首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The utility of ostracod-based palaeoenvironmental reconstruction was evaluated using instrumental data for Lake Qarun, Egypt. The euryhaline ostracod Cyprideis torosa was the only species found in the lake’s recent sediment record. This species is known to tolerate salinity levels and water solute compositions that may prevent colonisation by other species. Oxygen and carbon isotope ratios of ostracod carbonate from lake sediments covary with changes in instrumental values for lake level and salinity for the period 1890–1974. δ13C-values correlate negatively with lake water salinity (r 2 = 0.87) and δ18O-values correlate negatively with measured lake level changes (r 2 = 0.41). Other ostracod proxy data provide qualitative information on lake level trends. Fossil assemblage data (juvenile/adult and valve/carapace ratios and valve preservation) provide information on wave energy. Ecophenotypic variation of C. torosa valves provided some useful palaeolimnological information. Sr/Ca and Mg/Ca ratios in ostracods were not found to reflect water composition, due to the uncoupling of these ratios with salinity in Lake Qarun. Overall, our results highlight the need to calibrate ostracod proxy data in modern systems prior to their use for palaeoenvironmental reconstruction.  相似文献   

2.
Two assemblages typify the ostracod fauna of a 9.23 meter core taken from Wallywash Great Pond, a small perennial freshwater marl lake in Jamaica. The first, dominated by Cypretta brevisaepta, lived in deep water, similar to present-day conditions. The second, dominated by Candonopsis sp., reflects the existence of a shallower lake. The core has a basal date of c. 125 kaBP. Four inferred deep-water phases occurred in the period 125–93.5 kaBP with periods of inferred shallower water in between. The lake was dry between 93.5 kaBP and c. 10 kaBP as suggested by the absence of ostracods or fossils of other aquatic organisms. Ostracod faunal evidence indicates that there have been three highstands and two lowstands of the lake during the Holocene, although ostracods are not preserved in the organic mud and lignite that formed under swampy conditions as the basin filled at the start of the Holocene and during part of the two subsequent lowstands of the lake. A major hydrological perturbation, associated with the flooding of the nearby Black River catchment around 1.2 kaBP, caused an increase in the ostracod species diversity of the Great Pond, although this was relatively short lived and the lake attained a faunal composition similar to present around 1 kaBP. Major variations in ostracod assemblages in the core thus represent lake-level changes and accord well with previously-published interpretations of water depth based on lithofacies variation and stable oxygen isotope ratios in authigenic carbonates.  相似文献   

3.
4.
Transects of surface sediment samples were taken in 4 lakes from the Sylvania Wilderness Area, Upper Peninsula of Michigan. These surface samples were compared with diatom samples from a core taken in the Northwest basin of Crooked Lake, also from the Sylvania Wilderness Area. Weighted Averaging calibration was used to reconstruct lake depths in Crooked Lake using the diatom microfossils from the core and the surface samples to infer past lake depth. During the early Holocene the lake was dominated by planktonic species and diatom-inferred water depth was large – approx. 13 m. At about 6700 BP inferred water depth was 2 m and samples were dominated by Fragilaria construens var. venter – a species characteristic of shallow parts of the surface sample transects. From 6700 to 5000 BP reconstructed water level was at its shallowest. From 5000 to 3000 BP it increased. This rise in water level was marked by increasing abundances of Aulacoseira ambigua and occurred at the same time increasing percentages of hemlock pollen indicate increasing available moisture. Modern water depth was reached about 3000 BP. The water level changes at Crooked Lake are consistent with regional climate changes in the Upper Midwest during the Holocene. The lake was shallowest during the mid-Holocene warm period documented by other investigators. It deepened as the Midwestern climate became cooler and wetter during the late Holocene.  相似文献   

