首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Approximate formulas for rotational effects in earthquake engineering   总被引:1,自引:0,他引:1  
The paper addresses the issue of researching into the engineering characteristics of rotational strong ground motion components and rotational effects in structural response. In this regard, at first, the acceleration response spectra of rotational components are estimated in terms of translational ones. Next, new methods in order to consider the effects of rotational components in seismic design codes are presented by determining the effective structural parameters in the rotational loading of structures due only to the earthquake rotational components. Numerical results show that according to the frequency content of rotational components, the contribution of the rocking components to the seismic excitation of short period structures can never be ignored. During strong earthquakes, these rotational motions may lead to the unexpected overturning or local structural damages for the low-rise multi-story buildings located on soft soil. The arrangement of lateral-load resisting system in the plan, period, and aspect ratio of the system can severely change the seismic loading of wide symmetric buildings under the earthquake torsional component.  相似文献   

2.
Rocking isolation has been increasingly studied as a promising design concept to limit the earthquake damage of civil structures. Despite the difficulties and uncertainties of predicting the rocking response under individual earthquake excitations (due to negative rotational stiffness and complex impact energy loss), in a statistical sense, the seismic performance of rocking structures has been shown to be generally consistent with the experimental outcomes. To this end, this study assesses, in a probabilistic manner, the effectiveness of using rocking isolation as a retrofit strategy for single-column concrete box-girder highway bridges in California. Under earthquake excitation, the rocking bridge could experience multi-class responses (eg, full contacted or uplifting foundation) and multi-mode damage (eg, overturning, uplift impact, and column nonlinearity). A multi-step machine learning framework is developed to estimate the damage probability associated with each damage scenario. The framework consists of the dimensionally consistent generalized linear model for regression of seismic demand, the logistic regression for classification of distinct response classes, and the stepwise regression for feature selection of significant ground motion and structural parameters. Fragility curves are derived to predict the response class probabilities of rocking uplift and overturning, and the conditional damage probabilities such as column vibrational damage and rocking uplift impact damage. The fragility estimates of rocking bridges are compared with those for as-built bridges, indicating that rocking isolation is capable of reducing column damage potential. Additionally, there exists an optimal slenderness angle range that enables the studied bridges to experience much lower overturning tendencies and significantly reduced column damage probabilities at the same time.  相似文献   

3.
The paper examines the effect on the structural response of the inevitable correlation which exists between the six earthquake components acting along a set of structural axes. The rotational components are expressed in terms of the spatial derivatives of the translational components. For the calculation of response, modal analysis is employed so that ground response spectra can also be used as seismic input. A methodology is developed to obtain the maximum mean square response which can occur in a structure, irrespective of its orientation with respect to the impinging seismic waves. The application of this methodology for the calculation of design response is advocated, especially for asymmetric structures. For the assumed model of seismic wave motion, the numerical results show a significant contribution to the response from the rotational components. This contribution is, however, expected to be reduced by structural foundation averaging and interaction effects. Further studies with more complete models of seismic wave motions, and their interaction with structural foundations, are thus warranted for a realistic evaluation and characterization of the rotational inputs for design purposes.  相似文献   

4.
In this paper, the dynamic behavior of multi-drum columns and colonnades with epistyles under earthquake excitations is examined through planar numerical simulations. A specialized software application, developed utilizing the discrete element methods (DEM), is used to investigate the influence of certain parameters on the seismic response of such multi-body structural systems. First, this custom-made software is extensively validated by comparing the computed responses of various problems, such as sliding, rocking and free vibration dynamics of rigid bodies, with the corresponding analytical solutions. Then, the developed software is used to study the influence of the frequency content and amplitude of the ground motions on the columns and colonnades, as well as the geometric characteristics of these structures. Parameters such as the number of drums that assemble each column and the number of columns of a colonnade appear to be defining parameters that affect the seismic response of colonnades with epistyles. For ground motions with relatively low predominant frequencies, rocking is the dominant effect in the response, while with the increase of the excitation frequency the response becomes even more complex involving both sliding and rocking phenomena. The numerical simulations show that earthquakes with relatively low predominant frequencies seem to endanger both standalone columns and colonnades with epistyles more than earthquakes with higher predominant frequencies.  相似文献   

