首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The Tyro and Bannock Basins, which are depressions in the eastern Mediterranean, contain hypersaline anoxic brines. These brines are of different composition: Tyro brine is primarily an early-stage halite (NaCl) brine, whereas Bannock brine includes the more soluble ions of late-stage evaporite minerals. Accordingly, the Bannock brine contains a much greater sulphate concentration than the Tyro Brine. This difference in sulphate concentration is reflected in the concentrations of ions such as Ca, Sr and Ba, which form sparingly soluble sulphate minerals.Equilibrium calculations using the Pitzer specific ion interaction model indicate that the brines in both basins are saturated with respect to gypsum (CaSO4-2H2O) and supersaturated to saturated with respect to dolomite (CaMg(CO3)2). The degree of saturation with respect to dolomite is greater in the Bannock Basin than it is in the Tyro Basin. Correspondingly, recent gypsum crystals and dolomite hardgrounds have been found in the Bannock Basin but not in the Tyro Basin.The Tyro brine is homogeneous in composition, whereas the Bannock brine demonstrates a clear two-layer brine structure. At the interface of the upper and the lower brine distinct positive anomalies occur in the total alkalinity and the concentration of phosphate, and negative anomalies occur in the concentrations of Mn2+ and the rare earth elements (REE). These anomalies and the observed association of gypsum/dolomite in the sediments are all consistent with a recent precipitation of dolomite and gypsum in the Bannock Basin. The brines in both basins are also saturated with respect to barite (BaSO4).The 87Sr/86Sr and δ34S ratios of the Bannock brines are amazingly consistent but differ dramatically from the values for modern or Messinian-age seawater. The Sr concentration and Sr and S isotope ratios in the gypsum crystals indicate that most of these crystals have resulted from precipitation/recrystallization from the brine and not from seawater. The observed variations between crystals are thought to reflect the recrystallization of (sub-) outcropping Messinian gypsum with a low 87Sr/86Sr ratio in the presence of seawater or brine fluids and with different extents of diagenesis.  相似文献   

2.
Iodate (IO3) is the predominant dissolved species of iodine in the oxygenated waters of the Mediterranean Sea. Iodide (I) is present in significant quantities (up to 65 nM) in oxygenated waters in the photic zone and near the interface above the anoxic and saline Bannock Basin. Lesser quantities of I (< 10 nM) are found throughout the rest of the oxic water column. An additional unidentified dissolved iodine species is present immediately above the anoxic interface.Total dissolved iodine (ΣI) increases dramatically across the seawater/brine interface. Part of this increase is undoubtedly the result of the dissolution of iodine-rich evaporites during formation of the brine bodies at the Tyro and Bannock Basins. The vertical distribution of ΣI and other dissolved chemical species (particularly PO43−) in the Bannock Basin brine, however, suggests an additional, present-day, diagenetic source of dissolved iodine to the brine. Based on the increase in the concentration of the most soluble major ions across the seawater/brine interface, 5–7 μM of the 11.5-μM increase in ΣI concentration must be attributed to diagenesis.  相似文献   

3.
A brief review of the geological knowledge on the anoxic basins of the eastern Mediterranean is presented. Anoxic basins have been discovered in two different geological settings in the eastern Mediterranean. Bannock Basin belongs to the compressional style of the Mediterranean Ridge, and Tyro and Poseidon Basins belong to the transcurrent tectonic style of the Strabo Trench. The origin of the basins is subsurface salt dissolution triggered by tectonic deformation of the sediments on the Mediterranean Ridge, and tectonic subsidence (pull-apart mechanism) in the Strabo Trench. The onset of a deep-sea brine lake is always related to the outcrop of Messinian salts on the side-walls of the basin. The rate of basin subsidence controls the evolution of the brine lakes, which can also be completely diluted by bottom water circulation.  相似文献   

