首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Analyses of diatoms, ostracods, pollen and sediment mineralogy from a 524 cm core from a stratified, hypersaline crater lake, West Basin, Victoria, has revealed clear shifts in the lake's water balance and chemistry and the region's climate over the last 10 000 years. Diatom and ostracod analyses reveal lake water salinity changes which are consistent with the conditions suitable for the precipitation of the carbonate and other minerals identified using x-ray diffraction analysis. The fluctuations in lake water balance deduced from diatom and ostracod inferred lake salinity suggest that the lake began to fill at the beginning of the Holocene and was saline and shallow. Toward the mid-Holocene the water levels rose and yet the lake remained largely saline. The late Holocene is marked by a return to more shallow but fluctuating, water conditions. Through the whole period, the regional dryland vegetation was dominated by open sclerophyll woodland. Both the lacustrine and regional environments interpreted here are consistent with those from Holocene records elsewhere in the region.This is the fourth in a series of papers published in this issue on the paleolimnology of arid regions. These papers were presented at the Sixth International Palaeolimnology Symposium held 19–21 April, 1993 at the Australian National University, Canberra, Australia. Dr A. R. Chivas served as guest editor for these papers.  相似文献   

2.
The ostracod record from Kajemarum Oasis in the Sahel zone of Northeastern Nigeria covers the last c. 4000 cal. years of a 5500 cal. year lake-sediment sequence. The first appearance of ostracods, around 4000 cal. yr BP, reflects the switch from a very dilute lake during the mid-Holocene, to slightly oligosaline conditions that favoured the occurrence and preservation of ostracods. Between 3800 and 3100 cal. yr BP, the lake remained permanent and fresh or slightly oligosaline, with a Ca-Mg-HCO3 composition. A rise in salinity c. 3100 cal. yr BP, accompanied by a change to more variable conditions on a seasonal to interannual timescale, led to the influx of more-euryhaline taxa. Oligosaline conditions continued between 3100 and 1500 cal. yr BP. Around 1500 cal. yr BP, there was a sharp rise in salinity, probably accompanied by a shift to Na-CO3-type water, with marked seasonal and interannual variability. Salinity decreased after 900 cal. yr BP, although short-term variations were marked between 900 cal. yr BP and the top of the sequence, 95 cal. yr BP. Changes in the species assemblages and ostracod abundance were a response to climate-driven variations in the seasonal and interannual stability of the lake, together with changes in its salinity and solute composition, but there is no simple relationship between ostracod faunas and salinity. Within Kajemarum, there is no evidence of ostracod assemblages typical of deep, fresh water, nor of hypersaline Na-Cl waters. The sediments associated with the freshest waters at Kajemarum did not favour ostracod preservation, and the driest climatic conditions were associated with oligosaline to mesosaline water of Na-CO3-type. The species-poor assemblages reflect the short-term instability of the lake, coupled with the limited opportunities for the colonisation of this isolated basin.  相似文献   

3.
Analysis of the distributions of chironomid (midge) and other dipteran subfossils from two high elevation lake sediment cores in the Cascade Mountains reveals changes in midge communities and inferred climate since the late-glacial. Cabin Lake and 3M Pond are located near treeline in the subalpine Engelmann Spruce/Subalpine Fir biogeoclimatic zone of British Columbia. In Cabin Lake, chironomid head capsule assemblages depict a typical late-glacial community, and three distinct Holocene communities. In Cabin Lake, the late-glacial community is composed of cold-stenothermous taxa dominated by Stictochironomus, Mesocricotopus, Heterotrissocladius, Parakiefferiella nigra, Protanypus and Paracladius, whereas warm water midges are absent or rare, indicating cold conditions. A late-glacial chironomid community was not found in 3M Pond. In both lakes the early Holocene is dominated by a diverse warm-adapted assemblage, corresponding to the warm climatic conditions of the xerothermic period. Cabin Lake's mid-Holocene zone records a decrease in relative abundance of the warm water types and is accompanied by an increase in cold-stenotherms. At 3M Pond this period shows a dramatic loss in diversity of warm-adapted taxa, as the temperate genus Dicrotendipes dominates. This zone corresponds to Hebda's (1995) mesothermic period. Further cooling in the late Holocene (to modern conditions) is inferred from continued reduction of warm water midges and persistence (at Cabin Lake) or appearance (at 3M Pond) of a cold-stenothermal community. This late Holocene cooling is similar in timing to Neoglacial advances in the Coast, Cascade, and Rocky Mountains of southern British Columbia. Similarities in the timing of chironomid and vegetation community changes at these high elevation sites, along with the more rapid response time of the Chironomidae, support the sensitivity of midges to postglacial climatic change at high elevation sites.  相似文献   