5.
The seismic ground rotations are important with respect to spatial structural models, which are sensitive to the wave propagation. The rotational ground motion can lead to significant increasing of structural response, instability and unusual damages of buildings. Currently, the seismic analyses often take into account the rocking and torsion motions separately using artificial accelerograms. We present an exact analytical method, proposed by Nazarov [15] for computing of three rotational accelerograms simultaneously from given translational records. The method is based on spectral representation in the form of Fourier amplitude spectra of seismic waves, corresponding to the given three-component translational accelerogram. The composition, directions and properties of seismic waves are previously determined in the form of a generalized wave model of ground motion. It is supposed that seismic ground motion can be composed by superposition of P, SV, SH- and surface waves. As an example, the dynamic response analysis of 25-story building is presented. Here recorded (low-frequency) and artificial (high-frequency) accelerograms were used; each of them includes three translational and three rotational components. In this structural analysis, we have clarified primarily conditions under which rotational ground motion should be taken into account. Next, we have calculated three rotational components of seismic ground motion. Then they were taken as additional seismic loads components for further seismic analysis of the building. Note, soil–structure interaction (SSI) is not considered in this study. For computing, we use the special software for structural analyses and accelerogram processing (FEA Software STARK ES and Odyssey software, Eurosoft Co., Russia). It was developed and is used in engineering practice in the Central Research Institute of Building Constructions (TsNIISK, Moscow, Russia).  相似文献   

6.
In order to use rocking as a seismic response modification strategy along both directions of seismic excitation, a three‐dimensional (3D) rocking model should be developed. Since stepping or rolling rocking structural members out of their initial position is not a desirable performance, a rocking design should not involve these modes of motion. To this end, a model that takes the aforementioned constraint into account needs to be developed. This paper examines the 3D motion of a bounded rigid cylinder that is allowed to uplift and sustain rocking and wobbling (unsteady rolling) motion without sliding or rolling out of its initial position (i.e., a 3D inverted pendulum). Thus, the cylinder is constrained to zero residual displacement at the end of its 3D motion. This 3D dynamic model of the rocking rigid cylinder has two DOFs (three when damping is included), making it the simplest 3D extension of Housner's classical two‐dimensional (2D) rocking model. The development of models with and without damping is presented first. They are simple enough to perform extensive parametric analyses. Modes of motion of the cylinder are identified and presented. Then, 3D rocking and wobbling earthquake response spectra are constructed and compared with the classical 2D rocking earthquake response spectra. The 3D bounded rocking earthquake response spectra for the ground motions considered seem to have a very simple linear form. Finally, it is shown that the use of a 2D rocking model may lead to unacceptably unconservative estimates of the 3D rocking and wobbling seismic response. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
By now, it is well known that long‐period surface waves can induce resonant response in high‐rise buildings, in particular those located in sedimentary basins. Rayleigh wave passage has been reported to induce rocking motion at the base of the buildings which can increase displacement demands significantly. However, the building behavior to base rocking has not been extensively studied because commercially available instruments do not record rotational components of ground motion, and thus, rocking time histories have not been available to the analysts. In a recent study, we proposed an effective method for estimating the rocking associated with Rayleigh waves, which takes into account their frequency‐dependent phase velocities. In the present work, we select a number of recorded seismic motions which include surface waves on sedimentary basins from recent well‐recorded earthquake events. Then, we proceed to identify and extract the recorded surface waves by using the technique mentioned above. Using realistic soil‐structure analytical models that have been proposed in the published literature for high‐rise buildings, we study their response to Rayleigh waves as they respond to both translational and rocking motions. Of particular interest is to compare the response of such structures with and without the presence of rotational motions due to surface waves. Using the roof displacement and the building interstory drift as response quantities, our results indicate that demands are controlled by rotational (rocking) motions associated with Rayleigh waves.  相似文献   