4.
Polarographic techniques have been used to determine reduced inorganic sulphur speciation in recent anoxic marine sediments from two hypersaline basins, the Tyro and the Bannock Basins, in the Eastern Mediterranean. The following phases were determined: acid volatile sulphur (AVS), pyritic sulphur and zerovalent sulphur. The determination of AVS and pyrite was based respectively on the acidification and Cr(II) reduction of these sulphur components to H2S. H2S was collected in base and the sulphide concentration was measured by polarography. Standard Na2S and pyrite gave recoveries of 99.6% ± 3.9% and 97% ± 12% respectively. Total zerovalent sulphur in a sediment sample was measured by the reaction of sulphite with thiosulphate. Thiosulphate was measured directly by polarography.

Pyrite is the main phase of inorganic reduced sulphur in the sediments from the Tyro and the Bannock Basins, and it has about the same average level (125 υmoles per gramme dry weight) in the cores recovered from the two areas. However, the distribution of pyrite in the top 100 cm of the two cores differs significantly. In the Bannock Basin a sharp increase is observed with depth, whereas in the Tyro Basin there is a small decrease with depth.

The total amount of reduced inorganic sulphur is less than the total amount of sulphur in the sediments. This indicates that there must be additional sulphur-bearing phases. One of these phases may be gypsum, and indeed, gypsum crystals have been observed in the Bannock Basin.

In neither basin is there a significant correlation between reduced sulphur and organic carbon. The pyrite that occurs in these basins may have been formed syngenetically at the interface of the anoxic brine and oxic seawater. Diagenetic pyrite may have been formed within the sediments of the basins. AVS and total zerovalent sulphur are still observed at depth. We therefore suggest that this may be due to the incomplete transformation of AVS and zerovalent sulphur into pyrite.  相似文献   


5.
Results of the chemical investigation on the Bannock and Tyro Basins are reported.Both basins were found to be hypersaline ( 10 times higher than salinity of normal seawater) and anoxic. In all investigated basins a region of transition, a few meters thick, was identified at depths > 3327 dbar. It is characterized by a sharp gradient of salinity, and all concentrations of analysed species increase strongly except for dissolved oxygen and nitrate, which immediately drop to zero. This region appears as a sharp boundary that prevents mixing. As a result, in the presence of organic matter, an anoxic condition developed with the complete depletion of dissolved oxygen. At the same time, hydrogen sulphide and ammonium accumulated within the brine. Between the Bannock and the Tyro brines differences occur in the measured concentrations of H2S, SO2−4, Ca2+ and NH3. There are some differences also within the Bannock area sub-basins.The Libeccio sub-basin, in the Bannock area, contains a double-layered brine: the upper layer is 140 dbar thick and the lower layer is 300 dbar thick. A second interface between upper and lower brines develops at a depth of 3500 dbar. Nearly all of the measured concentrations vs. depth show the double layer, with the exception of ammonium, the concentration of which remains nearly constant throughout the anoxic column. Profiles of the other species analyzed show remarkable differences on passing from the upper to the lower brine. Hydrogen sulphide, sulphate and fluoride concentrations appear constant and then increase at the second interface. The calcium concentration is also constant in the upper brine, but decreases at the second interface. Total alkalinity and phosphate concentrations show a maximum peak just below the first interface. However, after passing through the second interface all the chemical parameters exhibit an almost constant behaviour down to the bottom.Hypersaline conditions are attributed to the dissolution of Messinian evaporite, and anoxia is suggested to originate from the oxidation of organic matter present in sediments and from the absence of bottom water circulation in such a deep and enclosed environment.The chemical conditions can be summarized as follows: in the Libeccio Basin the values for the species analysed have the ranges: 39–321 psu for ‘salinity’, 8.2−6.5 for pH, 2.7–4.0 mM for total alkalinity, 0.2-0 mM for dissolved oxygen, 0–1669 μM for hydrogen sulphide, 0–198 μM for thiol, 31–99 mM for sulphate, 11–21 mM for calcium, 7–100 μM for fluoride, 0.2–3080 μM for ammonium, 5.8-0 μM for nitrite, 0.2–12 μM for phosphate and 8–130 μM for silicate.  相似文献   

