were, however, obtained at the bottoms of the slopes, characterized by continuous crust cover. North‐facing slopes, usually characterized by a chlorophyll a content of 29–41 mg m−2, yielded on average 3·2 times more runoff than south‐facing footslopes, characterized by a 17 mg m−2 chlorophyll a content. Whereas microbiotic crust was found to be responsible for runoff generation, additional water supply owing to runoff may also explain the occurrence of a high biomass crust and the dense vegetation belt at the dune–interdune interface of the northern exposure, where runoff tends to collect. Thus, whereas crust may reduce infiltration in certain habitats, runoff generated by crust may also be responsible for the promotion of crust growth in other habitats. Runoff may also be used to promote vegetation growth at the dune footslopes. The possibility of using runoff to facilitate agroforestry is discussed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Recently disturbed and ‘control’ (i.e. less recently disturbed) soils in the Mojave Desert were compared for their vulnerability to wind erosion, using a wind tunnel, before and after being experimentally trampled. Before trampling, control sites had greater cyanobacterial biomass, soil surface stability, threshold friction velocities (TFV; i.e. the wind speed required to move soil particles), and sediment yield than sites that had been more recently disturbed by military manoeuvres. After trampling, all sites showed a large drop in TFVs and a concomitant increase in sediment yield. Simple correlation analyses showed that the decline in TFVs and the rise in sediment yield were significantly related to cyanobacterial biomass (as indicated by soil chlorophyll a). However, chlorophyll a amounts were very low compared to chlorophyll a amounts found at cooler desert sites, where chlorophyll a is often the most important factor in determining TFV and sediment yield. Multiple regression analyses showed that other factors at Fort Irwin were more important than cyanobacterial biomass in determining the overall site susceptibility to wind erosion. These factors included soil texture (especially the fine, medium and coarse sand fractions), rock cover, and the inherent stability of the soil (as indicated by subsurface soil stability tests). Thus, our results indicate that there is a threshold of biomass below which cyanobacterial crusts are not the dominant factor in soil vulnerability to wind erosion. Most undisturbed soil surfaces in the Mojave Desert region produce very little sediment, but even moderate disturbance increases soil loss from these sites. Because current weathering rates and dust inputs are very low, soil formation rates are low as well. Therefore, soil loss in this region is likely to have long‐term effects. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   

15.
Due to their role in increasing fertility, coppice dunes (nebkhas) are regarded by many researchers as important contributors to aridland ecosystems. Yet, despite their frequent occurrence, little information exists regarding the rate and factors that control their formation. The goal of the current study is to examine the formation rate and factors that determine the establishment of coppice dunes in the Hallamish dune field in the western Negev Desert. The rate in which sand and fines, hereafter aeolian input (AI) was trapped and its particle size distribution (PSD) were examined by means of the solidification of 2 m × 2 m plots using surface stabilizers, and by the installation of three pairs of artificial shrubs (SH), three pairs of artificial trees (TR), and a pair of control (CT) plots. Measurements were annually conducted during June 2004 and June 2008, with monthly collection during June 2004 and May 2006. The PSD was compared to coppice dunes located on the fine‐grained playa surface. AI was trapped at SH, while it was not trapped at TR and CT. The annual rate of AI accretion under the canopy was highly variable ranging between 1405 and 13 260 g m?2, with a four‐year average of 5676 g m?2, i.e. 3.8 mm a?1. It depended upon the wind power, with drift potential having a threshold velocity of Ut > 10 m s?1 yielding the higher correlations with the monthly AI (r2 = 0.59–0.84). No significant relations were obtained between the monthly AI and shrub height. Sand saltation, suspension and creep are seen responsible for mound formation, which based on the current rates of sand accretion are relatively fast with a 60 cm‐high coppice dune forming within ~150–160 years. The current data highlight the problematic design of some previous research using conventional traps and confining the measurements only to certain seasons. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Changes in vegetation cover within dune fields can play a major role in how dune fields evolve. To better understand the linkage between dune field evolution and interdune vegetation changes, we modified Werner's (Geology, 23, 1995: 1107–1110) dune field evolution model to account for the stabilizing effects of vegetation. Model results indicate that changes in the density of interdune vegetation strongly influence subsequent trends in the height and area of eolian dunes. We applied the model to interpreting the recent evolution of Jockey's Ridge, North Carolina, where repeat LiDAR surveys and historical aerial photographs and maps provide an unusually detailed record of recent dune field evolution. In the absence of interdune vegetation, the model predicts that dunes at Jockey's Ridge evolve towards taller, more closely‐spaced, barchanoid dunes, with smaller dunes generally migrating faster than larger dunes. Conversely, the establishment of interdune vegetation causes dunes to evolve towards shorter, more widely‐spaced, parabolic forms. These results provide a basis for understanding the increase in dune height at Jockey's Ridge during the early part of the twentieth century, when interdune vegetation was sparse, followed by the decrease in dune height and establishment of parabolic forms from 1953‐present when interdune vegetation density increased. These results provide a conceptual model that may be applicable at other sites with increasing interdune vegetation cover, and they illustrate the power of using numerical modeling to model decadal variations in eolian dune field evolution. We also describe model results designed to test the relative efficacy of alternative strategies for mitigating dune migration and deflation. Installing sand‐trapping fences and/or promoting vegetation growth on the stoss sides of dunes are found to be the most effective strategies for limiting dune advance, but these strategies must be weighed against the desire of many park visitors to maintain the natural state of the dunes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Embryo dunes are often ephemeral, but can develop to become established coastal foredunes. In 2001 a patch of embryo dunes 13.11 m2 appeared on a beach in north Lincolnshire, UK and had expanded to over 3600 m2 by 2011. The rate of expansion is linked to storm occurrence, where expansion is slowed during years with a higher incidence of storm surges. From July 2009–October 2010 seasonal changes in dune field topography were determined using terrestrial laser scanning (TLS) data. Vegetation is important in the development of embryo dunes, but can cause errors in TLS data. Tests evaluating the impact of vegetation on the TLS data suggest the minimum elevation value from the TLS point cloud within a 0.05 m grid cell gives a good approximation of the ground surface. Digital elevation models (DEMs) of the dunes constructed using filtered data showed the embryo dunes underwent a classic seasonal cycle of erosion during the winter and accretion during the summer. For example from October 2009 to April 2010 over 375 m3 of sediment was eroded from the dunes whereas during spring and summer 2010 the dune field gained over 600 m3 of sand. The overall magnitude of change in dune height and volume from season to season exceeded the errors associated with the construction of the DEM from the TLS data and the vegetation filtering process, which suggests TLS can be useful for documenting topographic change in vegetated dunes. After 10 years, the patch of embryo dunes is still expanding but has not yet merged with more established foredunes to landward. Aeolian process measurements indicate that, at present, the embryo dunes do not prevent sand from reaching the foredunes, however the rate of foredune progradation has slowed concurrently with the expansion of the embryo dune field. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Longitudinal dunes are the most widespread dune types in the world sand seas but comprehensive study on the sand surface stability is scarce. The southern part of Gürbantünggüt Desert is mainly covered by longitudinal dune in which fixed and semi-fixed dunes occupy over 80% of the total area. Systematic analysis on the climatic conditions, the soil moisture and vegetation distributions, and the sand surface activities showed that the fixed and semi-fixed dunes are in a comprehensive low-energy wind environment. Snow cover and frozen soil provide a good protection to the ground surface in winter. The temporal distribution of precipitation and corresponding variation of temperature create a favorable condition for the desert plants growth, especially for the ephemeral plants. The occurrence of effective winds for sand moving in April to June coincides with the stage of relatively wet sand surface and good vegetation cover, which effectively keep the sand surface stable at the interdune and the plinth of the dunes. Activity sand surface appears only at the crest and the upper part of the sand dunes.  相似文献   