4.
A late Holocene palaeolimnological record for central Mexico has been obtained from Lake Pátzcuaro, using recent and fossil ostracods. Lake Pátzcuaro, Michoacán, is a closed-basin lake which responds rapidly to changes in the ratio of precipitation/evaporation in the region. The record from a single lake-sediment core, dated by AMS radiocarbon method, covers the last ~3,530 yrs, and is based on ostracod faunal palaeoecology coupled with analysis of the stable-isotope (18O/16O and 13C/12C) composition of ostracod valves. The faunal distribution is determined by the presence or absence of aquatic vegetation and, to a lesser extent, salinity. The 18O/16O and 13C/12C ratios in ostracod calcite show good agreement with palaeolimnological inferences from the faunal assemblages, principally recording changing precipitation/evaporation and primary-productivity levels, respectively. Wetter conditions existed in central Mexico between approximately ~3,600 and ~2,390 yr BP, between ~1,330 to ~1,120 yr BP, and from ~220 yr BP to present, characterised by fluctuating lake levels. A dilution of the sediment load in the lake reduced turbidity levels allowing for a marked increase in productivity. During these phases, the combination of a deeper lake and increased macrophyte cover reduced the degree of mixing of the waterbody. In the earliest of these phases there was sufficient stratification of the waterbody for methanogenesis to occur in the sediment interstices. The wet phases were separated by prolonged dry periods, during which time the climatic conditions were relatively stable. Good agreement was found between the findings of this study and others from the central Mexican/Caribbean region suggesting that abrupt climate changes occurred at least at a regional scale.  相似文献   

5.
Studies on playas (known locally as inland sabkhat) are rare and lack a focus on their role as geoarchives for Holocene climate and environmental change. We present characteristic sediments and processes that illustrate the change from relatively humid to hyperarid conditions within the sedimentary record of the playa of Tayma (Saudi Arabia). The shift from the Holocene humid period (10–8 ka BP) to the hyperarid conditions of today left traces in this geoarchive. During the humid period, a perennial lake had formed in the playa depression. The occurrence of biota, especially ostracod valves and foraminifer shells, adapted to salinity fluctuations and physiochemical reactions of ostracods and foraminifers testify environmental changes. Phases of lake contraction and high salinities were responsible for the formation of ‘open water’ evaporites, such as aragonite needles, and ooids. Dilution occurred during rain events and flooding of the playa; it is characterised in the sedimentary infill by clastic layers that were deposited in graded sequences. The smooth surface, the phenomenon of microsomia and sieve pore variations of the ostracod valves provide evidence for changing salinities, which are testimony to short lived changes. These processes and further aridisation resulted in the formation of ‘capillary’ evaporites, which are dominated by sulphate minerals. The precipitates undergo fractionation and re-dissolution, which results in a typical stratification of salts with different solubilities.  相似文献   

6.
A 332-cm long lacustrine core was drilled in the Nam Co in the central-southern part of the Tibetan Plateau. From the core, 15 species of ostracods (Crustacea: Ostracoda), which belong to 6 genera have been identified. According to the variations of the ostracod assemblages and the ostracods ecological features, which are sensitive to the changing environment, three main stages can be distinguished as follows: Stage I was from 8400 to 6800 a BP, during which the climate was cold-humid, and the lake depth changed from shallow to deep. Stage II was from 6400 to 2500 a BP, during which the climate changed from warm-humid to cold-humid, and then to cold-dry. The lake depth gradually became deep. The shifting of climate, from wet-cold to dry-cold during this period, had constructed the basis of present environment in the Nam Co. Stage III was from 2500 a BP to the present, which showed a trait of lake depth increasing. At the earlier period of this stage, the climate kept as cold-dry as that in the former stage, but the salinity of the lake increased. At the later period of this stage, the degree of cold-dry was enhanced, and the activities of land surface runoff tended to be weakened. Our research also found that the peak values of ostracods with black shell was coherent with the maximum production of the ostracods, and agreed with the increasing sedimentary water dynamics. This indicated that the ostracods with black shell was simultaneous with the high prolificacy of ostracod, and transported from other places. The abundance of Candona juvenile shells reflected the high mortality of that kind of ostracods under an unfavorable condition. This was probably a result of the rapid change of water dynamics of sedimentary environment.  相似文献   