6.
In the anoxic hypersaline Tyro and Bannock Basins of the eastern Mediterranean, extremely high concentrations of Co (0.015%), Cu (1.35%) and Zn (0.28%) were found in suspended matter collected at the sharp interface between seawater and the anoxic brine. The high particulate Co, Cu and Zn concentrations can be explained by the sharp increase in dissolved sulphide at these interfaces, and the resultant precipitation of metal sulphides. The particulate As, Sb and Mo concentrations also showed a sharp maximum at or close to the interface. However, the contributions of As, Sb and Mo contents in suspended matter to the total concentrations in the water column are small. Scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDAX) of suspended particulate matter from the Tyro Basin revealed spherical particles strongly enriched in Fe, Cu and Zn at the seawater-brine interface.  相似文献   

7.
Elevated methane (CH4) concentrations (128–2692×103 nM) occur in the hypersaline anoxic brine pools of Bannock and Urania Basins, eastern Mediterranean Sea, compared to low concentrations (17–80×103 nM) in the sediments below the anoxic brines. The CH4 enrichment in the brines might be due to the long residence time of the brine in the Basin. An attempt is made to determine the sources for the enriched dissolved CH4 by considering the influence of hydrothermal activity, the occurrence of sapropel layers (biogenic) and dissolution of gas hydrates. Furthermore, it is suggested that the enriched CH4 in Bannock and Urania Basins is diffused and mixed with the overlying waters by local upward transport mechanisms that selectively move CH4 upward in these Basins.  相似文献   

8.
Peculiar pellicles have been recorded in the extant anoxic hypersaline basins of the Bannock area and the Western Strabo Trench (Eastern Mediterranean). Discrete layers of pellicles were found in 29 cores. They are oriented parallel to bedding planes or are folded within the sandy base of turbidites and within slumped sediments. In addition, similar pellicles occur at the surface of or interlocked within gypsum crystals recovered from the Bannock area.

The pellicles are 0.5–3 mm thick and dark greenish-grey in colour. They foliate into very small (<1 mm) undulating and anastomosing microlaminae entrapping abundant biogenic and inorganic particles. The amorphous organic matter of the pellicles is most probably produced by bacterial masses linked to mineralization processes of the organic debris. Anaerobic sulphate-reducing bacteria (Desulphovibrio) are abundant and the presence of methane bacteria is likely.

Detailed analyses with the light microscope and scanning electron microscope yielded differences and similarities concerning ultrastructure, content, abundance and morphotypes of the bacterial pellicles from the Bannock area and the Western Strabo Trench. A consistently well-developed ultrastructure comprising thin microlaminae characterizes the Bannock pellicles, whereas the ultrastructure of the Tyro and Poseidon pellicles is usually not organized. Siliceous microfossils are abundant in samples from both sites, but centrate diatoms prevail in the Bannock pellicles whereas pennate diatoms are overwhelmingly dominant in the Tyro and Poseidon pellicles. Calcareous micro- and nannofossils, together with pyrite framboids, are more abundant in samples from the Bannock area. Bacteria are extremely abundant in samples from the Bannock area and three different morphological types have been distinguished. Only one type of bacteria was commonly observed in pellicles from the Western Strabo Trench basins.

Pellicles form at the normal seawater/brine interface, as substantiated by transmittance profiles and bacteriological investigations. Therefore, the term “deep mid-water bacterial mats” is proposed herein for these peculiar layers.

