首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
利用1961~2010年喀什地区所属喀什市、莎车县、巴楚县、塔什库尔干县等4个代表性站50a的年最大冻土深度、冬季平均气温、极端最低气温、极端最低地温等资料,采用气候趋势系数和气候倾向率方法,对1961年以来喀什地区最大冻土深度变化进行了分析。结果表明,喀什地区平原多年平均最大冻土深度为48.1 cm,年际最大值与最小值深度差为82cm,随年际变化总体呈明显的减小趋势,其变化倾向率为-3.8cm/10a,年代际变化呈阶梯状逐渐减小,冻土深度减小主要受冬季平均气温升高的影响,气温每升高1℃,冻土深度减小7.75 cm;山区多年平均最大冻土深度为148.8cm,年际最大值与最小值深度差为88cm,随年际变化总体呈明显的减小趋势,其变化倾向率为-2.5cm/10a。  相似文献   

2.
利用1961—2010年喀什地区所属喀什市、莎车县、巴楚县、塔什库尔干县等4个代表性站50a的年最大冻土深度、冬季平均气温、极端最低气温、极端最低地温等资料,采用气候趋势系数和气候倾向率方法,对1961年以来喀什地区最大冻土深度变化进行了分析。结果表明,喀什地区平原多年平均最大冻土深度为48.1cm,年际最大值与最小值深度差为82cm,年际变化总体呈明显的减小趋势,其变化倾向率为-3.8cm/10a,年代际变化呈阶梯状逐渐减小,冻土深度减小主要受冬季平均气温升高的影响,气温每升高1℃,冻土深度减小7.75cm;山区多年平均最大冻土深度为148.8cm,年际最大值与最小值深度差为88cm,年际变化总体呈明显的减小趋势,其变化倾向率为-2.5cm/10a。  相似文献   

3.
1961-2007年台安县气候变化特征分析   总被引:4,自引:2,他引:2       下载免费PDF全文
在全球变化背景下,台安县气候变化地域特征明显。本文利用1961—2007年的气候资料,通过气候倾向率和Mann-Kendall检测等方法,研究了台安县气候变化特征。结果表明:近47 a来,台安县气候明显变暖,平均气温以0.34℃/10 a的速度上升,积温净增加约260 ℃或以上,冬季增温对气候变暖的贡献最大,直接导致冬季最大冻土深度以3.6 cm/10 a速度变浅。年降水量出现减少趋势,春、夏季降水量减少比较明显,极端降水日数无变化规律。四季日照时数明显减少,不利于绿色植物的光合作用。近47 a间,除了年平均最高气温和降水量外,平均气温、年日照时数、平均最低气温、最大冻土深度、大于等于10 ℃积温和大于等于0 ℃积温等要素都发生了显著突变,但突变时间存在差异。  相似文献   

4.
近36年德令哈地区气温变化特征及突变分析   总被引:1,自引:0,他引:1  
利用德令哈市国家基本气象站1981—2016年的气温数据资料,运用统计法、气候倾向法和Mann-Kendall检验法分析了德令哈市近36a来气温的变化特征。结果表明:年平均气温以0.478℃/10a的倾向率呈显著的上升趋势;四季平均气温均呈现显著的上升趋势,上升幅度呈现春季冬季夏季秋季的气候特征;平均气温的月变化呈现单峰式特点,7月份平均气温最高,1月份平均气温最低,各月平均气温均呈现上升趋势,4月份平均气温以0.775℃/10a的倾向率上升最快,12月份平均气温以0.197℃/10a的倾向率上升最慢;平均最高气温和最低气温分别以0.534℃/10a和0.495℃/10a的倾向率呈明显的上升趋势;平均气温在1996年发生突变,平均最高气温和平均最低气温均在1997年发生突变,突变后三者气温增温趋势明显。  相似文献   

