首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Experimentally produced impact craters in limestone targets displayed millimeter-sized shatter cones within crater spallation zones. The craters have been produced by accelerating spherical metal projectiles by means of a light-gas gun. Variation of the impact velocity showed that at about 3 km/s shatter cone formation starts and is reproducible at any higher impact velocities. In most cases the cone apices were pointing in the direction of the impact center. The occurrence of shatter cones directly at the target surface (spallation zones of craters) does not support a theoretical model on shatter cone formation published by Gash (1971).  相似文献   

2.
3.
The concentrations of several diagnostic trace elements were determined in two comparatively large NiFe spherules extracted from tektites. The purpose of the study was to obtain some clues about the chemistry of the projectile that is presumed responsible for the formation of these tektites. However, the trace element pattern is distinctly terrestrial implying that the spherules are the result of in-situ reduction of the host rock and are not meteoritic in origin.  相似文献   

4.
《Geofísica Internacional》2014,53(3):343-363
Meteorites represent the earliest records of the evolution of the solar system, providing information on the conditions, processes and chronology for formation of first solids, planetesimals and differentiated bodies. Evidence on the nature of magnetic fields in the early solar system has been derived from chondritic meteorites. Chondrules, which are millimeter sized silicate spherules formed by rapid melting and cooling, have been shown to retain remanent magnetization records dating from the time of chondrule formation and accretion of planetesimals. Studies on different meteorite classes, including ordinary and carbonaceous chondrites, have however provided contrasting results with wide ranges for protoplanetary disk magnetic fields. Developments on instrumentation and techniques for rock magnetic and paleointensity analyses are allowing increased precision. Micromagnetic and an array of geochemical, petrographic and electronic microscopy analyses provide unprecedented resolution, characterizing rock magnetic properties at magnetic domain scales. We review studies on chondrules from the Allende meteorite that reveal relationships among hysteresis parameters and physical properties. Coercivity, remanent and saturation remanence parameters correlate with chondrule size and density; in turn related to internal chondrule structure, mineralogy and morphology. Compound, fragmented and rimmed chondrules show distinct hysteresis properties, related to mineral composition and microstructures. The remanent magnetization record and paleointensity estimates derived from the Allende and other chondrites support remanent acquisition under influence of internal magnetic fields within parent planetesimals. Results support that rapid differentiation following formation of calcium-aluminum inclusions and chondrules gave rise to differentiated planetesimals with iron cores, capable of generating and sustaining dynamo action for million year periods. The Allende chondrite may have derived from a partly differentiated planetesimal which sustained an internal magnetic field.  相似文献   

5.
Previous research on rock weathering crusts has revealed their large variability depending on the type of host rocks and development of weathering processes. The composition of crusts developed on natural sandstone exposures is less documented in the literature in comparison to those developed on architectonic stones. In both cases, previous research has focused mainly on the progress of salt weathering. This study considers the surfaces of sandstone tors in the Polish Outer Carpathians. The exposed parts of the rocks in this area are often covered by crust, which is up to several centimetres thick, and differs from the internal part in colour and composition. The crusts were characterized using light and electron microscopy, X‐ray diffractometry, thermal analyses, Mössbauer spectroscopy, bulk chemical analyses and sequential chemical extractions. Porosity was estimated by digital image processing. The following two hardened zones were observed: (1) thin (up to 30 µm), black, external layer, rich in carbon and composed of opal‐type silica, covered in places by sulphate incrustations and numerous spherical particles of anthropogenic origin; (2) thicker (up to several millimetres), internal part composed of a set of laminae of variable colouration, enriched in iron (oxyhydr)oxides (goethite and hematite) in comparison to the rock interior. Development of the crust results from silicon and iron redistribution during the sandstone alteration. The chief source of silica is hydrolysis of aluminosilicates, whilst that of iron is decomposition of aluminosilicates, carbonates and sulphides. Hematite is probably a result of goethite transformation. However, air pollutants may play an important role in the formation of sulphates. Silica and iron compounds affect the properties of the rock, hardening the surface and lowering porosity by formation of secondary cement. Crystallization of sulphate salts, in turn, may contribute to mechanical disintegration of the rock. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Four hundred membrane filters from the Atlantic and Pacific deep waters have been scanned for coloured and opaque particles by a method integrating the light and the scanning electron microscopes, the electron microprobe and the micro-X-ray diffraction camera. About 40 different types of particles have been found. A tentative classification of the particles and of their morphological and chemical varieties is presented, according to their anthropogenic or natural origins. From this point of view, the particles fall into five groups: (1) particle species exclusively produced by man's activities (like brass, cobalt aluminate); (2) particles exclusively produced by natural processes (like amphibole, ilmenite); (3) particles rarely produced by natural processes, but massively so by man (like metallic copper, chromium oxide); (4) a large group of particles massively produced by nature and by man (like magnetite spherules, malachite); (5) a very small group of particles whose origin could not be attributed at present. Very few entirely new compounds from the point of view of continental mineralogy have been encountered.  相似文献   