After bacterial mats grow at the interface, they are included within the sediments by following one of two different paths: (a) when pelagic sedimentation prevails, pellicles sink to the basin floor due to the increasing load of biogenic and inorganic detritus, and (b) under a tectonically active regime, turbidity currents and slumps can disrupt the interface and destroy the floating mats. In the latter case, fragments of pellicles are transported to the bottom within the gravity flows.  相似文献   


9.
Eric Olausson 《Marine Geology》1991,100(1-4):45-51
Two cores from the Bannock Basin in the eastern Mediterranean have been analysed for δ180 and the δ13C in planktonic foraminifera. One core (02-PC) was extracted from the anoxic brine, the other (08-GC) from a plateau east of the brine.

The absence of sapropelic muds in Core 08-GC from the two Holsteinian euxinic cycles, together with the presence of isotopic spikes, suggests that the plateau has risen during the last ca. 200,000 years by ca. 2.5 mm/yr.

The δ180 amplitude of Globigerinoides ruber in eastern Mediterranean cores is only ca. 0.5%. larger than for this species in North Atlantic cores. This suggests that the surface oxygen isotopic composition of both bodies of water followed each other fairly closely during the Late Pleistocene, except during the stagnant phases.  相似文献   


10.
On the passive margin of the Nile deep-sea fan, the active Cheops mud volcano (MV; ca. 1,500 m diameter, ~20–30 m above seafloor, 3,010–3,020 m water depth) comprises a crater lake with hot (up to ca. 42 °C) methane-rich muddy brines in places overflowing down the MV flanks. During the Medeco2 cruise in fall 2007, ROV dives enabled detailed sampling of the brine fluid, bottom lake sediments at ca. 450 m lake depth, sub-surface sediments from the MV flanks, and carbonate crusts at the MV foot. Based on mineralogical, elemental and stable isotope analyses, this study aims at exploring the origin of the brine fluid and the key biogeochemical processes controlling the formation of these deep-sea authigenic carbonates. In addition to their patchy occurrence in crusts outcropping at the seafloor, authigenic carbonates occur as small concretions disseminated within sub-seafloor sediments, as well as in the bottom sediments and muddy brine of the crater lake. Aragonite and Mg-calcite dominate in the carbonate crusts and in sub-seafloor concretions at the MV foot, whereas Mg-calcite, dolomite and ankerite dominate in the muddy brine lake and in sub-seafloor concretions near the crater rim. The carbonate crusts and sub-seafloor concretions at the MV foot precipitated in isotopic equilibrium with bottom seawater temperature; their low δ13C values (–42.6 to –24.5‰) indicate that anaerobic oxidation of methane was the main driver of carbonate precipitation. By contrast, carbonates from the muddy lake brine, bottom lake concretions and crater rim concretions display much higher δ13C (up to –5.2‰) and low δ18O values (down to –2.8‰); this is consistent with their formation in warm fluids of deep origin characterized by 13C-rich CO2 and, as confirmed by independent evidence, slightly higher heavy rare earth element signatures, the main driver of carbonate precipitation being methanogenesis. Moreover, the benthic activity within the seafloor sediment enhances aerobic oxidation of methane and of sulphide that promotes carbonate dissolution and gypsum precipitation. These findings imply that the coupling of carbon and sulphur microbial reactions represents the major link for the transfer of elements and for carbon isotope fractionation between fluids and authigenic minerals. A new challenge awaiting future studies in cold seep environments is to expand this work to oxidized and reduced sulphur authigenic minerals.  相似文献   

