首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, the authors have proposed a new double‐node zero‐thickness interface element for diffusion analysis via the finite element method (FEM) (Int. J. Numer. Anal. Meth. Geomech. 2004; 28 (9): 947–962). In the present paper, that formulation is combined with an existing mechanical formulation in order to obtain a fully coupled hydro‐mechanical (or HM) model applicable to fractured/fracturing geomaterials. Each element (continuum or interface) is formulated in terms of the displacements (u) and the fluid pressure (p) at the nodes. After assembly, a particular expression of the traditional ‘up’ system of coupled equations is obtained, which is highly non‐linear due to the strong dependence between the permeability and the aperture of discontinuities. The formulation is valid for both pre‐existing and developing discontinuities by using the appropriate constitutive model that relates effective stresses to relative displacements in the interface. The system of coupled equations is solved following two different numerical approaches: staggered and fully coupled. In the latter, the Newton–Raphson method is used, and it is shown that the Jacobian matrix becomes non‐symmetric due to the dependence of the discontinuity permeability on the aperture. In the part II companion paper (Int. J. Numer. Anal. Meth. Geomech. 2008; DOI: 10.1002/nag.730 ), the formulation proposed is verified and illustrated with some application examples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
In a companion Part I of this paper (Int. J. Numer. Anal. Meth. Geomech. 2008; DOI: 10.1002/nag.735 ), a coupled hydro‐mechanical (HM) formulation for geomaterials with discontinuities based on the finite element method (FEM) with double‐node, zero‐thickness interface elements was developed and presented. This Part II paper includes the numerical solution of basic practical problems using both the staggered and the fully coupled approaches. A first group of simulations, based on the classical consolidation problem with an added vertical discontinuity, is used to compare both the approaches in terms of accuracy and convergence. The monolithic or fully coupled scheme is also used in an application example studying the influence of a horizontal joint in the performance of a reservoir subject to fluid extraction. Results include a comparison with other numerical solutions from the literature and a sensitivity analysis of the mechanical parameters of the discontinuity. Some simulations are also run using both a full non‐symmetric and a simplified symmetric Jacobian matrix. On top of verifying the model developed and its capability to reflect the conductivity changes of the interface with aperture changes, the results presented also lead to interesting observations of the numerical performance of the methods implemented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
This paper describes a particular formulation of the extended finite element method (XFEM) specifically conceived for application to existing discontinuities of fixed location, for instance, in geological media. The formulation is based on two nonstandard assumptions: (1) the use of sub-interpolation functions for each subdomain and (2) the use of fictitious displacement variables on the nodes across the discontinuity (instead of the more traditional jump variables). Thanks to the first of those assumptions, the proposed XFEM formulation may be shown to be equivalent to the standard finite element method with zero-thickness interface elements for the discontinuities (FEM+z). The said equivalence is theoretically proven for the case of quadrangular elements cut in two quadrangles by the discontinuity, and only approximate for other types of intersections of quadrangular or triangular elements, in which the XFEM formulation corresponds to a kinematically restricted version of the corresponding interface plus continuum scheme. The proposed XFEM formulation with sub-interpolation, also helps improving spurious oscillations of the results obtained with natural interpolation functions when the discontinuity runs skew to the mesh. A possible explanation for these oscillations is provided, which also explains the improvement observed with sub-interpolation. The paper also discusses the oscillations observed in the numerical results when some nodes are too close to the discontinuity and proposes the remedy of moving those nodes onto the discontinuity itself. All the aspects discussed are illustrated with some examples of application, the results of which are compared with closed-form analytical solutions or to existing XFEM results from the literature.  相似文献   

