首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Marine sediment capping is a technique where clean sand or sediment is placed over contaminated sediment to reduce the migration of contaminants to the environment. Environmental regulations have limited the use of in situ sediment capping due to concerns about the contaminant migration through the cap. A series of centrifuge tests were conducted to simulate the effects of consolidation settlement of capped marine sediment. This study describes the testing and monitoring of the centrifuge tests. The results from the centrifuge tests are interpreted and compared to predictions made by the PSDDF computer program, which can qualitatively estimate the consolidation settlement of capped marine sediment.

Centrifuge tests were utilized to predict the consolidation of marine sediment caused by the placement of a capping layer. The centrifuge tests used the modeling of models technique to verify that correct modeling procedures were utilized. In this study, the maximum deviation between the centrifuge test results and PSDDF prediction was 20%. Thus, designers should utilize PSDDF consolidation settlement results with caution. Dye tracer studies showed the importance of consolidation-induced advective transport of contaminants. Thus, the capping layer must be appropriately designed to reduce the effects of consolidation-induced advective transport. This may be accomplished by adding a reactive barrier or geosynthetic barrier layer to the cap design.  相似文献   


2.
Persistent inorganic constitutents preserved in sediments of aquatic ecosystems record temporal variability of biogeochemical functioning and anthropogenic impacts.210Pb and137Cs dating techniques were used to study the past variations of heavy metals (Pb, Cu, and Zn) and accumulation rates of sediments for Tivoli South Bay, in the Hudson River National Estuarine Research Reserve ecosystem. South Bay, a tidal freshwater embayment of the Hudson, may play an important role in the sediment dynamics of this important river. The measured sedimentation rate range of 0.59 to 2.92 cm yr−1 suggests that rapid accumulation occurred during the time period represented by the length of the cores (approximately the past 50 yr). Direct measurements of sediment exchange with the Hudson River reveal high variability in the sediment flux from one tidal cycle to the next. Net exchange does not seem to be adequate to explain sediment accumulation rates in the bay as measured by210Pb and137Cs. The difference may be supplied from upland streams or the Hudson River during storm events. Concentrations of the metals Pb, Cu and Zn were found to be well correlated with each other within individual cores at five of six sites tested. This suggests a common proximate source for the three metals at a specific site. The evidence is consistent with mixing in some environmental compartment before delivery to the bay. While metals self-correlate within individual cores, absolute concentrations, depth distribution patterns, and ratios of the metals to each other vary among the cores collected at different locations within the bay. Organic matter, Fe content, and particle size distribution of sediments do not account for the intercore variations in metal concentration. It is likely that cores collected from different sites may have derived metals from different sources, such as watershed streams and tidal exchange with the Hudson River.  相似文献   

3.
The areal distribution of stream sediment and source-rock heavy mineralogy was studied to determine the mineralogical relations between source and derived sediment in the Piney Creek drainage basin of Wyoming. Heavy-mineral distribution in the streams was characterized using factor analysis. The results of analyses show that for an actively degrading stream system, the heavy-mineral composition of stream sediment is controlled to a considerable extent by the composition of local sediment sources and by continuous addition of detritus from bank cutting. Only the most common minerals from upstream sources persist as statistically significant variables downstream. In some cases the heavy-mineral mineral composition of stream sediment can be controlled by comparatively few, or volumetrically rare source rocks, even though more abundant source rocks supply a wide range of heavy minerals. Specific drainage configurations such as lakes and proximity of streams to major sediment sources significantly modify sediment mineralogy immediately downstream.  相似文献   

4.
5.
Studies have shown that many chemically-reactive contaminants become associated with fine particles in coastal waters and that the rate, patterns, and extent of contaminant accumulation within estuarine systems are extremely variable. In this paper, we briefly review our findings concerning the accumulation patterns of contaminants in several estuarine systems along the eastern coastline of the United States, and have applied a well-established concept in geology, that is “an equilibrium profile,” to explain the observed large variations in these patterns. We show that fine-particle deposition is the most important factor affecting contaminant accumulation in estuarine areas, and that accumulation patterns are governed by physical processes acting to establish or maintain a sediment surface in dynamic equilibrium with respect to sea level, river discharge, tidal currents, and wave activity. Net long-term particle and particle-associated contaminant accumulations are negliglible in areas where the sediment surface has attained “dynamic equilibrium” with the hydraulic regime. Contaminant, accumulation in these areas primarily occurs by the exchange of contaminant-poor sedimentary particles with contaminant-rich suspended particles during physical or biological mixing of the surface sediment. Virtually the entire estuarine particulate and contaminant load bypasses these “equilibrium” areas to accumulate at extremely rapid in relatively small areas that are temporally out of equilibriums as a result of natural processes or human activities. These relatively small areas serve as major sinks for particles from riverine and marine sources, and for biogenic carbon formed in situ within estuaries or on the inner shelf.  相似文献   