7.
Until recently, no terrestrial analogues of meteoritic and lunar chondrules were known. Only rare glass spherules from the Lonar Crater, India, and black magnetic spherules from various localities have been recorded. The impact breccia suevite of the No¨rdlinger Ries Crater, Germany, contains both chondrules and glass spherules, and in addition, accretionary lapilli, all of which are found imbedded within the fine-grained matrix of the suevite. The chondrules display many of the textural features characteristic of meteoritic and lunar chondrules. Lithic chondrules and fluid drop chondrules are present, the latter having a composition quite similar to that of glass bombs and glass fragments in the suevite. Fluid drop chondrules developed from glass spherules by slow devitrification in the hot suevite ejecta masses after deposition. On the whole, fluid drop chondrules, lithic chondrules and glass spherules are rare in the suevite, with fluid drop chondrules prevailing. Detection of chondrules from a terrestrial impact crater supports theories of an impact origin for meteoritic and lunar chondrules. Accretionary lapilli also represent material formed as a result of impact.  相似文献   

8.
The Kekuknai massif was formed in the course of tectono-magmatic activity that involved the origin of a shield volcano and a caldera depression with associated emplacement of extrusions that terminated in intense post-caldera areal volcanism. The mineralogical compositions of the massif’s rocks have been considered in detail. The use of previously known and newly developed indicator properties of rock-forming minerals allowed the reconstruction of the general picture of the magmatic melt evolution and conditions of rock crystallization (various fluid and water saturation levels, as well as the oxidation state of the system). Essentially island-arc or intraplate characteristics of the massif’s rock compositions are found at different stages of development of a single fluid-magmatic system. Decompression evolution of the parent deep-seated basanitic magma occurred via occurrence in intermediate magma chambers of daughter magmas of trachybasalt (pre-caldera stage) or hawaiite (areal volcanism) composition. Subsequent emanate-magmatic differentiation of these melts, combined with crystallization differentiation under changing P-T-conditions, resulted in the formation of the entire diversity of the Kekuknai rocks.  相似文献   

9.
The Mesoproterozoic deeply eroded Keurusselk? impact structure in central Finland is situated within the ??1860?C1890 Ma Central Finland Granitoid Complex. An estimate for the original size of the structure is 30 km, yielding a 5 km wide central uplift with insitu shatter cones and shock metamorphic features in quartz. Petrophysical and rock magnetic properties of the three shallow drill cores (V-001, V-002 and V-003) in the vicinity of the central uplift are determined in order to assess the dimensions of the central uplifts magnetic anomalies. The drill core lithologies consist of schists (metagraywackes), metavolcanic rocks, gneisses and breccia. Petrophysical properties of the drill core rocks show average densities (D) of 2644?C2752 kg/m3, susceptibilities (??) of 160?C761 × 10?6 SI and natural remanent magnetization (NRM) of 3?C306 mA/m and Koenigsberger Q ratios of 0.1?C10. Rock magnetic measurements with temperature dependence of susceptibility (??-T) curves and hysteresis indicated mostly paramagnetic behaviour. However, a fraction of fine-grained ferromagnetic minerals (pyrrhotite and magnetite) was detected from all lithologies. Breccia veins cutting the parautochthonous subcrater floor show lower values of petrophysical properties (D, ??, NRM, Q) and this could be related to the impact event. Amphiboles and micas in the breccia are strongly altered and replaced by secondary chlorite. Chloritization may indicate widespread impact-induced hydrothermal alteration of the target rocks or it may be related to regional tectonic shearing. However, planar deformation features in quartz, found from shatter cones in the central uplift area, are decorated with fluid inclusions indicating that alteration by post-impact processes was present.  相似文献   