4.
在建立双重介质热-水-力耦合微分控制方程的基础上,提出了裂隙岩体热-水-力耦合的三维力学模型,对不同介质分别建立以节点位移、水压力和温度为求解量的三维有限元格式,开发了双重介质热-水-力耦合分析的的三维有限元计算程序,在有限元数值分析中不连续面应力计算采用等厚度空间8节点节理单元进行离散,而不连续面渗流和热能计算时采用平面4节点等参单元进行离散,这样保证了不同介质之间的水量、热量交换和两类模型接触处节点水头、温度和位移相等。通过高温岩体地热开发算例,揭示了在热-水-力耦合作用下不连续面处于低应力区,其张开度随运行时间的延长呈非线性增加,非稳定渗流阶段不连续面显著地控制着渗流场的整体分布,它的水头远高于拟连续岩体介质的水头,而进入稳定渗流阶段不连续面的控渗作用不明显,由于高温岩体地热开发系统中存在大规模的热量补给,不连续面对岩体温度场分布的影响并不显著。  相似文献   

5.
This paper briefly reviews the formulations used over the last 40 years for the solution of problems involving tensile cracking, with both the discrete and the smeared crack approaches. The paper focuses on the smeared approach, identifying as its main drawbacks the observed mesh‐size and mesh‐bias spurious dependence when the method is applied ‘straightly’. A simple isotropic local damage constitutive model is considered, and the (exponential) softening modulus is regularized according to the material fracture energy and the element size. The continuum and discrete mechanical problems corresponding to both the weak discontinuity (smeared cracks) and the strong discontinuity (discrete cracks) approaches are analysed and the question of propagation of the strain localization band (crack) is identified as the main difficulty to be overcome in the numerical procedure. A tracking technique is used to ensure stability of the solution, attaining the necessary convergence properties of the corresponding discrete finite element formulation. Numerical examples show that the formulation derived is stable and remarkably robust. As a consequence, the results obtained do not suffer from spurious mesh‐size or mesh‐bias dependence, comparing very favourably with those obtained with other fracture and continuum mechanics approaches. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Based on the Goodman element, the Guyan reduction method is introduced to develop the interface element with asymmetric nodes, which accomplishes the coarse-fine mesh transition between soil and structure in finite element models by providing a different number of nodes on the two sliding surfaces. The number of Gauss points is greater than that of the traditional Goodman element, which ensures its accuracy. The developed interface element is employed in the dynamic elasto-plastic analysis of CFRDs. The results indicate that the use of the constructed interface element can significantly decrease the number of elements with little influence on the accuracy.  相似文献   

7.
岩体裂隙系统渗流场与应力场耦合模型   总被引:15,自引:0,他引:15  
岩体系统具有复杂的结构。一般认为,岩体系统是非均质各向异性不连续的多相介质体系。当岩体以裂隙为主,且其分布较密集时,可将岩体系统看作等效连续多相介质体系。本文运用等效连续介质理论,提出了两种岩体裂隙系统渗流场与应力场耦合模型:一是以渗透水压力与隙变形关系、应力与渗透系统数关系为基础,建立渗透系数张量计算公式,进而建立等效效连续介质渗流为数学模型。以裂隙岩体应变张量分析为基础,建立裂隙岩体效应力张量  相似文献   

8.
This paper proposes a two-stage geophysical approach to map the vertical cracking and the structural integrity of flood embankments made up of clay geomaterials susceptible to fissuring. The first stage is based on a ‘coarse-resolution’ investigation using conventional electrical resistivity tomography (ERT) equipment to identify the fissured zones in the embankment. This step is complemented by an additional geophysical technique, electromagnetic, to verify the ERT measurements. The second stage is based on a ‘high-resolution’ investigation using a miniature ERT system previously developed at the laboratory scale for detailed mapping of the fissure patterns. The ‘coarse-resolution’ stage is the major focus of this paper and was validated against two case studies in England and Scotland. Longitudinal ERT survey provided a tomographic picture of the upper desiccated zones of the embankments and fissured areas in 2-D, validating the range of resistivity results obtained previously on a fissured clay model in the laboratory. A transversal embankment resistivity tomography was also completed to show the positions of fissured zones in detail in the field. The electromagnetic technique as a fast screening tool allowed cross checking the ERT results and was also efficient in detecting high and low conductivity zones, indicating areas of potential weakness during flash floods and heavy rain. The southern embankment in England showed more fluctuations in the conductivity and resistivity than the north embankment in Scotland, likely to be due to the differences in climate, vegetation and location characteristics between the two sites. Conclusions were also drawn on the potential weaknesses for both embankments and the effect of vegetation on conductivity measurements.  相似文献   