5.
While palaeohydrological changes in non-outlet lakes provide a key proxy indicator of past climatic fluctuations, for lake systems which have been chemically insensitive, it is necessary to use indicators of water depth rather than salinity to reconstruct their hydro- climatic histories. A study of diatoms in the modern sediments of Sidi Ali, a non-outlet lake in the Middle Atlas of Morocco, has shown a statistically significant correlation between water depth and the ratio of planktonic to littoral diatoms. This relationship is used to calibrate fossil diatom assemblages from a lake sediment core from the same lake to provide a quantitative index of water levels over the pastc. 6500 years. Palaeoecological evidence suggests that climatically induced hydrological variations have dominated the bulk of the mid-late Holocene lake sediment record, with significant human-induced catchment disturbance only occurring during the twentieth century. The pattern of water depth fluctuations suggests that the response time of the regional groundwater system to climatic forcing is <100 years.This is the third in a series of papers published in this issue on the paleolimnology of arid regions. These papers were presented at the Sixth International Palaeolimnology Symposium held 19–21 April, 1993 at the Australian National University, Canberra, Australia. Dr A. R. Chivas served as guest editor for these papers.  相似文献   

6.
The closed Tangra Yumco Basin underwent the strongest Quaternary lake-level changes so far recorded on the Tibetan Plateau. It was hitherto unknown what effect this had on local Holocene vegetation development. A 3.6-m sediment core from a recessional lake terrace at 4,700 m a.s.l., 160 m above the present lake level of Tangra Yumco, was studied to reconstruct Holocene flooding phases (sedimentology and ostracod analyses), vegetation dynamics and human influence (palynology, charcoal and coprophilous fungi analyses). Peat at the base of the profile proves lake level was below 4,700 m a.s.l. during the Pleistocene/Holocene transition. A deep-lake phase started after 11 cal ka BP, but the ostracod record indicates the level was not higher than ~4,720 m a.s.l. (180 m above present) and decreased gradually after the early Holocene maximum. Additional sediment ages from the basin suggest recession of Tangra Yumco from the coring site after 2.6 cal ka BP, with a shallow local lake persisting at the site until ~1 cal ka BP. The final peat formation indicates drier conditions thereafter. Persistence of Artemisia steppe during the Holocene lake high-stand resembles palynological records from west Tibet that indicate early Holocene aridity, in spite of high lake levels that may have resulted from meltwater input. Yet pollen assemblages indicate humidity closer to that of present potential forest areas near Lhasa, with 500–600 mm annual precipitation. Thus, the early mid-Holocene humidity was sufficient to sustain at least juniper forest, but Artemisia dominance persisted as a consequence of a combination of environmental disturbances such as (1) strong early Holocene climate fluctuations, (2) inundation of habitats suitable for forest, (3) extensive water surfaces that served as barriers to terrestrial diaspore transport from refuge areas, (4) strong erosion that denuded the non-flooded upper slopes and (5) increasing human influence since the late glacial.  相似文献   

7.
The ostracod record from Kajemarum Oasis in the Sahel zone of Northeastern Nigeria covers the last c. 4000 cal. years of a 5500 cal. year lake-sediment sequence. The first appearance of ostracods, around 4000 cal. yr BP, reflects the switch from a very dilute lake during the mid-Holocene, to slightly oligosaline conditions that favoured the occurrence and preservation of ostracods. Between 3800 and 3100 cal. yr BP, the lake remained permanent and fresh or slightly oligosaline, with a Ca-Mg-HCO3 composition. A rise in salinity c. 3100 cal. yr BP, accompanied by a change to more variable conditions on a seasonal to interannual timescale, led to the influx of more-euryhaline taxa. Oligosaline conditions continued between 3100 and 1500 cal. yr BP. Around 1500 cal. yr BP, there was a sharp rise in salinity, probably accompanied by a shift to Na-CO3-type water, with marked seasonal and interannual variability. Salinity decreased after 900 cal. yr BP, although short-term variations were marked between 900 cal. yr BP and the top of the sequence, 95 cal. yr BP. Changes in the species assemblages and ostracod abundance were a response to climate-driven variations in the seasonal and interannual stability of the lake, together with changes in its salinity and solute composition, but there is no simple relationship between ostracod faunas and salinity. Within Kajemarum, there is no evidence of ostracod assemblages typical of deep, fresh water, nor of hypersaline Na-Cl waters. The sediments associated with the freshest waters at Kajemarum did not favour ostracod preservation, and the driest climatic conditions were associated with oligosaline to mesosaline water of Na-CO3-type. The species-poor assemblages reflect the short-term instability of the lake, coupled with the limited opportunities for the colonisation of this isolated basin.  相似文献   