6.
Suspended-sediment and water samples were collected from San Francisco Bay in 1991 during low river discharge and after spring rains. All samples were analyzed for organophosphate, carbamate, and organochlorine pesticides; petroleum hydrocarbons; biomarkers; and polynuclear aromatic hydrocarbons. The objectives were to determine the concentrations of these contaminants in water and suspended sediment during two different hydrologic conditions and to determine partition coefficients of the contaminants between water and sediment. Concentrations of hydrophobic contaminants, such as polynuclear aromatic hydrocarbons, varied with location of sample collection, riverine discharge, and tidal cycle. Concentrations of hydrophobic contaminants in suspended sediments were highest during low river discharge but became diluted as agricultural soils entered the bay after spring rains. Polynuclear aromatic hydrocarbons defined as dissolved in the water column were not detected. The concentrations sorbed on suspended sediments were variable and were dependent on sediment transport patterns in the bay. In contrast, the relatively hydrophilic organophosphate pesticides, such as chlorpyrifos and diazinon, has a more uniform concentration in suspended sediment. These pesticides were detected only after spring rains. Most of the measured diazinon, at least 98% for all samples, was in the dissolved phase. Measured partition coefficients for diazinon generally were uniform, which suggests that suspended-sediment concentrations were close to equilibrium with dissolved concentrations. The concentration of diazinon sorbed to suspended sediments, at any given sampling site, was driven primarily by the more abundant solution concentration. The concentrations of diazinon sorbed to suspended sediments, therefore, were independent of the patterns of sediment movement.  相似文献   

7.
The 9.5 km2 Illgraben catchment, located in the Rhône valley in the Central Alps of Switzerland, is one of the most active debris flow torrents in the Alps. In this paper we present sediment yield data collected in 2006 for segments where hillslopes and channels form a fully connected network and contrast these with sediment yields measured for disconnected hillslopes. The data reveal that sediment yields are 1–2 orders of magnitude larger in segments where hillslopes are connected with the channel network than on disconnected hillslopes. Support for this conclusion is provided by observations made on 1959, 1999 and 2004 aerial photographs that the vegetation cover in the disconnected segments is still intact, whereas denudation rates of several centimeters per year in the connected segments have inhibited the establishment of a stable vegetation cover. Furthermore, sediment supplied from hillslopes during the past 40 years has temporarily accumulated along the Illgraben channel, indicating that the channel aggraded over this period and has not yet recovered. An implication of this observation is that initiation of debris flows in the Illgraben catchment is limited more by the availability of intense rainfall than sediment. In contrast, on disconnected hillslopes, sediment flux does not appear to be driven by precipitation.The petrographic composition of the Illgraben fan deposits indicates two distinct sediment sources, one related to rockfall and the other to landslides and debris flows. The presence of clasts from both sources implies multiple processes of erosion, deposition, mixing and re-entrainment in the catchment before the material is exported to the Illgraben fan and to the Rhône River. In addition, delivery of large amounts of coarse-grained sediment to the Rhône causes a modification of the flow pattern from meandering or anastomosing upstream to braided downstream. Hence, the direct connectivity between hillslope and channelized processes in the Illgraben catchment causes not only rapid topographic modifications in the catchment, but also morphologic adjustment in the Rhône valley downstream.  相似文献   