9.
焦健  乔春生  徐干成 《岩土力学》2010,31(9):2951-2957
针对数值流形方法特有的覆盖剖分方式,提出了一种模拟岩土工程中开挖过程的算法。该算法采取某种措施,在覆盖剖分过程中将开挖面视为特殊的不连续面,这种不连续面将其所在的数学网格剖分成不同的流形单元,但却不对所在的数学覆盖作剖分。这样,开挖面两侧虽分属不同的流形单元,但开挖面两侧同一数学网格内的流形单元却具有相同的物理覆盖。采用该算法,无需对开挖面处的单元进行特殊处理,可在整个分析域采用统一的网格形式;同时,打破了原有数值流形方法的限制,将开挖面的位置完全当作连续介质来处理,避免了因将其视为不连续面而产生的误差。验证了算法的可靠性后,将其应用于某假想隧道的开挖模拟,计算结果表明该算法具有一定的应用前景。  相似文献   

10.
This paper deals with numerical modeling of dynamic failure phenomena in rate‐sensitive quasi‐brittle materials, such as rocks, with initial microcrack populations. To this end, a continuum viscodamage‐embedded discontinuity model is developed and tested in full 3D setting. The model describes the pre‐peak nonlinear and rate‐sensitive hardening response of the material behavior, representing the fracture‐process zone creation, by a rate‐dependent continuum damage model. The post‐peak response, involving the macrocrack creation accompanied by exponential softening, is formulated by using an embedded displacement discontinuity model. The finite element implementation of this model relies upon the linear tetrahedral element, which seems appropriate for explicit dynamic analyses involving stress wave propagation. The problems of crack locking and spreading typical of embedded discontinuity models are addressed in this paper. A combination of two remedies, the inclusion of viscosity in the spirit of Wang's viscoplastic consistency approach and introduction of isotropic damaging into the embedded discontinuity model, is shown to be effective in the present explicit dynamics setting. The model performance is illustrated by several numerical simulations. In particular, the dynamic Brazilian disc test and the Kalthoff–Winkler experiment show that the present model provides realistic predictions with the correct failure modes and rate‐dependent tensile strengths of rock at different loading rates. The ability of initial embedded discontinuity populations to model the initial microcrack populations in rocks is also successfully tested. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
利用室内概化模型试验,研究了"藕节"辫状河的发育和演变过程。从初始顺直小河开始,以黄河花园口水文站枯水期和洪水期流量为背景,概化试验入口水沙条件,成功塑造了具有典型藕节的辫状小河。模型小河的试验发现:① 原顺直河道交错边滩的发育对辫状河道"藕节"的形成起到关键作用;② 结合自然河流和试验小河,"藕节"河段形态特征系数I与河道稳定性参数θ呈较好的非线性关联性,说明辫状河道除了沙粒阻力和床面形态阻力,也可以采取断面形态一收一放的"河势形态阻力"方式消耗,制衡部分水流能量;③ 流量过程是控制河段形态特征的决定因素之一,大洪水不仅破坏了原交错边滩的特点,也使"藕节"形态遭到破坏;但在中小流量下,河段保持了较好的"藕节"驻点、"藕身"收放的特点。本研究对黄河下游收放相间的"藕节"河段防洪起到借鉴作用。  相似文献   