5.
利用资源县1961~2017年逐日气温观测资料,应用线性倾向估计、t检验及M-K突变检验法对资源县57年冬季气候变暖特征进行了分析。结果表明:近57年资源县冬季、年平均气温上升趋势显著,线性倾向率为0.276、0.19℃/10a,冬季气候变暖趋势明显,对全年气候变暖贡献较大;2月份平均气温显著上升,线性倾向率为0.419℃/10a,对冬季变暖贡献较大;极端最低气温上升趋势更为显著,线性倾向率为0.448℃/10a,对冬季增温影响最显著;冬季平均气温的突变点发生在1996年;20世纪1960~1980年代为冬季低温期,冷冬大多出现在1980年代之前,暖冬1990年代之后呈明显增加趋势。  相似文献   

6.
利用1961-2019年延边州8个气象站的观测数据,采用线性倾向估计、突变分析等方法,研究了延边州农业气候资源的时间变化特征.结果表明:1961-2019年延边州作物生长季(5-9月)平均气温呈显著上升趋势(P<0.01),气候倾向率为0.21℃/10a;平均气温在1997年发生了突变,突变后平均气温较突变前上升了0.8℃;活动积温呈显著上升趋势(P<0.01),气候倾向率为32.5(℃·d)/10a;平均气温和活动积温均在20世纪70年代最低;日照时数呈逐年下降趋势,气候倾向率为-6.7h/10a,在20世纪60年代最高,80年代最低;降水量呈上升趋势变化,气候倾向率为0.68 mm/10a;ET0呈下降趋势变化,气候倾向率为-1.51mm/10a;20世纪90年代降水量最高,ET0最低.  相似文献   

7.
选取河西西部地区及周边14个站点1958-2013年的气温、降水、相对湿度和风速等气象数据,运用多元线性回归模型、反距离加权插值和Mann-Kendall等方法,对其时空变化规律进行了较为系统地分析。结果表明,平均气温呈持续上升趋势,年际倾向率为0. 25℃·(10a)~(-1),以春季增温率最大,突变发生在1989年;空间上呈中部高、南北低的特点。降水量总体在波动中增加,年际倾向率为1.30mm·(10a)~(-1),秋季降水增加的倾向率最大,其突变点不显著;空间分布上西北少、东南多。相对湿度波动中略有增加,年际倾向率为0. 09%·(10a)~(-1),其中春季和夏季呈下降趋势,秋季和冬季则呈上升趋势,同时未发生明显突变;空间上自西向东呈增加趋势。平均风速变化阶段性显著,1985年前后发生明显的减小突变,突变前后均值相差0. 56 m·s~(-1),各季节中冬季突变前后均值差值最大;空间上自北向南逐渐减小。  相似文献   

8.
基于小波和M-K方法的商丘气温时间序列分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用1955-2011年商丘气象站地面逐日气象数据,集成Morlet小波分析法、Mann-Kendall分析法、回归分析法、变异系数等方法,分析商丘气温序列的年、季周期变化特征、突变特征、变化趋势特征及年际变率特征。结果表明:根据回归分析、5 a滑动平均分析,商丘年平均气温呈增加趋势,年际变化倾向率为0.17 ℃/10 a;各季节气温变化趋势差异明显,夏季气温呈下降趋势,年际变化倾向率为-0.08 ℃/10 a,冬春秋季气温呈增加趋势,冬季增温最为显著,冬季气温年际变化倾向率为0.35 ℃/10 a。根据Mann-Kendall分析,年平均气温突变点为1992年,夏季气温不存在明显突变,冬季气温突变点为1986年。根据小波分析,20世纪50-80年代商丘年平均气温存在准17 a周期信号,之后该周期信号消失,80年代和90年代出现准32 a周期信号,在本研究的整个时间序列上存在准5 a和准2 a周期信号,周期信号显示未来几年可能会出现低温年。商丘年平均气温的年际变异系数为0.04,年际变率较小,年际变化较平稳。商丘作为重要的粮食生产基地,集成多种方法的气温变化特征和趋势预测分析,对该区域的农业种植活动具有重要的指导意义。  相似文献   