8.
Tall rigid blocks are prevalent in ancient historical constructions. Such structures are prone to rocking behaviour under strong ground motion, which is recognizably challenging to predict and mitigate. Our study is motivated by the need to provide innovative nonintrusive solutions to attenuate the rocking response of historical buildings and monuments. In this paper, we examine a novel scheme that employs external resonators buried next to the rocking structure as a means to control its seismic response. The strategy capitalizes on the vibration absorbing potential of the structure-soil-resonator interaction. Furthermore, the benefits of combining the resonators with inerters in order to reduce their gravitational mass without hampering their motion-control capabilities are also explored. Advanced numerical analyses of discrete models under coherent acceleration pulses with rocking bodies of different slenderness ratios under various ground motion intensities highlight the significant vibration absorbing qualities of the external resonating system. The influence of key system parameters such as the mass, stiffness, and damping of the resonator and those of the soil-structure-resonator arrangement are studied. Finally, a case study on the evaluation of the response of rocking structures with external resonators under real pulse-like ground-motion records confirms the important reductions in peak seismic rotational demands obtained with the proposed arrangement.  相似文献   

9.
Xia  Xiushen  Wu  Suiwen  Shi  Jun  Jia  Junfeng  Chen  Xingchong  Ma  Huajun 《地震工程与工程振动(英文版)》2020,19(4):1005-1015

In this study, sacrificial components were incorporated into self-centering railway bridge piers to improve the lateral stiffness. The seismic response of this new detail was investigated. First, the method to compute the initial uplift moment of the self-centering pier is given. In addition, shaking table tests were conducted on a free-rocking pier without sacrificial components, which was used to validate a two-spring numerical model. Good agreement was obtained between the numerical results and experimental data. Furthermore, the validated model was employed to investigate the influence of sacrificial components on the seismic response of rocking piers. For this purpose, two models were developed, with and without sacrificial components. Nonlinear response history analysis was then performed on both models under three historical motions. The results showed that compared to the one without sacrificial components, the rocking pier with sacrificial components has comparable displacement at the top of the pier, and maximum uplift moment at high amplitude motion. Therefore, incorporating sacrificial components into the rocking pier can increase the lateral stiffness at service load and low amplitude frequent earthquakes but can produce comparable response at high seismic excitation. These results provide support for performance-based seismic design of self-centering rocking piers.

  相似文献   

10.
The rocking response of large flexible structures to earthquakes   总被引:1,自引:0,他引:1  
The rocking response of structures subjected to strong ground motions is a problem of ‘several scales’. While small structures are sensitive to acceleration pulses acting successively, large structures are more significantly affected by coherent low frequency components of ground motion. As a result, the rocking response of large structures is more stable and orderly, allowing effective isolation from the ground without imminent danger of overturning. This paper aims to characterize and predict the maximum rocking response of large and flexible structures to earthquakes using an idealized structural model. To achieve this, the maximum rocking demand caused by different earthquake records was evaluated using several ground motion intensity measures. Pulse-type records which typically have high peak ground velocity and lower frequency content caused large rocking amplitudes, whereas non-pulse type records caused random rocking motion confined to small rocking amplitudes. Coherent velocity pulses were therefore identified as the primary cause of significant rocking motion. Using a suite of pulse-type ground motions, it was observed that idealized wavelets fitted to velocity pulses can adequately describe the rocking response of large structures. Further, a parametric analysis demonstrates that pulse shape parameters affect the maximum rocking response significantly. Based on these two findings, a probabilistic analysis method is proposed for estimating the maximum rocking demand to pulse-type earthquakes. The dimensionless demand maps, produced using these methods, have predictive power in the near-field provided that pulse period and amplitude can be estimated a priori. Use of this method within a probabilistic seismic demand analysis framework is briefly discussed.  相似文献   