12.
We present a stabilized extended finite element formulation to simulate the hydraulic fracturing process in an elasto‐plastic medium. The fracture propagation process is governed by a cohesive fracture model, where a trilinear traction‐separation law is used to describe normal contact, cohesion and strength softening on the fracture face. Fluid flow inside the fracture channel is governed by the lubrication equation, and the flow rate is related to the fluid pressure gradient by the ‘cubic’ law. Fluid leak off happens only in the normal direction and is assumed to be governed by the Carter's leak‐off model. We propose a ‘local’ U‐P (displacement‐pressure) formulation to discretize the fluid‐solid coupled system, where volume shape functions are used to interpolate the fluid pressure field on the fracture face. The ‘local’ U‐P approach is compatible with the extended finite element framework, and a separate mesh is not required to describe the fluid flow. The coupled system of equations is solved iteratively by the standard Newton‐Raphson method. We identify instability issues associated with the fluid flow inside the fracture channel, and use the polynomial pressure projection method to reduce the pressure oscillations resulting from the instability. Numerical examples demonstrate that the proposed framework is effective in modeling 3D hydraulic fracture propagation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
余天堂 《岩土力学》2007,28(Z1):305-310
扩展有限元法是一种在常规有限元框架内求解强和弱不连续问题的新型数值方法,其原理是在裂尖附近用一些奇异函数和沿裂纹面用阶跃函数加强传统有限元的基,以考虑跨过裂纹的位移场的不连续,该加强策略允许计算网格独立于不连续体几何。讨论了扩展有限元法的一些数值方面,主要包括:水平集法确定界面和加强节点与加强方式、裂尖加强范围的选择、J积分区域的确定和积分方案等。  相似文献   

14.
In an urban regional groundwater flow field, the presence of thousands of channels between impervious structures makes the field difficult to simulate using the finite-element method (FEM), because the scale of the field is usually several orders of magnitude larger than that of the channels. To overcome this problem, a simple element for the simulation of potential channel flows has been developed. This element works with linear triangular elements and can be easily implemented in a finite-element code to simulate the channel flows with a sparse mesh without a loss of global accuracy. The transmissivity matrix of this element is deduced from the analytical solution for channel flow. The application of the element is discussed, and the accuracy of the element is assessed. The element makes it easy to merge small structures that are close to each other into a larger one that can be modeled with a sparse mesh.  相似文献   

15.
Flow parameters (velocity and density) for turbidity currents in the Northwest Atlantic Mid-Ocean Channel (NAMOC) have been determined based on two different approaches, channel geometry and grain-size distributions of turbidites. Channel geometry has been obtained by a quantitative morphological analysis of the NAMOC which shows three genetically different segments in the upper 2000 km: (1) an upper 350 km-long ‘equilibrium channel’, (2) a middle 700 km-long ‘modified equilibrium channel’and (3) a lower ‘basement-controlled channel’which is more than 1000 km-long. In contrast to other meandering submarine channels the NAMOC has very low sinuosities and gradients. A consistently higher right-hand levee limits mean flow velocities to 3ms?1 and channel geometry indicates mean flow velocities of 0·86 m s?1 that decrease within the equilibrium channel to 0·05 m s?1. Grain-size distributions on the levees and in the channel suggest strong vertical velocity and density gradients for bank-full flows with velocities of up to 8 m s?1 and excess densities up to 87 kg m?3 at the base, and 0·45 m s?1 and 4 kg m?3 at the top. The internal shear produced by these strong vertical gradients results in a decoupling of the current head and body. Channel geometry appears to be mainly the result of the slowly moving dilute body of the current.  相似文献   

16.
Numerical modelling of rock slides is a versatile approach to understand the failure mechanism and the dynamics of rock slopes. Finite element slope stability analysis of three rock slopes in Garhwal Himalaya, India has been carried out using a two dimensional plane strain approach. Two different modelling techniques have been attempted for this study. Firstly, the slope is represented as a continuum in which the effect of discontinuities is considered by reducing the properties and strength of intact rock to those of rock mass. The equivalent Mohr-Coulomb shear strength parameters of generalised Hoek-Brown (GHB) criterion and modified Mohr-Coulomb (MMC) criterion has been used for this continuum approach. Secondly, a combined continuum-interface numerical method has been attempted in which the discontinuities are represented as interface elements in between the rock walls. Two different joint shear strength models such as Barton-Bandis and Patton’s model are used for the interface elements. Shear strength reduction (SSR) analysis has been carried out using a finite element formulation provided in the PHASE2. For blocky or very blocky rock mass structure combined continuum-interface model is found to be the most suitable one, as this model is capable of simulating the actual field scenario.  相似文献   