7.
This paper deals with the investigation of the upper 11.6 m portion of a long drill core (KDP-01) taken from the bottom sediments of Lake Khubsugul. Ostracod species and their assemblages recovered from the core were analyzed. The data are compared with the carbonate and sulfate values obtained from bulk sediment, as well as with the flux of the coarse terrigenous fraction (>200 m) from the same core. Based on the previously calculated depth-age sedimentary model, the oldest age of the core studied here is about 230 ka. The four ostracod species recovered in the core are Cytherissa lacustris, Candona lepnevae, Limnocythere inopinata and Leucocythere sp. According to the distribution of those ostracods, we distinguish four main periods, each of about 50 ka long. Based on the ecological requirements of extant ostracods, two assemblages typifying a low water level and high salinity, on the first hand, and another representing freshwater and high lake level are recognized. The first “high salinity” ostracods correspond to “cold” periods as seen globally, while “freshwater” ostracods are associated with interglacials. Ostracod valves are absent during interglacial optima. This may be due to chemical dissolution of calcium carbonate related to organic matter decay at the initial stages of diagenesis, probably because during interglacials, in contrast to glacials, organic matter flux reaching the lake bottom were significantly higher. The periodicity in the development of ostracod species assemblages follows 17, 24 and 47 ka cycles related to orbital forcing. Its diversity is correlated with summer temperature fluctuations in northern altitudes for the past 230 ka. The maximum in species diversity follows the temperature maxima, by about 1.5 and 2 ka. Overall, the data obtained demonstrate a correlation between climatic changes and variations in specific and quantitative ratios of ostracod species during the last 230 ka.  相似文献   

8.
The CC1 core, with a length of 216 cm, was drilled in the west part of the Chen Co (Lake) in southern Tibet Plateau. The 210Pb and 137Cs measurement indicated that it was a consecutive sedimentary sequence since ca. 1400 years. The ostracoda and their assemblages under the level of 1 cm samples' cutting interval were finished for this core to reveal the past environmental changes in the lake area. A total of 15 species of ostracods belonging to 7 genera in the core sediments had been identified. According to the ostracod distributions, abundances and preservations in the core, seven ostracod assemblages had been distinguished. The ostracod assemblages and their ecological features, together with the sediments dating decision were used to infer the past ca. 1400 years environmental changes of the Chen Co environmental evolutions in three stages, which had responded to the Medieval Ages Warm-period (MAW), the Little Ice Age (LIA) and modern warm period. The results show that the changes of the Chen Co environment had been mainly influenced by the climatic variations. The trend of the lake level fluctuations had been accorded with that of climatic variation during the past 1400 years.  相似文献   

9.
The CC1 core, with a length of 216 cm, was drilled in the west part of the Chen Co (Lake) in southern Tibet Plateau. The210Pb and137Cs measurement indicated that it was a consecutive sedimentary sequence since ca. 1400 years. The ostracoda and their assemblages under the level of 1 cm samples’ cutting interval were finished for this core to reveal the past environmental changes in the lake area. A total of 15 species of ostracods belonging to 7 genera in the core sediments had been identified. According to the ostracod distributions, abundances and preservations in the core, seven ostracod assemblages had been distinguished. The ostracod assemblages and their ecological features, together with the sediments dating decision were used to infer the past ca. 1400 years environmental changes of the Chen Co environmental evolutions in three stages, which had responded to the Medieval Ages Warm-period (MAW), the Little Ice Age (LIA) and modern warm period. The results show that the changes of the Chen Co environment had been mainly influenced by the climatic variations. The trend of the lake level fluctuations had been accorded with that of climatic variation during the past 1400 years.  相似文献   