19.
Sand dunes as potential sources of dust in northern China   总被引:1,自引:0,他引:1  
While saltation bombardment of sand grains on a fine substrate can produce considerable dust, the well-sorted nature of sand dunes tends to preclude them from consideration as major dust sources. Recent research, however, has revealed that sand dunes can, in some cases, be large sources of dust. We used the PI-SWERL(Portable In-Situ Wind Erosion Laboratory) to measure in the field the potential of sand dunes and other desert landforms to emit particulate matter 10 μm(PM-10) dust in the Tengger, Ulan Buh, and Mu Us deserts of northern China. Combined with high resolution particle size measurements of the dune sand, an assessment of sand dunes as a dust source can be made. Large active transverse dunes tend to contain little to no stored PM-10, yet they produce a low dust flux. Coppice dunes stabilized by vegetation contain appreciable PM-10 and have very high dust emission potential. There is a positive correlation between the amount of PM-10 stored in a dune and its potential dust flux. Saltation liberates loose fines stored in dunes, making them very efficient dust emitters compared to landforms such as dry lake beds and washes where dust particles are unavailable for aeolian transport due to protective crusts or sediment cohesion. In cases where large dunes do not store PM-10 yet emit dust when active, two hypotheses can be considered:(1) iron-oxide grain coatings are removed during saltation, creating dust, and(2) sand grains collide during saltation, abrading grains to create dust. Observations reveal that iron oxide coatings are present on some dune sands. PI-SWERL data suggests that low dust fluxes from dunes containing no stored dust may represent an estimate for the amount of PM-10 dust produced by removal of iron oxide coatings. These results are similar to results from dunes in the United States. In addition, PI-SWERL results suggest that dust-bearing coppice dunes, which cover vast areas of China's sandy deserts, may become major sources of dust in the future if overgrazing, depletion of groundwater, or drought destabilizes the vegetation that now partially covers these dunes.  相似文献   

20.
There is a growing opinion that poorly managed plantation forests in Japan are contributing to increased storm runoff and erosion. Here we present evidence to the contrary from runoff plots at two scales (hillslope and 0·5 × 2 m plots) for several forest conditions in the Mie and Nariki catchments. Runoff coefficients from small plots in untended hinoki forests were variable but typically higher than from better managed or deciduous forests during small storms at Nariki; at Mie, runoff during small events was highly variable from all small plots but runoff coefficients were similar for hinoki plots with and without understory vegetation, while the deciduous plot had lower runoff coefficients. Storm runoff was less at the hillslope scale than the plot scale in Mie; these results were more evident at sites with better ground cover. During the largest storms at both sites, differences in runoff due to forest condition were not evident regardless of scale. Dynamic soil moisture tension measurements at Nariki indicated that during a large storm, flow in the upper organic‐rich and root‐permeated soil horizons was 3·2 times higher than measured overland runoff from a small hinoki plot with poor ground cover and 8·3 times higher than runoff from a deciduous forest plot. On the basis of field observations during storms, at least a portion of the monitored ‘Hortonian overland flow’ was actually occurring in this near‐surface ‘biomat’. Therefore our field measurements in both small and large plots potentially included biomat flow in addition to short‐lived Hortonian runoff. Because overland flow decreased with increasing scale, rill erosion did not occur on hillslopes. Additionally, runoff coefficients were not significantly different among cover conditions during large storms; thus, the ‘degraded’ forest conditions appear not to greatly enhance peak flows or erosion potential at larger scales, especially when biomat flow is significant. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号