17.
贵州“三稀”元素矿床特征及找矿前景分析   总被引:1,自引:0,他引:1  
"三稀"元素是现代高精尖科学技术重要的战略资源。本文总结和分析了贵州典型"三稀"元素矿床的基本特征,将"三稀"元素矿床划分为沉积、热液和岩浆作用3种成因和9个类型,并对不同类型矿床的资源潜力进行了探讨。分析认为,沉积、热液成因"三稀"元素矿床是地质找矿重点,黑色岩系型、含煤岩系型、铝铁岩系型、磷块岩系型"三稀"元素矿床具有重大资源潜力,铅锌矿型、汞锑金矿型"三稀"元素矿床具有富集度高和独立成矿优势。对现有优势矿床及其含矿岩系开展"三稀"元素资源潜力的再评价是发现共(伴)生"三稀"矿产的有效途径,也是构建资源节约型、环境保护型社会的时代要求。  相似文献   

18.
复杂条件下3D电磁场有限元计算方法   总被引:8,自引:0,他引:8  
黄临平  戴世坤 《地球科学》2002,27(6):775-779
从电磁场的Maxwell方程出发, 根据电磁场的边值问题及变分公式建立了有限元方程组.采用可以模拟较为复杂的空间地质构造和地形起伏的四面体单元离散计算区域; 单元中的插值函数选择了精度较高的十点双二次多项式; 并采用连续的双二次多项式插值函数来模拟计算区域内单元中电导率σ的空间变化.推导出了地下变电导率σ条件下计算三维电磁场的有限元单元方程的解析表达式; 采用伽辽金方法推导出了散度效正有限元方程组.根据所推导的公式, 编制了三维有限元的计算程序.数值计算结果表明, 上述公式推导正确, 为三维电磁场的数值计算提供了一条有效的新途径.   相似文献   

19.
Rethinking an old tracer experiment in fractured crystalline rock suggests a concept of groundwater flow in sparse networks of long channels that is supported by results from an innovative lattice network model. The model, HyperConv, can vary the mean length of ‘strings’ of connected bonds, and the gaps between them, using two independent probability functions. It is found that networks of long channels are able to percolate at lower values of (bond) density than networks of short channels. A general relationship between mean channel length, mean gap length and probability of percolation has been developed which incorporates the well-established result for ‘classical’ lattice network models as a special case. Using parameters appropriate to a 4-m diameter drift located 360 m below surface at Stripa Mine Underground Research Laboratory in Sweden, HyperConv is able to reproduce values of apparent positive skin, as observed in the so-called Macropermeability Experiment, but only when mean channel length exceeds 10 m. This implies that such channel systems must cross many fracture intersections without bifurcating. A general relationship in terms of flow dimension is suggested. Some initial investigations using HyperConv show that the commonly observed feature, ‘compartmentalization’, only occurs when channel density is just above the percolation threshold. Such compartments have been observed at Kamaishi Experimental Mine (Japan) implying a sparse flow network. It is suggested that compartments and skin are observable in the field, indicate sparse channel systems, and could form part of site characterization for deep nuclear waste repositories.  相似文献   

20.
The fluid flow induced by an incident wave at a discontinuity separating two porous media is governed by the hydraulic permeabilities of both media and that of the interface. In the context of Biot’s theory, we derive the time-harmonic Green’s function for the two half-space problem allowing incident fast and slow dilatational waves to assess the heterogeneous modelling behaviour for diverse hydraulic conditions. It is found that when at least one of the media is permeated with inviscid fluids, heterogeneous modelling simulates open boundary conditions. On the other hand, when the model is saturated with viscous fluids, the modelling reproduces restrained fluid flow whose values correspond to sealed pore interface conditions, in agreement with the theoretical results. Therefore the numerical technique models correctly the wave diffusion and propagation phenomena attendant at the boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号