8.
A late Holocene palaeolimnological record for central Mexico has been obtained from Lake Pátzcuaro, using recent and fossil ostracods. Lake Pátzcuaro, Michoacán, is a closed-basin lake which responds rapidly to changes in the ratio of precipitation/evaporation in the region. The record from a single lake-sediment core, dated by AMS radiocarbon method, covers the last ~3,530 yrs, and is based on ostracod faunal palaeoecology coupled with analysis of the stable-isotope (18O/16O and 13C/12C) composition of ostracod valves. The faunal distribution is determined by the presence or absence of aquatic vegetation and, to a lesser extent, salinity. The 18O/16O and 13C/12C ratios in ostracod calcite show good agreement with palaeolimnological inferences from the faunal assemblages, principally recording changing precipitation/evaporation and primary-productivity levels, respectively. Wetter conditions existed in central Mexico between approximately ~3,600 and ~2,390 yr BP, between ~1,330 to ~1,120 yr BP, and from ~220 yr BP to present, characterised by fluctuating lake levels. A dilution of the sediment load in the lake reduced turbidity levels allowing for a marked increase in productivity. During these phases, the combination of a deeper lake and increased macrophyte cover reduced the degree of mixing of the waterbody. In the earliest of these phases there was sufficient stratification of the waterbody for methanogenesis to occur in the sediment interstices. The wet phases were separated by prolonged dry periods, during which time the climatic conditions were relatively stable. Good agreement was found between the findings of this study and others from the central Mexican/Caribbean region suggesting that abrupt climate changes occurred at least at a regional scale.  相似文献   

9.
湖相介形虫古生态学在环境变化研究中的应用   总被引:10,自引:1,他引:10       下载免费PDF全文
李军  余俊清 《盐湖研究》2002,10(1):66-71
湖泊的水文状况和水化学条件 ,特别是盐度、离子组成、温度及深度等不仅对介形虫种属的分类、组合、丰度及分异度 ,而且对介形虫壳体的大小、形态、结构、壳饰及厚度也起着重要的控制作用。湖相介形虫的古生态学 ,可以提供重要的环境变化信息 ,近年来在环境变化研究中得到越来越广泛的应用。为了满足高分辨率环境变化 ,特别是定量研究的要求 ,必须了解介形虫的种属分类知识 ,掌握盐度和离子组成对介形虫种属变化的影响 ;必须了解介形虫种属的生命历史和生态消长的过程 ,积累介形虫种属的生态资料 ;通过定期收集野外介壳和水样分别进行种属鉴定和化学分析 ,了解湖水的盐度和温度对介壳生态特征的影响。  相似文献   

10.
We analyzed pollen, non-pollen palynomorphs (NPPs), calcareous microfossils, plant macrofossils, diatoms, chrysophyte cysts, opal phytoliths and organic matter content in a 123-cm sediment sequence from Nahuel Rucá Lake, a shallow, freshwater system in the southeastern Pampa grasslands, Argentina. Three stages in the lake evolution were identified. Before 3,680 cal year BP, only pollen, NPPs (dinoflagellate cysts and acritarchs) and ostracods were recovered, suggesting brackish/saline conditions in the lake and nearby areas. Freshwater conditions are, however, indicated by Myriophyllum, Pediastrum and Zygnemataceae. The brackish/saline conditions could have been caused by marine influence during a Holocene sea level high stand that affected the area ca. 6,000 year BP. Between 3,680 and 390 cal year BP, macrophyte pollen and plant macrofossils indicate increasingly freshwater conditions in the lake and the adjacent area. Diatom and ostracod assemblages, however, suggest brackish and oligotrophic conditions, giving way to freshwater and meso-eutrophic conditions toward the end of this period. The relationship between submersed macrophytes (Myriophyllum, Potamogeton, Ceratophyllum, Chara) and planktonic algae (Chlorophyta and diatoms), suggests a shift in the lake from a clear to a turbid state. This turbid state is more evident after 390 cal year BP. High values of Pediastrum, Scenedesmus and diatoms (Cyclotella meneghiniana, Aulacoseira granulata, A. muzzanensis) observed during this stage could have reduced light penetration, with consequent loss of submersed plants. Pollen and plant macrofossils in the uppermost 20 cm indicate a shallow, freshwater lake similar to present, though an increase in brackish/freshwater diatoms suggests an increase in salinity, perhaps related to periodic droughts. Opal phytoliths yield a regional paleoclimatic reconstruction that agrees closely with inferences made using pollen, mammals and sediment characteristics.  相似文献   