10.
A 28-cm sediment core from an Arctic pond (Nordaustlandet, Svalbard), which is currently subjected to the fertilizing effect of bird guano, was analysed for fossil invertebrates and the physical properties of the sediment. The objective was to examine aquatic community responses to climate warming. Our record reveals that faunal changes have occurred. Initially chironomid assemblages were dominated by a cold-indicating oligotrophic community but this was replaced by a community typical of more nutrient-enriched conditions and warmer water temperature at around AD 1,700–1,800. After AD 1,800, ostracods and Daphnia increase suggesting that a nutrient enrichment threshold was crossed, probably related to increased planktonic algal productivity. In the early twentieth century, organic content markedly increases and magnetic susceptibility values suddenly drop, indicating a further increase in nutrient input and lake productivity. Since the most likely source of nutrients in the lake is goose guano, this suggests that the size of the bird colony may also have increased over this period. These changes coincide with climate warming suggesting a positive feedback in which climate change is the primary driver of the increasing geese abundance and lake productivity. Our results further suggest that the predicted future warming in the Arctic will continue to have cascading effects on freshwater ecosystems in the region.  相似文献   

11.
Surface sediments, water samples and environmental data from 37 lakes, ponds and streams in Israel were analysed to determine the main variables controlling ostracod species distributions. Multivariate statistical analysis revealed that the greatest amounts of variation in the distribution of the ostracod taxa among the 37 water bodies were explained by the host water δD value (12.9%), water temperature (11.0%), mean January air temperature (10.5%), electrical conductivity (9.5%), and the Mg and NO3 concentrations (7.8 and 7.1%, ion concentrations as % of the anions or cations). A supplementary data set comprising ostracod species composition and electrical conductivity readings for 24 water bodies was available from previous research and was merged with the 37 samples data set to develop an ostracod-based transfer function for the reconstruction of electrical conductivities. A weighted averaging partial least squares regression (WA-PLS) provided the best results with a relatively high coefficient of determination (r 2) between measured and inferred electrical conductivity values of 0.73, a root mean square error of prediction of 0.13 (13.4% of gradient length) and a maximum bias of 0.24 (23.9% of gradient length), as assessed by leave-one-out cross-validation based on 56 water bodies. The application of the EC transfer function onto (sub)fossil ostracod assemblages from Holocene and early to mid Pleistocene lake sediments provided EC values consistent with other proxies and demonstrated that Quaternary ostracod assemblages from subaqueous sediments can now be used to trace the hydrological history of water bodies in the Near East. A better understanding of past hydrological conditions in response to the natural climate variability is crucial in regions that face restricted water resources and rising demands in times of rapid climate and environmental change.  相似文献   

12.
A 332-cm long lacustrine core was drilled in the Nam Co in the central-southern part of the Tibetan Plateau. From the core, 15 species of ostracods (Crustacea: Ostracoda), which belong to 6 genera have been identified. According to the variations of the ostracod assem-blages and the ostracods ecological features, which are sensitive to the changing environ-ment, three main stages can be distinguished as follows: Stage I was from 8400 to 6800 a BP, during which the climate was cold-humid, and the lake depth changed from shallow to deep. Stage II was from 6400 to 2500 a BP, during which the climate changed from warm-humid to cold-humid, and then to cold-dry. The lake depth gradually became deep. The shifting of cli-mate, from wet-cold to dry-cold during this period, had constructed the basis of present en-vironment in the Nam Co. Stage III was from 2500 a BP to the present, which showed a trait of lake depth increasing. At the earlier period of this stage, the climate kept as cold-dry as that in the former stage, but the salinity of the lake increased. At the later period of this stage, the degree of cold-dry was enhanced, and the activities of land surface runoff tended to be weakened. Our research also found that the peak values of ostracods with black shell was coherent with the maximum production of the ostracods, and agreed with the increasing sedimentary water dynamics. This indicated that the ostracods with black shell was simulta-neous with the high prolificacy of ostracod, and transported from other places. The abun-dance of Candona juvenile shells reflected the high mortality of that kind of ostracods under an unfavorable condition. This was probably a result of the rapid change of water dynamics of sedimentary environment.  相似文献   