11.
Sediments were sampled and oxygen profiles of the water column were determined in the Indian Ocean off west and south Indonesia in order to obtain information on the production, transformation, and accumulation of organic matter (OM). The stable carbon isotope composition (δ13Corg) in combination with C/N ratios depicts the almost exclusively marine origin of sedimentary organic matter in the entire study area. Maximum concentrations of organic carbon (Corg) and nitrogen (N) of 3.0% and 0.31%, respectively, were observed in the northern Mentawai Basin and in the Savu and Lombok basins. Minimum δ15N values of 3.7‰ were measured in the northern Mentawai Basin, whereas they varied around 5.4‰ at stations outside this region. Minimum bottom water oxygen concentrations of 1.1 mL L?1, corresponding to an oxygen saturation of 16.1%, indicate reduced ventilation of bottom water in the northern Mentawai Basin. This low bottom water oxygen reduces organic matter decomposition, which is demonstrated by the almost unaltered isotopic composition of nitrogen during early diagenesis. Maximum Corg accumulation rates (CARs) were measured in the Lombok (10.4 g C m?2 yr?1) and northern Mentawai basins (5.2 g C m?2 yr?1). Upwelling-induced high productivity is responsible for the high CAR off East Java, Lombok, and Savu Basins, while a better OM preservation caused by reduced ventilation contributes to the high CAR observed in the northern Mentawai Basin. The interplay between primary production, remineralisation, and organic carbon burial determines the regional heterogeneity. CAR in the Indian Ocean upwelling region off Indonesia is lower than in the Peru and Chile upwellings, but in the same order of magnitude as in the Arabian Sea, the Benguela, and Gulf of California upwellings, and corresponds to 0.1–7.1% of the global ocean carbon burial. This demonstrates the relevance of the Indian Ocean margin off Indonesia for the global OM burial.  相似文献   

12.
Hydrographic observations from four separate expeditions to the Eurasian Basin of the Arctic Ocean between 1991 and 2001 show a 300–700 m thick homogenous bottom layer. The layer is characterized by slightly warmer temperature compared to ambient, overlying water masses, with a mean layer thickness of 500±100 m and a temperature surplus of 7.0±2×10−3 °C. The layer is present in the deep central parts of the Nansen and Amundsen Basins away from continental slopes and ocean ridges and is spatially coherent across the interior parts of the deep basins. Here we show that the layer is most likely formed by convection induced by geothermal heat supplied from Earth's interior. Data from 1991 to 1996 indicate that the layer was in a quasi steady state where the geothermal heat supply was balanced by heat exchange with a colder boundary. After 1996 there is evidence of a reformation of the layer in the Amundsen Basin after a water exchange. Simple numerical calculations show that it is possible to generate a layer similar to the one observed in 2001 in 4–5 years, starting from initial profiles with no warm homogeneous bottom layer. Limited hydrographic observations from 2001 indicate that the entire deep-water column in the Amundsen Basin is warmer compared to earlier years. We argue that this is due to a major deep-water renewal that occurred between 1996 and 2001.  相似文献   

13.
The last steps in the geological exploration of Bannock Basin (cruises BAN-88 and BAN-89 of R.V. Bannock) provided direct evidence of an inversion of relief that was long suspected but hitherto never recorded.

Dolostones and dolomitic mudstones of probable Messinian age subcropping beneath the brine in the northern part of Bannock Basin and Zanclean oozes recorded on the sill separating two narrow and elongate satellite basins along the eastern part of the rim-syncline record a relief inversion during their evolution from cylindric folds to collapse structures.

In particular, the core from the eastern intrabasin sill contains two major unconformities: one separates early Zanclean oozes from late Piacenzian pelagic sediments characterized by winnowed layers, inclined bedding and incipient hardgrounds, and the second separates the latter from Middle Pleistocene pelagic sediments. The deepening is certainly post-late Piacenzian (post-M Pl 6 biozone) because sediments of that age record an actively uplifting structure.