11.
Stable isotopes and trace elements in ostracod shells have been used widely in paleolimnological investigations of past lake hydrochemistry and climate because they provide insights into past water balance and solute evolution of lakes. Regional differences in lake characteristics and species-specific element fractionation, however, do not permit generalization of results from other regions or ostracod species to the southern Tibetan Plateau, in part because most common taxa from the southern Tibetan Plateau are endemic to the area. This study evaluated relations between present-day environmental conditions and the geochemical composition of modern ostracod shells from the southern Tibetan Plateau, to assess the suitability of using shell chemistry to infer hydrological conditions. We studied nine lakes and their catchments, located along a west–east transect in the south-central part of the Tibetan Plateau. Stable oxygen and carbon isotope values and trace element concentrations in recent shells from the four most abundant ostracod species (Leucocytherella sinensis, ?Leucocythere dorsotuberosa, Limnocythere inopinata, Tonnacypris gyirongensis) were measured, together with hydrochemical properties of host waters at the time of sampling. Results revealed significant between-species differences in stable isotope fractionation and trace element incorporation into shell calcite. Stable oxygen and carbon isotope values of ostracod shells were correlated significantly with the stable isotope composition of the respective water body \( \left( {\updelta^{18} {\text{O}}_{{{\text{H}}_{ 2} {\text{O}}}} \,{\text{and }}\updelta^{13} {\text{C}}_{{{\text{H}}_{ 2} {\text{O}}}} } \right) \), reflecting salinity and productivity, respectively. Offsets between δ18Oshell and δ13Cshell and inorganic calcite, the latter representing isotopic equilibrium, suggest shell formation of T. gyirongensis during spring melt. L. sinensis reproduces throughout the monsoon season until September and shows several consecutive generations, and L. inopinata molts to the adult stage after the monsoon season in August/September. The influence of pore water δ13C was displayed by L. inopinata, suggesting shell calcification within the sediment. Mg/Cashell is primarily influenced by water Mg/Ca ratios and salinity and confirms the use of this shell ratio as a proxy for precipitation-evaporation balance and lake level. In addition, Sr/Ca and Ba/Ca can be used to infer changes in salinity, at least in closed-basin lakes with calcite saturation. Observed effects of water Sr/Ca and salinity on Sr/Ca incorporation are biased by the presence of aragonite precipitation in the lakes, which removes bioavailable Sr from the host water, resulting in low Sr/Cashell values. Changes in carbonate mineralogy affect the bioavailability of trace elements, a process that should be considered in paleoclimate reconstructions. Oxygen isotopes and Mg/Cashell ratios were unaffected by water temperature. Positive correlations among Fe/Ca, Mn/Ca and U/Ca in ostracod shells, and their negative correlation with δ13C, which reflects organic matter decay, show the potential to infer changes in redox conditions that can be used to reconstruct past oxygen supply to bottom waters and thus past water-circulation changes within lakes. The intensity of microbial activity, associated with organic matter decomposition, can be inferred from U/Ca ratios in ostracod shells. These findings highlight the value of fossil ostracod records in lake deposits for inferring paleoenvironmental conditions on the southern Tibetan Plateau.  相似文献   