10.
Sub-micrometer inclusions in diamonds carry high-density fluids (HDF) from which the host diamonds have precipitated. The chemistry of these fluids is our best opportunity of characterizing the diamond-forming environment. The trace element patterns of diamond fluids vary within a limited range and are similar to those of carbonatitic/kimberlitic melts that originate from beneath the lithospheric mantle. A convecting mantle origin for the fluid is also implied by C isotopic compositions and by a preliminary Sr isotopic study (Akagi, T., Masuda, A., 1988. Isotopic and elemental evidence for a relationship between kimberlite and Zaire cubic diamonds. Nature 336, 665–667.). Nevertheless, the major element chemistry of HDFs is very different from that of kimberlites and carbonatites, varying widely and being characterized by extreme K enrichment (up to ~ 39 wt.% on a water and carbonate free basis) and high volatile contents. The broad spectrum of major element compositions in diamond-forming fluids has been related to fluid–rock interaction and to immiscibility processes.Elemental signatures can be easily modified by a variety of mantle processes whereas radiogenic isotopes give a clear fingerprint of the time-integrated evolution of the fluid source region. Here we present the results of the first multi radiogenic-isotope (Sr, Nd, Pb) and trace element study on fluid-rich diamonds, implemented using a newly developed off-line laser sampling technique. The data are combined with N and C isotope analysis of the diamond matrix to better understand the possible sources of fluid involved in the formation of these diamonds. Sr isotope ratios vary significantly within single diamonds. The highly varied but unsupported Sr isotope ratios cannot be explained by immiscibility processes or fluid-mineral elemental fractionations occurring at the time of diamond growth. Our results demonstrate the clear involvement of a mixed fluid, with one component originating from ancient incompatible element-enriched parts of the lithospheric mantle while the trigger for releasing this fluid source was probably carbonatitic/kimberlitic melts derived from greater depths. We suggest that phlogopite mica was an integral part of the enriched lithospheric fluid source and that breakdown of this mica releases K and radiogenic Sr into a fluid phase. The resulting fluids operate as a major metasomatic agent in the sub-continental lithospheric mantle as reflected by the isotopic composition and trace element patterns of G10 garnets.  相似文献   

11.
12.
Fe-Cr-Ni particles and veinlets have been discovered in the top 15 m of the compressed zone with abundant shatter cones below the bottom of the Ries crater. The metallic particles are less than a few microns across. They occur in various minerals along healed intergranular and locally in intragranular microfractures in quartz diorite, amphibolite and chloritized granite of the basement crystalline rocks.The particles consist of major Fe, Cr, and Ni with minor Si and Ca. Origin due to contamination is absolutely ruled out. We believe that these Fe-Cr-Ni particles are probably condensed from the vaporized impacting body which produced the Ries crater. These particles were injected with high velocity into microfractures near the top of the compressed zone, implanted in and across various minerals before these microfractures were resealed. The presence of Si and Ca as well as the fact that the Cr content is nearly twice that of Ni, led us to conclude that the Ries impacting body is very likely not an iron meteorite but a stony meteorite.  相似文献   

13.
We report chemical, mineralogic and Rb-Sr data on deep-sea spherules and on particles from an Antarctic Ocean core in which an excess Ir content has been identified.87Sr/86Sr compositions in the deep-sea spherules are determined to 1–2‰ and are in the range 0.730–0.757. The87Sr/86Sr compositions and the Sr concentrations are in the range observed for the majority of chondritic meteorites.84Sr/88Sr ratios are normal to within 1%. Extreme depletion of Rb relative to the chondritic abundance is found in the deep-sea spherules. These data support the inference based on chemical composition and mineralogy that the deep-sea spherules are produced by the ablation or heating of meteoroids in the Earth's atmosphere with substantial loss of Rb by volatilization. Most terrestrial sources for the deep-sea spherules can be excluded, based on the chemical composition and on the Sr isotopic composition. The results on vesicular, Ir-rich particles from the Antarctic Ocean core give87Sr/86Sr in the range 0.703–0.705 and within the range observed for ocean island basalts but significantly above mid-ocean ridge basalts (MORB). A crystalline basaltic particle from this core shows non-radiogenic87Sr/86Sr= 0.701 ± 0.001, in the range observed for MORB and basaltic achondrites. The Sr data on the vesicular particles do not provide positive support for an extraterrestrial provenance for these materials. The basaltic particles cannot reasonably be the primary source of the high Ir concentration and some other lithic component remains to be identified.  相似文献   