8.
《Applied Geochemistry》2000,15(5):567-581
The Pearl River estuary is created by the inflow of freshwater from the largest river system that drains into the South China Sea. In recent years, massive economic growth and development in the region has led to excessive release of waste into the environment. The accumulation of contaminants in sediments is likely to pose serious environmental problems in surrounding areas. The study of sediment profiles can provide much information on the metal contamination history and long term potential environmental impacts. In this project, 21 core samples (up to 3.65 m deep) were collected in the Pearl River estuary. About 15 subsamples from each core were analysed for moisture content, total organic matter (L.O.I.), particle size and heavy metal and major element concentrations. The results show that Pb and Zn contents are elevated in the sediments at most of the sampling sites. Compared with historical monitoring results, the sediment metal contents have increased over the last 20 a, particularly for Pb. The west side of the Pearl River estuary tends to be more contaminated than the east side due to the contaminants inputs from the major tributaries and different sedimentation conditions. There are close associations between Fe, Co, Ni and Cu concentrations in the sediments. Zinc and Pb contents in the sediment profiles reflect a combination of the natural geochemical background, anthropogenic influences and the mixing effects within the estuary. The distribution of Pb in the sediments shows strong influences of atmospheric inputs, probably from the coal burning activities in the region.  相似文献   

9.
Macrobenthic communities from estuaries throughout the northern Gulf of Mexico were studied to assess the influence of sediment contaminants and natural environmental factors on macrobenthic community trophic structure. Community trophic data were also used to evaluate whether results from laboratory sediment toxicity tests were effective indicators of site-specific differences in benthic trophic structure. A multiple regression model consisting of five composite factors (principal components) was used to distinguish the effects of sediment contaminants and environmental variables on benthic community trophic structure. This model explained 33.5% of the variation in macrobenthic trophic diversity (p<0.001), a variable derived from the distribution of taxas among nine original trophic categories. A significant negative relatinship was found between principal components reflecting concentrations of sediment contaminants and macrobenthic trophic diversity. Detritivores including surface deposit-feeders (SDF), subsurface deposit-feeders (SSDF), and filter feeders (FF) were numerically dominant at 201 random sites, each group accounting for 25–30% of total macrobenthic abundance. The relative abundance of SDFs was considerably lower (12.1±2.9% to 17.1±4.4%) at sites where sediment contaminant concentrations exceeded minimum biological effects thresholds (ER-L values from Long and Morgan 1990 than at sites sampled at random (29.3±5.7%). SSDFs were proportionally more abundant at contaminated sites (42.0±7.7% to 63.6±10.3%) versus random sites (27.5±5.7%), and the relative abundance of SSDFs was positively correlated with concentrations of particular contaminants. Benthic trophic structure was also found to be a function of salinity, where the proportion of SSDFs was negatively correlated with salinity (p=0.035, r=−0.223, n=326). Silt-clay content loaded fairly strongly on the first principal component, but trophic structure parameters were not significantly correlated with sediment grain size or dissolved oxygen (perhaps due, in part, to covariation). Results from laboratory sediment toxicity tests with mysids were predictive of differences in macrobenthic trophic structure in situ (i.e., mysid survival was negatively correlated with %SSDF; p<0.001, r=−0.292, n=326). Results from laboratory sediment toxicity tests with ampeliscid amphipods were not indicative of site-specific differences in benthic trophic structure.  相似文献   

10.
I. Rod Smith 《Sedimentology》2000,47(6):1157-1179
Sediment cores from six small lake basins in the Canadian high Arctic reveal a gravel‐rich (≤30% by weight) to gravel‐poor (≥2%) diamict facies underlying massive, post‐glacial, clayey silt. Ten other lakes contain a second diamict facies within what are interpreted to be glaciolacustrine sedimentary assemblages. The sedimentology, clast fabrics and fossil remains (diatoms, ostracodes and chironomid head capsules) within both diamict facies suggest that these deposits are not tills. Clast fabrics yielded low S1 (0·41–0·57) and high S3 (0·09–0·22) eigenvalues, placing them within the range of ice‐rafted diamictons and glacigenic sediment flows. The high percentage of clast dip angles >45° (15–61%), random clast azimuth and lower diamict contacts conformable to underlying current‐bedded sediment favours an origin as a rain‐out or settling deposit. Samples of the matrix and scrapings of clasts from the diamicts revealed a diatom assemblage dominated by littoral and planktonic forms, such as are found in the littoral regions of the lakes today. This contrasts sharply with the assemblages within the overlying clayey silt, in which benthic forms predominate. Clasts are thus interpreted to have been rafted from the littoral areas of the lake. The process proposed to explain this is rafting by the lake ice cover in a glacial‐marginal environment. Early season meltwater, impounded along the lateral margin of retreating cold‐based glaciers, would buoyantly lift the lake ice cover and any adfrozen lake sediment. Higher lake levels and increased areal extent of seasonal freeze‐on between the lake ice cover and the lake bed would allow the redeposition of littoral sediments to the benthic regions through greater lateral shifting of the ice cover as it broke up. Incision by meltwater streams into the lateral glacial margins would later isolate the lake, allowing seasonal warming of lake water, enough to support the growth and maturation of the ostracode and chironomid species found as fossils within the diamicts.  相似文献   