9.
文章选用1961—2018年内蒙古109个气象站的气温数据,采用线性趋势、Mann-Kendall检验、气候倾向系数等方法,对内蒙古平均气温突变前后的变化特征进行了分析。结果表明:(1)1961—2018年内蒙古年平均气温的增暖趋势非常明显,时间序列在1990年前后发生突变,而且平均气温在突变前、后存在时间变化和空间变化。(2)四季平均气温均呈明显增温趋势,但存在季节差异。春季平均气温的增温速率为0.428℃/10a,高于全年平均水平,突变时间在1996年;夏季平均气温的增温速率为0.312℃/10a,近58a夏季平均气温上升约1.8℃,与其他季节相比突变时间最晚,发生在1998年;秋季平均气温的增温速率最小,为0.297℃/10a,近58a秋季平均气温上升1.7℃,气温突变时间在1989年;冬季平均气温的增温速率最大,为0.463℃/10a,近58a冬季平均气温上升2.7℃。(3)从58a的增温空间分布上看,增温幅度差异明显:突变前的30a里,大部地区年平均气温增温速率在0.20℃/10a以上,其中,赤峰市大部地区的增温趋势不显著,其余地区的年平均气温都是显著或极显著的增温趋势;突变后的28a里,大部分地区的年平均气温增温速率0.10℃/10a和0.20~0.40℃/10a,其中,呼伦贝尔市的大部、赤峰市的大部地区平均气温增温趋势不显著,其余地区都在显著或极显著的增温趋势。  相似文献   

10.
1961—2010年德州市地温变化特征   总被引:3,自引:0,他引:3  
在全球气候变暖的大背景下,研究大气下垫面的地表面温度及深层地温的变化,对工农业生产有重要意义。利用1961—2010年德州市0 cm地面温度,最高温度、地面最低温度4,0 cm和80 cm地温;1980—2010年160 cm和320 cm地温观测数据,采用最小二乘法,探讨了德州市地面及各深层地温的变化趋势特征。结果表明:地面温度及各深层地温均有增温趋势,明显增温主要出现在冬季,夏季多为降温。地面最低温度增温最显著,倾向率为0.47℃/10 a,冬季倾向率最大为0.74℃/10 a;地面最高温度增温最不显著,倾向率为0.15℃/10 a。0 cm地面温度变化倾向率为0.27℃/10 a,夏季降温为-0.04℃/10 a,冬季升温明显为0.51℃/10 a。40 cm和80 cm地温变化倾向率基本一致,明显小于地面温度升温幅度,也小于160 cm和320cm地温升温幅度。  相似文献   

11.
 Meteorological data at 17 weather stations in the Tianshan Mountains from 1959 to 2003 were analyzed to explore the variations in temperature and snow cover. The abrupt change test for snow depth was performed using Mann-Kendall statistic. The spatial distribution of maximum snow depth was calculated by employing GIDS interpolation and DEM data. The results show that mean temperature in winter had a rising trend at a rate of 0.44 ℃/10 a. The minimum temperature in winter increased more evidently at a rate of 0.79 ℃/10 a. The maximum snow depth has obviously deepened at a rate of 1.15 cm/10 a in the past 45 years, and it was about 16% higher than the average during 1991-2003. The Mann-Kendall statistic test of snow depth indicates that the abrupt change occurred in 1976. The maximum increment for snow cover depth occurred in Zhaoshu (Kunes) (39.3%) and Nilka (39.7%) in the west Tianshan Mountains. In contrast, the snow cover depth reduced by 17% in Barkol in the east Tianshan Mountains. There was a primary change periodicity of about 2.8 years in snow cover. In addition, snow cover days with a depth more than 10 cm increased distinctly, however, there was no obvious advance or delay in snow beginning and ending dates.  相似文献   