Another argument in favour of the relief inversion, and of the youthful age of the deepening, is derived from a core raised from the northern part of the major western basins (large sill separating Maestro from Borea basins) which contains a coarse turbidite of North African origin representing an upflow turbidite similar to others recorded on the outer slopes of the Mediterranean Ridge. This unique finding in the area of Bannock Basin is preserved in the central part of the collapse basin, whereas in other settings an erosional gap is noticed at the equivalent stratigraphic position.  相似文献   


14.
Extremely low summer sea-ice coverage in the Arctic Ocean in 2007 allowed extensive sampling and a wide quasi-synoptic hydrographic and δ18O dataset could be collected in the Eurasian Basin and the Makarov Basin up to the Alpha Ridge and the East Siberian continental margin. With the aim of determining the origin of freshwater in the halocline, fractions of river water and sea-ice meltwater in the upper 150 m were quantified by a combination of salinity and δ18O in the Eurasian Basin. Two methods, applying the preformed phosphate concentration (PO*) and the nitrate-to-phosphate ratio (N/P), were compared to further differentiate the marine fraction into Atlantic and Pacific-derived contributions. While PO*-based assessments systematically underestimate the contribution of Pacific-derived waters, N/P-based calculations overestimate Pacific-derived waters within the Transpolar Drift due to denitrification in bottom sediments at the Laptev Sea continental margin.Within the Eurasian Basin a west to east oriented front between net melting and production of sea-ice is observed. Outside the Atlantic regime dominated by net sea-ice melting, a pronounced layer influenced by brines released during sea-ice formation is present at about 30–50 m water depth with a maximum over the Lomonosov Ridge. The geographically distinct definition of this maximum demonstrates the rapid release and transport of signals from the shelf regions in discrete pulses within the Transpolar Drift.The ratio of sea-ice derived brine influence and river water is roughly constant within each layer of the Arctic Ocean halocline. The correlation between brine influence and river water reveals two clusters that can be assigned to the two main mechanisms of sea-ice formation within the Arctic Ocean. Over the open ocean or in polynyas at the continental slope where relatively small amounts of river water are found, sea-ice formation results in a linear correlation between brine influence and river water at salinities of about 32–34. In coastal polynyas in the shallow regions of the Laptev Sea and southern Kara Sea, sea-ice formation transports river water into the shelf’s bottom layer due to the close proximity to the river mouths. This process therefore results in waters that form a second linear correlation between brine influence and river water at salinities of about 30–32. Our study indicates which layers of the Arctic Ocean halocline are primarily influenced by sea-ice formation in coastal polynyas and which layers are primarily influenced by sea-ice formation over the open ocean. Accordingly we use the ratio of sea-ice derived brine influence and river water to link the maximum in brine influence within the Transpolar Drift with a pulse of shelf waters from the Laptev Sea that was likely released in summer 2005.  相似文献   

15.
Sinking particles were analyzed for their nitrogen isotopic ratio δ15N) of total particulate nitrogen (PN), stable carbon isotopic ratio (δ13C) and radioactive isotopic ratio (δ14C) of total particulate organic carbon (POC), at three different latitudinal (temperate, subpolar and equatorial) and geomorphological (trench, proximal abyssal plain and distal abyssal plain) sites in the western North Pacific Ocean using year-long time series sediment trap systems, to clarify the common vertical trends of the isotopic signals in deep water columns. Although the δ15N and δ13C values of sinking particulate organic matter (POM) were partly affected by the resuspension of sedimentary POM from the sea floor, especially in the trench, the changes in δ15N and δ13C values owing to the resuspension could be corrected by calculation of the isotopic mass balance from δ14C of sinking POC. After this correction, common downward decreasing trends in δ15N and δ13C values were obtained in the deep water columns, irrespective of the latitudes and depths. These coincidental isotopic signals between δ15N and δ13C values provide new constraints for the decomposition process of sinking POM, such as the preferential degradation of 15N- and 13C-rich compounds and the successive re-formation of the sinking particles by higher trophic level organisms in the deep water column.  相似文献   

16.
Twenty kilogrammes of crusts and slabs of indurated carbonate sediment, usually referred to as hardgrounds, were dredged along the eastern steep wall of the Bannock Basin during the 1984 cruise of R.V. Bannock.