13.
We used ostracod species assemblages and their δ18O values in a 32-m sediment core from Lake Qinghai, China, along with information from cores collected at other sites in the lake, to infer lake evolution and hydroclimate changes since the last glacial. Dominant ostracod species Ilyocypris bradyi and its low δ18O values showed that Lake Qinghai was small in size or even consisted of several playa lakes, and the 1F core site could have even been in a wetland setting, under cold and dry climate conditions before 15.0 ka. Presence of Limnocythere inopinata with low δ18O values, and absence of I. bradyi after 15.0 ka, indicate the lake area increased or that the playas merged. The decrease or disappearance of ostracods with high δ18O values showed that the lake shrunk under dry climate from 12.0 to 11.6 ka. After 11.6 ka, hydroclimate shifts inferred from ostracod species changes (Eucypris mareotica and L. inopinata) and their δ18O values were as follows: (1) 11.6–7.4 ka—larger, but still small lake area with greater moisture availability under primarily dry climate conditions, (2) 7.4 to 3.2 ka—increasing lake level under a warmer and wetter climate, and (3) 3.2 ka to present—stable, large, brackish lake. The low ratio of lake water volume to runoff, and close proximity of the core site to freshwater input from the river mouth would have resulted in relatively lower ostracod δ18O values when Lake Qinghai was small in area during the interval from 32.0 to 15.0 ka. Lower ostracod δ18O values during interstadials and throughout the entire Last Glacial Maximum and early deglacial (ca. 24.0–16.0 ka) were caused by a greater contribution of seasonal meltwater from ice or snow and low incoming precipitation δ18O values related to cold climate conditions in the region at that time.  相似文献   

14.
The fossil ostracod associations from a radiocarbon dated sediment core (15.3–0 cal kyr) of the high altitude (4,527 m a.s.l.) hyperhaline Tso Kar lake in North India reveal changes in ostracod species abundances and composition. These document the process of lake formation and ongoing desiccation during the latest quaternary and broadly confirm the results of previous geochemical, geomorphological and pollen analysis. The most striking feature of the core record is a period of freshwater conditions between 9.0 and 6.5 cal kyr BP, as calculated by means of an ostracod-based conductivity transfer function. This early- to mid-Holocene interval of the core correlates with similar ostracod assemblages (Cytherissa lacustrisCandona candidaEucypris afghanistanensis) of an outcrop section at the basin margin, about 98 m above the modern lake level and marks the highest lake level under the influence of an intensified Indian Summer Monsoon. After 6.5 cal kyr BP, Limnocythere inopinata is the sole representative of the ostracod fauna in the sediment core, which suggests rising salinity conditions most probably due to lake shallowing. From 3.2 cal kyr BP to present, the near absence of ostracods in the core Tk106 is most likely a consequence of salinisation of the lake towards the hyperhaline conditions that are realised at present. Although the modern morphology and physico-chemical properties of Tso Kar lake are in contrast to the past lake conditions, most of the ostracod species, except for Limnocythere mirabilis found in the sediment core, are also identified from surface sediment and outcrop samples. In contrast, Heterocypris salina and Eucypris dulcifons are widespread in the shallow surface waters with a total dissolved solids content ranging from 0.6 to 15.0 g L?1, but are excluded from the core record and outcrop strata. At a basinal scale, the lake shrinkage and segregation into the Tso Kar and hydrologically open freshwater lake Startsapuk Tso have forced diversification of ostracod taxa, probably as an effect of the emergence of new ecological niches under enhanced “environmental pressure”.  相似文献   