12.
Mcteorological data at 17 weather stations in the Tianshan Mountains from 1959 to 2003 were analyzed to explore the variations in temperature and snow cover.The abrupt change test for snow depth was performed using Mann-Kendall statistic.The spatial distribution of maximum snow depth was calculated by employing GIDS interpolation and DEM data.The results show that mean temperature in winter had a rising trend at a rate of 0.44℃/10a.The minimum temperature in winter increased more evidently at a rate of 0.79℃/10a.The maximum snow depth has obviously deepened at a rate of 1.15 cm/10 a in the past 45 years,and it was about 16% higher than the average during 1991-2003.The Mann-Kendall statistic test of snow depth indicates that the abrupt change occurred in 1976.The maximum increment for snow cover depth occurred in Zhaoshu(Kunes)(39.3%)and Nilka(39.7%)in the west Tiansban Mountains.In contrast,the snow cover depth reduced by 17% in Barkol in the east Tianshan Mountains.There was a primary change periodicity of about 2.8 years in snow cover.In addition,snow cover days with a depth more than 10 cm increased distinctly,however,there was no obvious advance or delay in snow beginning and ending dates.  相似文献   

13.
1961~2005年西双版纳浅层地温对气候变化的响应   总被引:4,自引:0,他引:4  
蒙桂云  喻彦 《气象科技》2010,38(3):316-320
利用1961~2005年云南景洪0~20 cm各层逐月平均地温,采用气候倾向率、累积距平、信噪比等气候统计方法,研究了近45年西双版纳浅层平均地温的变化趋势、气候突变和异常年份等。结果表明:各年、季浅层平均地温均呈现极显著的升高趋势,升温率为0.14~0.40℃/10a,春季最小,冬季最大,年和春、冬两季表层升温率最大。各浅层平均地温在1980年秋季均发生了突变,冬季突变出现在1978年,以突变点划分,前为冷期,后为暖期,0 cm、15 cm和20 cm年平均地温,突变前只有20 cm年平均地温增温趋势不显著,突变后则相反,只有20 cm年平均地温呈显著的增温趋势,这表明20世纪80年代以来,20 cm地温对气候变暖的响应更强。年平均地温除10 cm外均在1971年异常偏低,各浅层年平均地温2003年均异常偏高。气温升高是影响地温上升的主要原因。  相似文献   

14.
希爽  张志富 《干旱气象》2013,(3):451-456,470
利用1961~2012年中国1400个站点逐日积雪增量、积雪日数和气温稳定通过0℃日数资料,对我国积雪时空变化特征进行了分析研究。结果表明:我国积雪主要分布在新疆北部地区、东北和内蒙古东北部地区及青藏高原地区,年积雪增量均超过50era;在年代际变化中,1991~2000年我国大部分地区积雪增量偏少;在对我国5个区域的趋势分析中,新疆北部地区、东北和内蒙古东北部地区积雪量有显著增加趋势,积雪日数的变化趋势均不显著,气温稳定通过0oC日数均呈显著减少。  相似文献   

15.
1980-2010年丽水市土壤温度变化特征   总被引:3,自引:0,他引:3       下载免费PDF全文
利用1980-2010年丽水市国家气象观测站0-20 cm 的5层土壤温度逐月观测资料,采用气候倾向率、Mann-Kendall检验和气候相关性等气候分析统计方法,分析了丽水市土壤温度的时间变化趋势、气候突变及对气候变化的响应。结果表明:丽水市平均土壤温度呈极显著的增温趋势,升温率为0.18 ℃/10 a,其中冬季增温最明显,月变化特征呈单峰分布。土壤温度随深度的增加变化幅度减小,且在时间变化上有一定的滞后性。Mann-Kendall检验表明,丽水市土壤温度处于稳定增长的趋势,其中2004-2009年各层土壤温度增温最显著,通过0.01的显著性检验。丽水市各层土壤温度的突变点,随着深度的增加有所延后,平均土壤温度在1994-1996年发生突变。丽水市土壤温度对气候变化的响应,表现为与气温呈现显著的正相关,与春夏季降水有明显的负相关。  相似文献   