11.
Previous studies have suggested that rocking vibration accompanied by uplift motion might reduce the seismic damage to buildings subjected to severe earthquake motions. This paper reports on the use of shaking table tests and numerical analyses to evaluate and compare the seismic response of base‐plate‐yielding rocking systems with columns allowed to uplift with that of fixed‐base systems. The study is performed using half‐scale three‐storey, 1 × 2 bay braced steel frames with a total height of 5.3 m. Base plates that yield due to column tension were installed at the base of each column. Two types of base plates with different thicknesses are investigated. The earthquake ground motion used for the tests and analyses is the record of the 1940 El Centro NS component with the time scale shortened by a factor of 1/√2. The maximum input acceleration is scaled to examine the structural response at various earthquake intensities. The column base shears in the rocking frames with column uplift are reduced by up to 52% as compared to the fixed‐base frames. Conversely, the maximum roof displacements of the fixed and rocking frames are about the same. It is also noted that the effect of the vertical impact on the column associated with touchdown of the base plate is small because the difference in tensile and compressive forces is primarily due to the self‐limiting tensile force in the column caused by yielding of the base plate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The rotational seismic motions are estimated from one station records of the 1999 Jiji (Chi-Chi), Taiwan, earthquake based on the theory of elastic plane wave propagation. The time-frequency response spectrum (TFRS) of the rota-tional motions is calculated and its characteristics are analyzed, then the TFRS is applied to analyze the damage mechanism of one twelve-storey frame concrete structure. The results show that one of the ground motion components can not reflect the characteristics of the seismic moti...  相似文献   

13.
Rotational components of earthquake ground motion have not been considered for seismic analysis, design and performance assessment because recordings of these components are unavailable. A number of procedures have been proposed to extract rotational components of ground motion from translational time series recorded at multiple, closely spaced recording stations. In this paper, a new procedure that is capable of capturing higher frequency content in rotational time‐series is presented. The frequencies at which numerical errors are introduced in the solution, which are a function of apparent wave velocity and array dimension, are identified. Results are presented for the proposed procedure, the widely accepted geodetic method, and a single‐station procedure developed by the authors, all using data recorded at the Lotung array in Taiwan. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Precariously balanced rocks in seismically active regions are effectively upper-limit strong motion seismoscopes that have been in place for thousands of years. Thus, estimates of the dynamic toppling acceleration of these rocks (through rigid body rocking) can provide constraints on the peak ground accelerations experienced during past earthquakes. We have developed a methodology that uses a two-dimensional numerical code to calculate the dynamic rocking response of precarious rocks to realistic ground acceleration time histories. Statistical analyses of the dynamic response of these rocks to a range of synthetic seismograms, as well as strong motion records, can provide important information about the ground motion attenuation curves and seismic hazard maps. We use shake table tests to investigate the dynamic rocking response of 13 wooden rectangular blocks of various sizes and aspect ratios subjected to realistic seismograms and compare the results with those of numerical tests. Our results indicate good agreement between the shake table and numerical results.  相似文献   

15.
An argument of engineers and researchers against the use of rocking as a seismic response modification technique is that the rocking motion of a structure is chaotic and the existing models are incapable of predicting it well. This argument is supported by the documented inability of rocking models to predict the motion of a specimen excited by a single ground motion. A statistical comparison of the experimental and the numerical responses of a rigid rocking oscillator not to a specific ground motion, but to ensembles of ground motions that have the same statistical properties, is presented. It is shown that the simple analytical model proposed by Housner in 1963 is capable of predicting the statistics of seismic response of a rigid rocking oscillator.  相似文献   