14.
A suite of Sierra Madera Impact deformed rocks was studied and magnetic analyses were performed. We characterized the magnetic signatures of two locations, sites A and B that have different physical characteristics of shock fractured structures as well as the magnetic signatures. Shatter cone at site A has a fine-scale (few to ∼10 mm) distributed array of complete shatter cones with sharp apex. Natural remanent magnetization (NRM) of site A shatter cone is distributed within the plane that is perpendicular to the apexes of the cones. Shatter cone at site B shows no apparent cone shape or apex, instead, a relatively larger scale and multiple striated joint set (MSJS) and sinusoidal continuous peak. NRM of site B shatter cone is clustered along the apexes. The difference in magnetization direction is a likely indicator of the shock pressure where parallel to apex indicates pressures larger than 10 GPa and perpendicular to apex indicate pressures less than 10 GPa. Intensities of NRM and saturation isothermal remanent magnetization (SIRM) contrast and fluctuate within a shatter cone as well as in between two sites. We observed a random orientation of magnetic vector directions and amplitudes changing over small scales leading to the absence of coherent macro-scale signature.  相似文献   

15.
Weathering rinds, zones of alteration on the exterior surfaces of rock outcrops and coarse unconsolidated surficial debris are widely used by geomorphologists and Quaternary geologists as indicators of the relative age of landforms and landscapes. Additionally they provide unique insights into the earliest stages of rock and mineral weathering, yet the origin of these alteration zones is relatively poorly understood. This lack of understanding applies especially to the initial stages of rind formation. The study reported in this paper has two principal objectives. The first is to use lightly polished granite discs inserted in soil profiles under several different plant communities in an Arctic alpine environment for a period of four or five years to investigate the nature of incipient weathering rind development. The second is to investigate the factors responsible for spatial variability in the nature and rates of rind formation. Incipient weathering rind development on the outer edges of the granite discs is observable and measurable over a period of time as short as four years in the mild Arctic alpine environment of Swedish Lapland. The earliest stages of rind development involve the development of a porous structure consisting of a combination of pits and fractures which have been solutionally enlarged and modified. Solution appears to be preferentially concentrated on the surfaces of feldspars and, to a lesser extent, quartz. In addition, iron oxides are present along grain boundaries and in grain interiors and are interpreted to have been derived from the oxidation of ferromagnesian minerals. Spatial variability in weathering rind development appears to be particularly driven by differences in moisture but is not related to soil pH. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The results of petrological and volcanological investigations of the Assab area (Ethiopia) are reported. Fissure activity — which produced basaltic lava flows and several spatter cones — and central activity — represented by a cumulus dome and two explosive craters — have been recognized. The area is characterized by E-W and NE-SW tectonic trends, whereas the NNW-SSE « Eritrean trend » is absent. Transverse tectonics is limited to the blocks bordering the Danakil Depression, and never extends into the Depression itself. Mineralogical composition and chemical data point to an alkaline nature of the Assab lavas, which have been classified as: picritic basalts tending to ankaramites; alkali olivine basalts; hawaiites; and all the rock types ranging from mugearites to trachytes. Two rock groups have been identified which could be due to crystal fractionation processes controlled by different degree of oxidation. The petrological difference between the rocks from Afar proper and those from the Danakil block (unquestionably alkaline rock types in the Danakil block, and transitional rock types in Afar) is emphasized.  相似文献   