15.
Transects of surface sediment samples were taken in 4 lakes from the Sylvania Wilderness Area, Upper Peninsula of Michigan. These surface samples were compared with diatom samples from a core taken in the Northwest basin of Crooked Lake, also from the Sylvania Wilderness Area. Weighted Averaging calibration was used to reconstruct lake depths in Crooked Lake using the diatom microfossils from the core and the surface samples to infer past lake depth. During the early Holocene the lake was dominated by planktonic species and diatom-inferred water depth was large – approx. 13 m. At about 6700 BP inferred water depth was 2 m and samples were dominated by Fragilaria construens var. venter – a species characteristic of shallow parts of the surface sample transects. From 6700 to 5000 BP reconstructed water level was at its shallowest. From 5000 to 3000 BP it increased. This rise in water level was marked by increasing abundances of Aulacoseira ambigua and occurred at the same time increasing percentages of hemlock pollen indicate increasing available moisture. Modern water depth was reached about 3000 BP. The water level changes at Crooked Lake are consistent with regional climate changes in the Upper Midwest during the Holocene. The lake was shallowest during the mid-Holocene warm period documented by other investigators. It deepened as the Midwestern climate became cooler and wetter during the late Holocene.  相似文献   

16.
The Holocene sedimentary diatom record from Otasan Lake, Alberta, has been analyzed to determine the development of this presently slightly acidic lake. The changes in the lake have been linked to the development of the Sphagnum-dominated catchment. Analysis of the stratigraphic data revealed four distinct zones. The lake record began ca. 8200 yrs BP with a benthic and alkaline diatom assemblage dominated by Ellerbeckia arenaria (Moore) Crawford. At ca. 7300 yrs BP planktonic species began to increase and dominate indicating increased water levels, decreased turbidity, and increased nutrient levels. Throughout the Holocene the peatland in the catchment encroached toward the modern lake margin and by ca. 5000 yrs BP lake acidity had changed sufficiently such that acidic diatom species dominated. Tabellaria flocculosa (Roth) Kütz.v. flocculosa Strain IIIp sensu Koppen dominated the record from ca. 5000 to ca. 3100 yrs BP. The lowest lake water pH was inferred for this zone. From ca. 3100 yrs BP to the present Fragilaria species, primarily F. construens v. venter (Ehr.) Hustedt, dominated the diatom assemblage. Diatom productivity and inferred pH were interpreted as stable. From correspondence analysis of the fossil samples, and from species assemblages, underlying gradients of pH, nutrient level, and water depth were inferred. The change from alkaline to slightly acidic conditions took place between ca. 8200 and ca. 5000 yrs BP. From ca. 3000 yrs BP to the present, lake water pH has remained fairly constant. Nutrient levels and water depth were inferred to have altered together. After ca. 8200 yrs BP, nutrients and water level began to increase until ca. 6000 yrs BP. Then, there was a gradual decline in these variables over the most acidic zone until ca. 3000 yrs BP, after which they, too, have remained fairly constant. Dominant Boreal Upland Vegetation was established by ca. 7200 yrs BP, and it was inferred that dominant climate patterns had been established at that time, but small changes in climate have occurred and the landscape in northeastern Alberta has only been stable for the last 3000 years.  相似文献   

17.
The closed Tangra Yumco Basin underwent the strongest Quaternary lake-level changes so far recorded on the Tibetan Plateau. It was hitherto unknown what effect this had on local Holocene vegetation development. A 3.6-m sediment core from a recessional lake terrace at 4,700 m a.s.l., 160 m above the present lake level of Tangra Yumco, was studied to reconstruct Holocene flooding phases (sedimentology and ostracod analyses), vegetation dynamics and human influence (palynology, charcoal and coprophilous fungi analyses). Peat at the base of the profile proves lake level was below 4,700 m a.s.l. during the Pleistocene/Holocene transition. A deep-lake phase started after 11 cal ka BP, but the ostracod record indicates the level was not higher than ~4,720 m a.s.l. (180 m above present) and decreased gradually after the early Holocene maximum. Additional sediment ages from the basin suggest recession of Tangra Yumco from the coring site after 2.6 cal ka BP, with a shallow local lake persisting at the site until ~1 cal ka BP. The final peat formation indicates drier conditions thereafter. Persistence of Artemisia steppe during the Holocene lake high-stand resembles palynological records from west Tibet that indicate early Holocene aridity, in spite of high lake levels that may have resulted from meltwater input. Yet pollen assemblages indicate humidity closer to that of present potential forest areas near Lhasa, with 500–600 mm annual precipitation. Thus, the early mid-Holocene humidity was sufficient to sustain at least juniper forest, but Artemisia dominance persisted as a consequence of a combination of environmental disturbances such as (1) strong early Holocene climate fluctuations, (2) inundation of habitats suitable for forest, (3) extensive water surfaces that served as barriers to terrestrial diaspore transport from refuge areas, (4) strong erosion that denuded the non-flooded upper slopes and (5) increasing human influence since the late glacial.  相似文献   