The crusts range in thickness from one to a few centimetres and the fragments of these crusts are irregular in shape. Their surface is always uneven and their colour ranges from white to brownish dark grey. Some slabs are impregnated along one side by ferromanganese sesquioxides, and borings occur in several samples. Serpulid tubes have been observed in one instance. The borings and serpulids suggest formation of the hardgrounds at or close to the sediment/water interface and exposure at the seafloor.

The degree of lithification is generally different on the inferred upper and lower sides of the slabs. An upward increase of lithification across the slabs is reflected by mineralogy, ultrastructure and stable isotope composition of the carbonate. X-ray diffraction analyses indicate high-magnesian calcite as the predominant carbonate with minor amounts of low-magnesian calcite and dolomite. Occasionally, large gypsum crystals are attached to the hardgrounds and sometimes smaller ones are dispersed through the carbonate matrix.

An increase in diagenesis is reflected by the passage from friable, nodular nannofossil chalk to nannofossil limestone and hard xenotopic calcite micrite. Overgrowth of coccoliths and internal cementation of the tests of planktonic foraminifera by high-Mg calcite increase from chalk to limestone. In the hard, fully cemented micrites, coccoliths can no longer be recognised in the xenotopic fabric. Pteropods occur as dissolution moulds with aragonite preserved as only tiny relics.

Carbon and oxygen isotope analyses were performed on different samples. The progressive lithification to chalk and limestone is marked by a shift in the δ18O values from +1.2‰ to +5.4‰ (PDB). This change indicates that precipitation of high-Mg calcite and possibly also recrystallisation of the original biogenic carbonate took place within cold and hypersaline brines which were enriched in 18O. The oxygen isotope data suggest that lithification and gypsum precipitation occurred under identical conditions. The carbon isotope data show progressive diagenetic change from values near +1‰ to values of +3‰. This change may reflect a contribution of methanogenetic CO2 to the hypersaline brine.  相似文献   


17.
Continuous pollen and isotopic records were established for core BAN 84 09 GC retrieved from the anoxic Bannock Basin in the Eastern Mediterranean. On the basis of two 14C dates, they document the palaeoclimate between about 25.7 ka B.P. and 5.2 ka B.P. in the northern borderlands of the Ionian Basin. The upper half of the core has been redeposited.

The isotopic record displays a correlation with pollen percentages that is strong and positive for Artemisia (sage-brush) and negative for Quercus (oak). The last glacial maximum and the deglaciation are identified by these combined taxa, together with Chenopodiaceae. The glacial maximum around 18 ka B.P. (which has elsewhere been dated from 20 to 15 ka B.P.) has pollen percentages that are high for Artemisia and low for Quercus. The climate in the pollen source area was arid, cold in winter, briefly warm in summer and sustained the vegetation of a semi-desert. The onset of deglaciation after 18 ka B.P. coincides with that of the decline in Artemisia pollen percentage. However, this decline does not indicate reduced aridity, because it is accompanied by a pollen percentage rise of the even more arid herbs Chenopodiaceae and Ephedra. Throughout the deglaciation from 18 to 11 ka B.P., the aridity progressively increases, culminating at 11 ka B.P. This trend is briefly interrupted by a more humid event, shown by a peak in Artemisia pollen percentage and a smaller peak in oak; these two peaks are coeval with the Bölling-Alleröd chronozone (13-11 ka B.P.). Maximum aridity occurs during the Younger Dryas chronozone (11-10 ka B.P.). Afterwards, the oak pollen percentage begins a steady increase, and its maximum value is coeval with the lowest isotopic value, dated at 8760 ± 170 yr B.P. This period was one of high moisture, warm summers, and, according to altitude, mild to cool winters. This climate sustained forests that were Mediterranean in the lowlands and warm temperate in the uplands. A high pollen concentration is observed during this period and reveals the presence of sapropel S1, which is otherwise unrecognizable in this entirely black core. During the following period between 8760 ± 170 and 5200 yr B.P., the δ180 reverts to slightly higher values and the Quercus pollen percentage decreases, while the pollen percentage of the wetter Ostrya, the oriental hornbeam, increases. The high pollen concentration during the deposition of sapropel S1 cannot have been caused by increased pollen input into the sea, this pollen being wind-borne, nor by increased pollen production for all taxa, both trees and herbs. We conclude that it is entirely due to increased preservation of this allochtonous organic material by the deep anoxia of the bottom water, below a thick anoxic water column. The coincidence of sapropel deposition with warm and humid local climate as well as with the second global meltwater pulse suggests that the cessation of bottom-water ventilation was due to decreased surface water density, resulting from less saline incoming Atlantic surface water, increased local runoff, and warmer winters.  相似文献   