16.
17.
Vertically oriented objects, such as tombstones, monuments, columns, and stone lanterns, are often observed to shift and rotate during earthquake ground motion. Such observations are usually limited to the mesoseismal zone. Whether near-field rotational ground motion components are necessary in addition to pure translational movements to explain the observed rotations is an open question. We summarize rotation data from seven earthquakes between 1925 and 2009 and perform analog and numeric rotation testing with vertically oriented objects. The free-rocking motion of a marble block on a sliding table is disturbed by a pulse in the direction orthogonal to the rocking motion. When the impulse is sufficiently strong and occurs at the ‘right’ moment, it induces significant rotation of the block. Numeric experiments of a free-rocking block show that the initiation of vertical block rotation by a cycloidal acceleration pulse applied orthogonal to the rocking axis depends on the amplitude of the pulse and its phase relation to the rocking cycle. Rotation occurs when the pulse acceleration exceeds the threshold necessary to provoke rocking of a resting block, and the rocking block approaches its equilibrium position. Experiments with blocks subjected to full 3D strong motion signals measured during the 2009 L’Aquila earthquake confirm the observations from the tests with analytic ground motions. Significant differences in the rotational behavior of a monolithic block and two stacked blocks exist.  相似文献   

18.
An effort is made to examine the properties of rotational (torsional and rocking) ground motions using Chiba dense array data. The Chiba array system, located 30 km east of Tokyo, Japan, is composed of 15 boreholes with separation distances varying from 5 to 320 m. This provides a unique opportunity to examine the characteristics of rotational components. For this purpose, 17 events are considered and rotational ground motions are evaluated using spatial derivatives of translational ones. The effects of seismological parameters and separation distances between stations on properties of rotational motions are examined, showing a sudden increase in rotational motions for the earthquakes with large magnitude or PGA and decrease of these motions with increasing separation distance. While the duration of torsional motion is found to be larger than translational ones, there is no significant difference between durations of rocking and vertical motions. The effects of separation distance and earthquake magnitude on rotational response spectra are also investigated. The normalized rotational response spectra are found to be strongly affected by separation distance. The spectral ratios of rotational and translational motions are not linearly proportional to period as suggested by the previous studies. Finally, the torsional motion is predicted from translation ones for different separation distances at the site. The comparison of the predicted and the calculated torsional motions reveals a weak estimation in close separation distances (<30m) and satisfactory predictions in other cases. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
A rocking podium structure is a class of structures consisting of a superstructure placed on top of a rigid slab supported by free‐standing columns. The free‐standing columns respond to sufficiently strong ground motion excitation by uplifting and rocking. Uplift works as a mechanical fuse that limits the forces transmitted to the superstructure, while rocking enables large lateral displacements. Such ‘soft‐story’ system runs counter to the modern seismic design philosophy but has been used to construct several hundred buildings in countries of the former USSR following Polyakov's rule‐of‐thumb guidelines: (i) that the superstructure behave as a rigid body and (ii) that the maximum lateral displacement of the rocking podium frame be estimated using elastic earthquake displacement response spectra. The objectives of this paper are to present a dynamic model for analysis of the in‐plane seismic response of rocking podium structures and to investigate if Polyakov's rule‐of‐thumb guidelines are adequate for the design of such structures. Examination of the rocking podium structure response to analytical pulse and recorded ground motion excitations shows that the rocking podium structures are stable and that Polyakov's rule‐of‐thumb guidelines produce generally conservative designs. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
This paper characterizes the ability of natural ground motions to induce rocking demands on rigid structures. In particular, focusing on rocking blocks of different size and slenderness subjected to a large number of historic earthquake records, the study unveils the predominant importance of the strong‐motion duration to rocking amplification (ie, peak rocking response without overturning). It proposes original dimensionless intensity measures (IMs), which capture the total duration (or total impulse accordingly) of the time intervals during which the ground motion is capable of triggering rocking motion. The results show that the proposed duration‐based IMs outperform all other examined (intensity, frequency, duration, and/or energy‐based) scalar IMs in terms of both “efficiency” and “sufficiency.” Further, the pertinent probabilistic seismic demand models offer a prediction of the peak rocking demand, which is adequately “universal” and of satisfactory accuracy. Lastly, the analysis shows that an IM that “efficiently” captures rocking amplification is not necessarily an “efficient” IM for predicting rocking overturning, which is dominated by the velocity characteristics (eg, peak velocity) of the ground motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号