18.
Many freshwater resources receive materials from human development causing a decrease in ecological services when compared to pre-disturbance periods. As a result, the understanding of eutrophication and limnological change has increased, but less attention has been given to systems under intense human impact that have not eutrophied so that drivers precluding eutrophication can be documented. The primary objective of this research was to reconstruct allochthonous inputs and in-lake processes for Long Pond, Georgia, USA from the mid Holocene to present and link them to primary producer community changes. Long Pond is a mesotrophic lake located in a highly altered watershed from agricultural and municipal land use and housing developments. A 5 m sediment core was collected from Long Pond, and organic matter, nutrients (C, N, P), metals (Al, Fe, Cu), and photosynthetic pigments were measured. Long Pond existed in three limnological states spanning the past ~6000 years. Prior to modern lacustrine conditions, Long Pond was a wetland/peat system that experienced the highest primary producer abundance recorded in the core. The modern lacustrine state began in the late Holocene and was characterized by increased connectivity with the surrounding watershed and low productivity. Human impacts began around 1900 AD and included high levels of phosphorus and metal deposition but moderate levels of primary producer abundance. As a result, in-lake dynamics are believed to be regulating the trophic status of Long Pond. Low concentrations of available phosphorus in the water column combined with high concentrations of sedimentary phosphorus may imply the binding of phosphorus to the sediments by certain materials such as aluminum and iron. Long Pond serves as an example of the complex in-lake processes that can occur from allochthonous inputs and autochthonous responses in lake systems thus complicating management decisions.  相似文献   

19.
We investigated oxygen and carbon isotopes of bulk carbonate and of benthic freshwater ostracods (Candona candida) in a sediment core of Lago Piccolo di Avigliana that was previously analyzed for pollen and loss-on-ignition, in order to reconstruct environmental changes during the late glacial and early Holocene. The depth–age relationship of the sediment core was established using 14 AMS 14C dates and the Laacher See Tephra. While stable isotopes of bulk carbonates may have been affected by detrital input and, therefore, only indirectly reflect climatic changes, isotopes measured on ostracod shells provide unambiguous evidence for major environmental changes. Oxygen isotope ratios of ostracod shells (δ18OC) increased by ~6‰ at the onset of the Bølling (~14,650 cal BP) and were ~2‰ lower during the Younger Dryas (~12,850 to 11,650 cal BP), indicating a temporal pattern of climate changes similar to the North Atlantic region. However, in contrast to records in that region, δ18OC gradually decreased during the early Holocene, suggesting that compared to the Younger Dryas more humid conditions occurred and that the lake received gradually increasing input of 18O-depleted groundwater or river water.  相似文献   

20.
We established the relationships between water chemistry changes in a pool fed by a permanent spring and seasonal variations in trace-element contents (Sr & Mg) in the shells of the ostracod species Herpetocypris intermedia, based on monthly collections of ostracod and water samples. The water chemistry of the investigated pool (Maïques, Valëncia, Spain) was dominated by calcium and bicarbonate, and showed marked seasonal variation in alkalinity, Ca2+ content, Sr/Ca and Mg/Ca ratios. Although the variability in the water chemistry was relatively low (~10% relative standard deviation over the entire period), the trace-element contents in the ostracod shells tracked the seasonal change in the water chemistry of Maïques pool. Moreover, due to the rapid renewal of H. intermedia population, this species is able torecord in its shells the evolution of the water chemistry at a monthly time scale. Our results also showed that, in the Maïques pool system, ostracod Sr/Ca and Mg/Ca ratios increased with the decrease in water salinity.To our knowledge, this is the first geochemical study of ostracods dwelling in spring environments. The results of this study may be applied to paleohydrological reconstruction using ostracods preserved in sediments deposited around springs (i.e. travertine and tufa deposits).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号