11.
Relative contribution of different diffuse sources to the sediment and phosphorous (P) budgets in the Ben Chifley Reservoir was estimated using a multivariate mixing model and geochemical indices and tracers. The influence of the underlying geology on land use characteristics and the dynamics of sediment and P in the catchment were discussed. Sediments currently in transport to the reservoir are derived mainly from areas underlain by Quaternary alluvium, accounting for 33% of the reservoir sediment budget. A major portion of the sediments from the Quaternary alluvium originates from pasture land which also contributes about 60% of sediment-bound P in the reservoir, followed by cropland (30%) and forest area (10%). Phosphorus-based fertiliser contributes more than 50% of the soil P in pasture and cropland and more than 60% in forest plantation area. The remaining P reaching the reservoir originates from natural soils (native sources). Phosphate from both fertiliser and native sources are transported to the water courses and ultimately the reservoir as a consequence of gully, stream bank and surface erosion. Erosion control, trapping of fertiliser runoff, establishing riparian vegetation and reducing application of P-based fertiliser by increasing native pasture cultivation in the risk areas should be considered as management options for controlling the impact of P and sediment in the reservoir.  相似文献   

12.
Sediments have been used to detect sources of contamination in a catchment of the Port Jackson (Sydney Harbour) estuary and to evaluate the effects of different land-use practices on the fluvial environment. Mean enrichment (mean concentrations over pre-anthropogenic background) of size-normalized (<62.5 μm) aquatic sediment is 10 × for Cu, 20× for Pb and 90× for Zn adjacent to industrialized areas and 2×, 7× and 7×, respectively for these metals in highly urbanized subcatchments. Diffuse sources contribute minor metals to fluvial sediment even in the most underdeveloped subcatchment (2×, 3× and 3× for Cu, Pb and Zn respectively). Organochlorine pesticide residue concentrations parallel heavy-metal trends due to a common mixed industrial base. Effects-based sediment criteria suggest that some adverse biological impacts are probably occurring in streams flowing through the industrial areas. This interpretation is supported by sequential extraction data which show that a moderate proportion of total heavy metals, especially Zn, is associated with the more bioavailable exchangeable/adsorbed phases in these aquatic sediments. High total suspended solid loads in water downstream of one of the industrial centers, and high particle-bound Cu and Pb concentrations, suggest that most contaminants exiting the catchment do so in association with the solid phase. Received: 29 March 1999 · Accepted: 30 August 1999  相似文献   

13.
We synthesized existing data on chemical contaminants in Long Island Sound (LIS) from published reports and unpublished databases. We found several cases of systematic differences between data sources, which complicated the tasks of understanding the health of LIS and of identifying trends over time. Of the three media examined—water, sediment, and biota—sediment (especially in western LIS) most often exhibited pollutant concentrations that were high relative to guidelines and to other estuaries. These high sediment concentrations did not appear to be efficiently transmitted to biota. With the exception of Cd, median pollutant levels in embayment sediments were not higher than in open-water sediments, but the highest levels found in embayments were much higher than at open-water sites, especially for Ag and Hg. Trends over time in contaminant levels were mixed. We identify the most problematic contaminants in LIS and recommend adding Ag to the LIS Study’s List of Contaminants of Concern.  相似文献   