16.
选取阿尔山气象站1981—2015年冷季(10月—次年4月)气象资料,利用滑动平均、线性倾向估计和Mann-Kendall等方法,对年最大积雪深度、积雪日数、气温和降水量进行分析。结果表明,阿尔山地区年最大积雪深度主要发生在1月至3月,其中2月份概率最大,达50%;34 a内最大积雪深度呈上升趋势(2.77 cm/10a),年平均增加0.98%,且年最大积雪深度在1998年发生了突变,即在1998年之前增长缓慢,在2000年以后上升趋势显著。积雪日数的统计分析表明,初始积雪日数和有效积雪日数呈现略微减少趋势,而稳定积雪日数有微弱的增加趋势;通常初始积雪日数比有效积雪日数大30天左右。年最大积雪深度与稳定积雪时期的降水量、积雪日数、日照时数有显著的相关性,相关系数分别为0.647、0.515、0.584,但与稳定积雪时期的气温没有明显的相关性。在全球变暖的大环境下,积雪深度随着降水量和日照时数的增加而增加,且积雪深度受降水量的影响大于日照时数的影响。  相似文献   

17.
塔城地区积雪变化特征分析   总被引:2,自引:0,他引:2  
利用1961--2005年塔城地区7个气象站,4个水文站实测积雪资料,分析了近45a塔城地区积雪变化特征,得出以下结论:塔城地区积雪时空分布不均,地域差异大,不论是积雪日数、稳定积雪日数、累积积雪深度均以Ⅰ型最多(大),其次为Ⅱ型,Ⅲ型最少(小);近45a和布克赛尔站积雪日数、稳定积雪期显著增多,裕民站积雪日数不显著增多,托里站积雪日数、稳定积雪期呈显著减少,其余各站均呈不显著减少趋势;塔城地区3种类型的积雪对区域气候变化有着不同程度的响应,各站最大积雪深度对冬季降水量的响应较敏感;近45a和布克赛尔站累积积雪深度序列在20世纪60年代末至今发生过一次显著增多的突变,突变点为1969年。  相似文献   

18.
利用青藏高原(下称高原)1961-2014年地面110个气象站积雪深度、积雪日数、气温和降水逐日资料,系统地分析了高原积雪深度和积雪日数时空特征,并进一步探究了高原积雪深度和积雪日数与气候因子和地理因子之间的关系。研究发现:1961-2014年高原年平均积雪深度和积雪日数分别为0.26 cm和23.78 d,空间和季节尺度上分布不均匀,且积雪深度和积雪日数大值并不完全重合;在整体变化趋势上,积雪深度和积雪日数均呈缓慢下降趋势,分别为-0.0080±0.0086 cm·(10a)^-1(p=0.36)和-0.64±0.47 d·(10a)^-1(p=0.17),但在数理统计上不显著,且各站点差异性大;积雪深度和积雪日数在春季、冬季和年表现为“减-增-减”的年代际变化特征,而在秋季为“增-减”的变化特征;气温与积雪深度和积雪日数均有较好的相关性,冬季的降水与积雪深度和积雪日数高度相关;积雪深度和积雪日数随海拔呈增加趋势,积雪日数与纬度也高度相关,但积雪深度与纬度的相关性不明显。  相似文献   

19.
In high altitude areas snow cover duration largely determines the length of the growing season of the vegetation. A sensitivity study of snow cover to various scenarios of temperature and precipitation has been conducted to assess how snow cover and vegetation may respond for a very localized area of the high Swiss Alps (2050–2500 m above sea level). A surface energy balance model has been upgraded to compute snow depth and duration, taking into account solar radiation geometry over complex topography. Plant habitat zones have been defined and 23 species, whose photoperiodic preferences were documented in an earlier study, were grouped into each zone. The sensitivity of snowmelt to a change in mean, minimum and maximum temperature alone and a change in mean temperature combined with a precipitation change of +10% in winter and −10% in summer is investigated. A seasonal increase in the mean temperature of 3 to 5 K reduces snow cover depth and duration by more than a month on average. Snow melts two months earlier in the rock habitat zone with the mean temperature scenario than under current climate conditions. This allows the species in this habitat to flower earlier in a warmer climate, but not all plants are able to adapt to such changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号