12.
Studies on playas (known locally as inland sabkhat) are rare and lack a focus on their role as geoarchives for Holocene climate and environmental change. We present characteristic sediments and processes that illustrate the change from relatively humid to hyperarid conditions within the sedimentary record of the playa of Tayma (Saudi Arabia). The shift from the Holocene humid period (10–8 ka BP) to the hyperarid conditions of today left traces in this geoarchive. During the humid period, a perennial lake had formed in the playa depression. The occurrence of biota, especially ostracod valves and foraminifer shells, adapted to salinity fluctuations and physiochemical reactions of ostracods and foraminifers testify environmental changes. Phases of lake contraction and high salinities were responsible for the formation of ‘open water’ evaporites, such as aragonite needles, and ooids. Dilution occurred during rain events and flooding of the playa; it is characterised in the sedimentary infill by clastic layers that were deposited in graded sequences. The smooth surface, the phenomenon of microsomia and sieve pore variations of the ostracod valves provide evidence for changing salinities, which are testimony to short lived changes. These processes and further aridisation resulted in the formation of ‘capillary’ evaporites, which are dominated by sulphate minerals. The precipitates undergo fractionation and re-dissolution, which results in a typical stratification of salts with different solubilities.  相似文献   

13.
A reconstruction of the hydrological and environmental evolution of the crater lake at Malha (Northern Darfur, Sudan) resulted from the mineralogical and biological study of a 9.21 m section of lake sediments, representing an uninterrupted sequence of lacustrine deposition since 8 290 14C years BP.Important changes in water supply and conditions of sedimentation are reflected in the nature of the sediments and the morphology and stratigraphical distribution of various salt minerals. Additional information on lake circulation patterns and salinity conditions are obtained from associated benthic paleocommunities, represented by ostracods and dipterid larvae. Combining both lines of evidence, the studied sequence can be divided in six distinct sections, which correspond to six successive periods in the lake's Holocene history. The first three periods, generally characterized by high lake levels, represent three generations of a meromictic lake, two of which have ended with a complete desiccation of the lake basin. Meromixis was stable during Period I, due to wind shelter and pronounced density stratification. In the course of Periods II and III stratification was repeatedly interrupted. During Period II, the disruptions were accompanied by important water budget fluctuations; a superimposed gradual decrease in net water supply eventually resulted in holomictic conditions terminating this period. Evidence of turbulence periodically affecting profundal waters is recorded in the sediments of Period III, suggesting that disruptions of stratification were now initiated by very strong winds. Between Period I and Period III, the littoral mixolimnion gradually evolved from near fresh to mesosaline. In Periods IV to VI, lake level was intermediate to low. The lake was holomictic for most of the time and meso- to hypersaline; during Period V, it repeatedly shrunk to a shallow brine pool.The Holocene evolution of Malha Crater Lake illustrates the progressive increase in aridity over most of North Africa following a well-established, early- to mid-Holocene major humid episode. The uninterrupted sedimentary sequence lends itself for detailed reconstruction of Holocene climatic evolution in arid Northeast Africa, a region where records of continuous lacustrine deposition are extremely scarce. As the chronology of critical events in the lake's history remains as yet unsupported by radiocarbon dates, correlation with other Holocene sequences in the eastern Sahara is highly tentative at this point.  相似文献   

14.
The last 42,000 years of hydrological history of Lake Frome, a large playa located in the arid part of northern South Australia, which is hypersaline and most often dry today, is reconstructed using a combination of ostracod assemblages, other microfossil remains, and the trace elemental composition of the selected halobiont ostracod species of Diacypris and Reticypris.The Mg/Ca and Sr/Ca of ostracod valves from 2 cores relate to significant hydrological changes that affected the lake over time. The reconstruction of the Sr/Ca of the lake’s waters, based on the Sr/Ca of ostracod shells, shows that when the lake fills the waters originate mostly from runoff, not from hypersaline waters located below the lake or the surrounding aquifers. The Last Glacial Maximum saw gypsum deflation from the lake.Prior to 25K yBP, Frome had a stable hydrological regime, permanent water and low salinities, with occasional freshwater conditions between 42 and 33K yBP. From 25 to 20.3K yBP, salinities fluctuated and ephemeral conditions operated. After that, until ∼14.8K yBP, a brine pool was located below the lake and was therefore under a different hydrological regime. Between 13 and 11.2K yBP, wet conditions occurred, but such conditions were not seen again during the Holocene.  相似文献   