14.
Sydney Harbour is surrounded by a large capital city of about four million people and its highly urbanised (86%) catchment supports a substantial industrial base and an extensive transport infrastructure. Large commercial and naval ports occupy the waterway and the harbour is an important recreational area. Surficial sediment in Sydney Harbour contains high concentrations of PCBs, HCB, total chlordane, total DDT, aldrin, dieldrin, heptachlor and heptachlor‐epoxide, but low concentrations of lindane. PCBs, total chlordane, and to a lesser extent dieldrin, are most elevated in sediment in creeks on the southern shores of the harbour suggesting sources within older, highly urbanised/industrialised catchments of western‐central Sydney. There are high concentrations of total DDT and HCB in sediments of the upper harbour and Homebush Bay suggesting that chemical industries on the shores of the estuary in this area are sources of these contaminants. Although no sediment quality guidelines apply in Australia, empirically derived biological effects criteria suggest that sediment over extensive areas of Sydney Harbour may have an adverse impact on biota. Especially of concern are sediments containing high concentrations of chlordane and DDT.  相似文献   

15.
Eighteen sediment samples and six water-column samples were collected in a small (6 km2), coastal embayment (Port Jefferson Harbor, New York) to define a high-resolution spatial distribution of metals and to elucidate sources of contaminants to the harbor. Sediment metal (Ag, Cu, Fe, Ni, Pb, V, and Zn) concentrations varied widely, reflecting differences in sediment grain size, with higher metal concentrations located in the fine-grained inner harbor sediments. Calculated enrichment factors for these sediments show that Ag, Pb, Cu, and Zn are elevated relative to both crustal abundances and their respective abundances in sediments in central Long Island Sound. Metal concentrations were 1.2 to 10 fold greater in water from the inner harbor compared to water from Long Island Sound collected outside the mouth of the harbor. Spatial variations in trace metals in surface waters within the bay parallel the spatial variations of trace metals in sediments within the harbor. Elevated water-column metal concentrations appear to be partially derived from a combination of diagenetic remobilization from contaminated sediments (e.g., Ag) and anthropogenic sources (e.g., Cu and Zn) within the southern portions of the harbor. Although the National Status and Trends Program had reported previously that sediment metal concentrations in Port Jefferson Harbor were low, the results of this study show sediment metals have high spatial variability and are enriched in the inner harbor sediments at levels comparable to more urbanized western north shore Long Island harbors.  相似文献   

16.
A total of 402 coastal sea-sediment samples were collected from the continental shelf, slope, and basin off Tsushima Island in the western Sea of Japan, and were analyzed for 51 elements as part of a nationwide marine geochemical mapping project. The samples were compared to potentially related sample sets, and the results were considered from the viewpoint of the origin of marine surface sediments in the western Sea of Japan. The spatial distribution of elemental concentrations in the coastal sea sediments correspond to texture, grain size, the presence of shells and foraminifera, and the mud content of surface marine sediments. Most elemental concentrations increased with increasing mud content. Some samples located in littoral areas included sediment particles apparently supplied from nearby rivers, but their contribution was limited. Overall, the mean chemical compositions of clastic material in coastal sea sediments appear to differ from those of stream sediments in adjacent terrestrial areas. In addition, the geochemistry of the coastal sea sediments cannot be fully explained by the mixing of the material supplied from Korean and Chinese stream sediments, which are the most feasible sources. Coastal sea sediments in the study area are well mixed by transportation processes; therefore, elemental abundances in these marine sediments may be homogenized to such an extent that it is not possible to determine their origin. Alternatively, most of the clastics in the sediment may actually represent relict reworked material, originally formed in the Yellow Sea and Tsushima Strait during the last glacial stage and subsequent transgression.  相似文献   

17.
Planning of soil conservation and erosion control schemes to minimize downstream effects requires information on the sources of sediment supply to a river system. A survey technique for providing an inventory of sediment sources has been developed in New Zealand; sediment sources are classified in terms of geomorphic type and degree of activity (severity). The technique is qualitative but is of value for both planning and research because it demands a formal, objective examination of the area under study. In the Harper-Avoca watershed the technique demonstrated that some well-established beliefs regarding the supply of sediment to the river systems might be erroneous; sediment supply appears to be controlled primarily by geomorphic and geologic factors, and human interference with the ecosystem probably has had a minor effect on rates of supply. The bulk of the sediment comes from large, natural features that are beyond present erosion-control technology, whereas those features that could be effectively treated supply a relatively small proportion of the river's total sediment load.  相似文献   