18.
Results concerning the concentration of cadmium and lead in Mediterranean waters collected during the 2nd PHYCEMED cruise (Oct. 1983) are discussed. Sampling has been performed at seven stations in the Western Mediterranean Basin, two in the Strait of Gibraltar and the near Atlantic, two in the Sicily Strait and the Eastern Basin.In the Western Basin the observations are in fair agreement with those of PHYCEMED 1. Cadmium has a fairly homogeneous distribution vertically as well as from one station to another, with an average concentration of 8 ng l−1; while lead shows a slight but continuous decrease in concentrations with depth (from at least 50 ng l−1 in surface waters to 20 or 25 ng l−1 at depth). On the other hand, at the basin boundaries, where waters from different origins are present, vertical distributions appear very different. On the basis of calculated water budgets it can be estimated that the Mediterranean Sea discharges about 200 t y−1 of cadmium and about 250 t y−1 of lead into the Atlantic Ocean while 1000 t y−1 of lead are transferred from the Western to the Eastern Basin.  相似文献   

19.
The northern slope of the South China Sea is a gas-hydrate-bearing region related to a high deposition rate of organic-rich sediments co-occurring with intense methanogenesis in subseafloor environments.Anaerobic oxidation of methane(AOM) coupled with bacterial sulfate reduction results in the precipitation of solid phase minerals in seepage sediment,including pyrite and gypsum.Abundant aggregates of pyrites and gypsums are observed between the depth of 667 and 850 cm below the seafloor(cmbsf) in the entire core sediment of HS328 from the northern South China Sea.Most pyrites are tubes consisting of framboidal cores and outer crusts.Gypsum aggregates occur as rosettes and spheroids consisting of plates.Some of them grow over pyrite,indicating that gypsum precipitation postdates pyrite formation.The sulfur isotopic values(δ~(34) S) of pyrite vary greatly(from –46.6‰ to –12.3‰ V-CDT) and increase with depth.Thus,the pyrite in the shallow sediments resulted from organoclastic sulfate reduction(OSR) and is influenced by AOM with depth.The relative high abundance and δ~(34) S values of pyrite in sediments at depths from 580 to 810 cmbsf indicate that this interval is the location of a paleo-sulfate methane transition zone(SMTZ).The sulfur isotopic composition of gypsum(from–25‰ to –20.7‰) is much lower than that of the seawater sulfate,indicating the existence of a 34 S-depletion source of sulfur species that most likely are products of the oxidation of pyrites formed in OSR.Pyrite oxidation is controlled by ambient electron acceptors such as MnO_2,iron(Ⅲ) and oxygen driven by the SMTZ location shift to great depths.The δ~(34) S values of gypsum at greater depth are lower than those of the associated pyrite,revealing downward diffusion of 34 S-depleted sulfate from the mixture of oxidation of pyrite derived by OSR and the seawater sulfate.These sulfates also lead to an increase of calcium ions from the dissolution of calcium carbonate mineral,which will be favor to the formation of gypsum.Overall,the mineralogy and sulfur isotopic composition of the pyrite and gypsum suggest variable redox conditions caused by reduced seepage intensities,and the pyrite and gypsum can be a recorder of the intensity evolution of methane seepage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号