15.
The water chemistry of lake systems on the edge of the Antarctic continent responds quickly to changes in the moisture balance. This is expressed as increasing salinity and decreasing lake water level during dry periods, and the opposite during wet periods. The diatom composition of the lakes also changes with these fluctuations in salinity and lake water depth. This is important, as their siliceous remains become incorporated into lake sediments and can provide long-term records of past salinity using transfer functions. In order to develop transfer functions, diatoms and water chemistry data were inter-calibrated from five different East Antarctic oases, namely the Larsemann Hills, the Bølingen Islands, the Vestfold Hills, the Rauer Islands and the Windmill Islands. Results indicate that salinity is the most important environmental variable explaining the variance in the diatom flora in East Antarctic lakes. In oligo- saline lakes the variance is mainly explained by lake water depth. This dataset was used to construct a weighted averaging transfer function for salinity in order to infer historical changes in the moisture balance. This model has a jack-knifed r2 of 0.83 and a RMSEP of 0.31. The disadvantage of this transfer function is that salinity changes in oligo-saline lakes are reconstructed inaccurately due to the edge effect and due to the low species turnover along the salinity gradient at its lower end. In order to infer changes in the moisture balance in these lakes, a second transfer function using weighted averaging partial least squares (with two components) for depth was constructed. This model has a jack-knifed r2 of 0.76 and a RMSEP of 0.22. Both transfer functions can be used to infer climate driven changes in the moisture balance in lake sediment cores from oligo-, hypo-, meso- and hyper-saline lakes in East Antarctic oases between 102–75°E. The transfer function for lake water depth is promising to track trends in the moisture balance of small freshwater lakes, where changes in shallow and deep-water sediments are readily reflected in changing diatom composition.  相似文献   

16.
The fossil ostracod associations from a radiocarbon dated sediment core (15.3–0 cal kyr) of the high altitude (4,527 m a.s.l.) hyperhaline Tso Kar lake in North India reveal changes in ostracod species abundances and composition. These document the process of lake formation and ongoing desiccation during the latest quaternary and broadly confirm the results of previous geochemical, geomorphological and pollen analysis. The most striking feature of the core record is a period of freshwater conditions between 9.0 and 6.5 cal kyr BP, as calculated by means of an ostracod-based conductivity transfer function. This early- to mid-Holocene interval of the core correlates with similar ostracod assemblages (Cytherissa lacustrisCandona candidaEucypris afghanistanensis) of an outcrop section at the basin margin, about 98 m above the modern lake level and marks the highest lake level under the influence of an intensified Indian Summer Monsoon. After 6.5 cal kyr BP, Limnocythere inopinata is the sole representative of the ostracod fauna in the sediment core, which suggests rising salinity conditions most probably due to lake shallowing. From 3.2 cal kyr BP to present, the near absence of ostracods in the core Tk106 is most likely a consequence of salinisation of the lake towards the hyperhaline conditions that are realised at present. Although the modern morphology and physico-chemical properties of Tso Kar lake are in contrast to the past lake conditions, most of the ostracod species, except for Limnocythere mirabilis found in the sediment core, are also identified from surface sediment and outcrop samples. In contrast, Heterocypris salina and Eucypris dulcifons are widespread in the shallow surface waters with a total dissolved solids content ranging from 0.6 to 15.0 g L?1, but are excluded from the core record and outcrop strata. At a basinal scale, the lake shrinkage and segregation into the Tso Kar and hydrologically open freshwater lake Startsapuk Tso have forced diversification of ostracod taxa, probably as an effect of the emergence of new ecological niches under enhanced “environmental pressure”.  相似文献   

17.
The chemical composition of lake water in Laguna Amarga, a small, shallow, saline lake near the Torres del Paine National Park (at 51°S), Chilean Patagonia, was studied in January, 1993. The water was strongly alkaline (pH 9.4) conductivity was 71.4 mS cm–1, and salinity was 77 g L–1. The major ions were sodium and sulphate.  相似文献   