18.
From a transact along 15‡N latitude in the middle Bengal Fan, temporal and spatial variations in the granulometric parameters and clay minerals in14C dated box cores from the eastern, the central and the western regions were studied to determine climate induced changes in the hydrography. Clay assemblages have spatial and temporal changes and are markedly different in the eastern and the western bay. From a high abundance of the clay smectite, which has its major source in the Deccan Basalt in peninsular India, it is inferred that the western bay is predominantly a depocenter of ‘peninsular sources”. The eastern and the central regions of the bay, however, mostly receive sediments of the ‘Himalayan source’. Related to unstable climate, the reported dominant illite-chlorite (I + C) assemblage in the eastern region of the bay (I + C > 60% smectite <15%), between 18 and 12.6 ka BP, points to a predominant supply from the Himalayan sources through equatorwards dispersal by the winter hydrography. Higher smectite, and reduced clays of the Himalayan sources (smectite > 25%; I + C > 45%) are reported also after 12.5 ka BP from the eastern bay. These are interpreted as evidences of an intensified SW monsoon and associated change in the dispersal pattern by stronger summer monsoon hydrography which supports across bay dispersal by anticyclonic gyre. The influence of climate on hydrographic changes is consistent during the short events of arid climate (weak NE monsoon) in Holocene in core 31/1 (western bay), in which the enhanced contents of the clays of the Himalayan sources are observed (smectite < 40% I + C > 50%). These findings have implications for climate regulated influence of fluvial processes over the areas, hitherto, considered unaffected by the Indian peninsular fluvial sources  相似文献   

19.
《China Geology》2019,2(4):522-529
In recent years, development activities have had a significant impact on the environment of the Jiaozhou Bay, China. To ensure the sustainable economic and social development of the Jiaozhou Bay area, it is necessary to strengthen corresponding control measures. The important prerequisite is to properly understand the environmental conditions laws of natural change, especially the dynamic processes of sediment and the characteristics of landform evolution. Based on the data of continuous observation at 6 stations in Jiaozhou Bay for 25 hours, the Hydrodynamic Eutrophication Model (HEM-3D) was used to simulate the sediment erosion and deposition. The results show that the maximum suspended sediment concentration in the sea area of Jiaozhou Bay is about 40 mg/L, which appears in the northwestern area of the bay top and the Cangkou watercourse area, and the low concentration is located in the area of the central Jiaozhou Bay towards the bay mouth. The suspended sediment is 6–10 mg/L. Affected by a decrease in seawater material, the direction of the prevailing current in the Jiaozhou Bay area is different from that of the sediment transport. The velocity of the flood current is higher than that of the ebb current. However, during flood tide, the flux of resuspended seafloor sediment outside and at the mouth of the bay is limited and cannot contribute significantly to the suspended sediment in the bay. During ebb tide, the resuspended sediment at the shallow-water bay head and the east and west sides spreads toward the bay mouth with the ebb current, although it extends beyond the bay through the bay mouth. The research results can provide scientific support for the Jiaozhou Bay project construction and environmental protection.  相似文献   

20.
《Geodinamica Acta》2013,26(5-6):259-272
The contents and the distribution of clay minerals in modern sediments of the Cadiz bay and the continental shelf have been studied aiming to establish the sedimentary exchange model and the pathways followed by the clay fraction between the bay and the adjoining continental shelf. The most abundant clay minerals in the muddy sediments consist mainly of illite, smectite, interstratified illite-smectite, kaolinite and chlorite. The application of factor analysis method (PCA) to clay minerals data are considered to be useful in the determination of sedimentary transport patterns. The data from clay mineral assemblages, and their distribution map, make possible to establish the fine sediments transport paths in the study area using clay mineral as natural tracers. This model of transport takes in consideration the facies distribution, the supplies sources and the way of fine sediments are incorporated to the marine environment.

Two flows paths have been established: the outflows coming from Cadiz bay and the littoral zones; and the inflows coming from external marine zones of the bay. These flows are controlled by tidal currents and the morphology of the coast. The action of surge and the marine currents, specially the Atlantic Surface Water flow, are also important in the transport of fine sediments coming from sources located to the north of the study zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号