17.
Shatter rings are circular to elliptical volcanic features, typically tens of meters in diameter, which form over active lava tubes. They are typified by an upraised rim of blocky rubble and a central depression. Prior to this study, shatter rings had not been observed forming, and, thus, were interpreted in many ways. This paper describes the process of formation for shatter rings observed at Kīlauea Volcano during November 2005–July 2006. During this period, tilt data, time-lapse images, and field observations showed that episodic tilt changes at the nearby Pu‘u ‘Ō‘ō cone, the shallow magmatic source reservoir, were directly related to fluctuations in the level of lava in the active lava tube, with periods of deflation at Pu‘u ‘Ō‘ō correlating with increases in the level of the lava stream surface. Increases in lava level are interpreted as increases in lava flux, and were coincident with lava breakouts from shatter rings constructed over the lava tube. The repetitive behavior of the lava flux changes, inferred from the nearly continuous tilt oscillations, suggests that shatter rings form from the repeated rise and fall of a portion of a lava tube roof. The locations of shatter rings along the active lava tube suggest that they form where there is an abrupt decrease in flow velocity through the tube, e.g., large increase in tube width, abrupt decrease in tube slope, and (or) sudden change in tube direction. To conserve volume, this necessitates an abrupt increase in lava stream depth and causes over-pressurization of the tube. More than a hundred shatter rings have been identified on volcanoes on Hawai‘i and Maui, and dozens have been reported from basaltic lava fields in Iceland, Australia, Italy, Samoa, and the mainland United States. A quick study of other basaltic lava fields worldwide, using freely available satellite imagery, suggests that they might be even more common than previously thought. If so, this confirms that episodic fluctuation in lava effusion rate is a relatively common process at basaltic volcanoes, and that the presence of shatter rings in prehistoric lava flow fields can be used as evidence that such fluctuations have occurred.  相似文献   

18.
Before base surges were described in association with nuclear blasts and explosive volcanic eruptions (especially, the 1980 eruption of Mount St. Helens, Washington), laminar and cross-bedded volcanogenic surge deposits were commonly misinterpreted as being of fluvial or aeolian origin. One well-documented example involves the “water-laid tuffs” in and near the Spor Mountain beryllium mine, Utah; other examples abound. In light of how frequently volcanogenic surge deposits have been misinterpreted on Earth, extreme caution is urged for Mars studies. Contrary to what has been claimed, the markedly cross-bedded, salty deposits at Meridiani Planum on Mars need not have been formed by a combination of aeolian and aqueous processes, and their contained hematitic spherules need not have formed as aqueous concretions. Given the lack of indications of volcanism in the vicinity, and the planet-wide abundance of impact craters, deposition by surges associated with distant impact targets consisting of brine-soaked, locally sulfidic regolith is a reasonable explanation for all features observed, especially if diagenesis and weathering are considered. The uniformly sized and shaped, Ni-enriched blue-gray hematitic spherules would then be some type of vapor condensation spherules (including accretionary lapilli). A similar interpretation is possible for deposits in the Home Plate area, Gusev Crater. Unlike on the dry and atmosphereless Moon, salty impact surge deposits containing spherules should be common, and well-preserved, on Mars.  相似文献   

19.
Jinman vein copper deposit in western Yunnan occurs in a salt-bearing red clastic rock formation composed of sandstone, siltstone and shale. Wood texture is considerably developed in the ores. The metallic minerals making up the wood textures mainly include pyrite, chalcopyrite and bornite. Studies on the samples and examination of their micrographs and electron micrographs have confirmed that they belong to xenoxylon, reflecting that the ore-hosting rock series is the product of sedimentation in the terrestrial environment. Organic geochemistry and sulfur and carbon isotopic composition data indicate that the formation of the deposit is substantially related with underground hot brines and biological processes.  相似文献   

20.
Remote sensing studies of the Central Andean volcanic province between 18°–27°S with the Landsat Thematic Mapper have revealed the presence of 28 previously undescribed breached volcanic cones and 14 major volcanic debris avalanche deposits, of which only 3 had previously been identified. Several of the debris avalanche deposits cover areas in excess of 100 km2 and have volumes of the order of 10 km3. H/L ratios for the deposits have a median of 0.1 and a mean of 0.11, values similar to those determined for deposits described in other regions. Surface morphologies commonly include the hummocky topography of small hillocks and enclosed basins that is typical of avalanche deposits, but some examples exhibit smoother surfaces characterised by longitudinal grooves and ridges. These differences may result from the effects of flow confinement by topography or from variations in resistance to shearing in the materials involved. Breached composite cones and debris avalanche deposits tend to occur at right angles to regional tectonic elements, suggesting possible seismic involvement in triggering collapse and providing an additional consideration for assessment of areas at risk from collapse. The low denudation rate in the Central Andes, coupled with the predominance of viscous dacite lavas in volcanic edifices, produces unusually steep cones which may result in a higher incidence of volcano collapse than in other regions. A statistical survey of 578 composite volcanoes in the study area indicates that a majority of cones which achieve edifice heights between 2000–3000 m may undergo sector collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号