18.
Surface sediments, water samples and environmental data from 37 lakes, ponds and streams in Israel were analysed to determine the main variables controlling ostracod species distributions. Multivariate statistical analysis revealed that the greatest amounts of variation in the distribution of the ostracod taxa among the 37 water bodies were explained by the host water δD value (12.9%), water temperature (11.0%), mean January air temperature (10.5%), electrical conductivity (9.5%), and the Mg and NO3 concentrations (7.8 and 7.1%, ion concentrations as % of the anions or cations). A supplementary data set comprising ostracod species composition and electrical conductivity readings for 24 water bodies was available from previous research and was merged with the 37 samples data set to develop an ostracod-based transfer function for the reconstruction of electrical conductivities. A weighted averaging partial least squares regression (WA-PLS) provided the best results with a relatively high coefficient of determination (r 2) between measured and inferred electrical conductivity values of 0.73, a root mean square error of prediction of 0.13 (13.4% of gradient length) and a maximum bias of 0.24 (23.9% of gradient length), as assessed by leave-one-out cross-validation based on 56 water bodies. The application of the EC transfer function onto (sub)fossil ostracod assemblages from Holocene and early to mid Pleistocene lake sediments provided EC values consistent with other proxies and demonstrated that Quaternary ostracod assemblages from subaqueous sediments can now be used to trace the hydrological history of water bodies in the Near East. A better understanding of past hydrological conditions in response to the natural climate variability is crucial in regions that face restricted water resources and rising demands in times of rapid climate and environmental change.  相似文献   

19.
Salinity fluctuations in lakes of semi-arid regions have long been recognised as indicators of palaeoclimatic change, and have provided a valuable line of evidence in palaeo-climatic reconstruction. In the present study, fossil remains of diatoms and midges were used to reconstruct salinity changes at Mahoney Lake from the early postglacial, through the early, mid and late Holocene. A transition from midges typical of a freshwater community (Protanypus, Sergentia, Heterotrissocladius, Cladopelma, Dicrotendipes) during the early postglacial, to those indicative of saline environments (Cricotopus/Orthocladius, Tanypus) occurred in the early Holocene. The midge-inferred salinity values reflected the shift from freshwater (0.031 g/L) immediately after deglaciation, to saline water (2.4 to 55.2 g/L) in subsequent periods. A less saline period was found to have occurred after 1000 yr BP, suggesting a cooler or wetter period. The diatom record indicates similar trends, with freshwater taxa (e.g.,Cyclotella bodanica var. aff.lemanica) dominating near the bottom of the core. Diatom-inferred salinities indicate that saline conditions (about 30 g/L) prevailed throughout subsequent Holocene time, although relatively fresh conditions are indicated following deposition of the Mazama Ash, and from about 1500 yr BP until the present day. Midge and diatom-inferred salinity reconstructions for Mahoney Lake compare favorably with each other, and with climate trends inferred from earlier palynological evidence. The palaeosalinity record thus contributes new data relevant to past climatic conditions, in a region where little data have previously been collected.  相似文献   

20.
Sedimentological, mineralogical and geochemical analyses of sediment cores from 9 m-deep, saline Laguna Miscanti, Chile (23 ° 44S, 67 °46W, 4140 m a.s.l.) together with high-resolution seismic profiles provide a mid to late Holocene time series of regional environmental change in the Atacama Altiplano constrained by 210Pb and conventional 14C dating. The mid Holocene was the most arid interval since the last glacial maximum, as documented by subaerial exposure and formation of hardgrounds on a playa surface. Extremely low lake levels during the mid Holocene appear consistent with lower effective moisture recorded at other sites along the Altiplano and in the Amazon Basin. Termination of this arid period represented a major shift in the regional environmental dynamics and inaugurated modern atmospheric conditions. The cores show a progressive upward increase in effective moisture interrupted by numerous century-scale drier periods of various intensities and durations that characterize a fluctuating late Holocene climate. In spite of chronological uncertainties, the major environmental changes seem to correlate with the available paleorecords from the region providing a coherent account of effective moisture variability in the tropical highlands of South America.This is the 16th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest for these papers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号