首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Induction of vitellogenin (VTG) was compared among three teleostean species to determine their relative sensitivity of exposure to 17 beta-estradiol (E2). Japanese medaka (Oryzias latipes), sunshine bass (Morone saxatalis x Morone chrysops) and channel catfish (Ictalurus punctatus) were exposed to aqueous concentrations of E2 ranging from 10 to 100,000 ng/l for 21 days. Respective EC50 values for plasma VTG detected by western blot in medaka, catfish and bass were 200, 170 and 1560 ng E2/l. Since these EC50 values are based on VTG induction curves calculated relative to control values, they indicate differences in species' sensitivity to E2 exposure. Catfish and bass VTG responses obtained in laboratory exposures were compared to VTG responses previously observed with 21-day wastewater treatment plant effluent exposures. Plasma VTG induction in effluent-exposed fish ranged from 14 to 82% above reference values depending on species. Extrapolation of field responses with laboratory-exposed fish indicate catfish and bass were exposed to the equivalent of 27-240 ng E2/l in sewage effluent.  相似文献   

2.
To determine the estrogenicity of effluents from sewage treatment plants (STPs) to larval fish, 2-day-old sunshine bass were exposed to effluents from three STPs serving New York City (NYC), varying in size and treatment level. Estrogenic response was evaluated by measuring vitellogenin (VTG) and estrogen receptor (ER) expression in cytosolic fractions of whole body homogenates. Concentrations of the presumptive endocrine disruptors in the effluents were also measured. VTG and ER levels in sewage-exposed fish were 3-5 times that observed in controls. Combined concentrations of estradiol and estrone ranged from 5 to 13 ng/l and nonylphenol-ethoxylate metabolites (NPEOs: 4-nonylphenol, and 1-, 2-, and 3-nonylphenol-ethoxylates) ranged from 180 to 470 microg/l in chlorinated effluent. Results indicate that both ER and VTG can be used as biomarkers for endocrine disruption in larval fish, and that 4-day exposure to sewage effluent is sufficient to elicit significant expression of these markers in sunshine bass larvae. The extremely higher concentrations of NPEOs found in effluent relative to hormones (approximately 40,000-fold) indicates that surfactant metabolites may be contributing significantly to the estrogenic effects observed.  相似文献   

3.
Chronic exposure to organic contaminants such as polychlorinated biphenyls (PCBs) can lead to the development of resistance to these chemicals, a condition associated with reduced response of CYP1A1, a pollutant-inducible biomarker. We measured CYP1A activity (ethoxyresorufin o-deethylase, EROD) and PCB concentrations in feral fish from the Town Branch/Mud River system (Logan County, KY), a stream historically contaminated with PCBs and partially remediated. As a first step in evaluating the possible development of resistant populations in this system, we measured CYP1A expression and PCB body burdens in resident fish from sites we previously characterized as containing biologically significant levels of CYP1A inducing compounds. Mean PCB concentrations in edible flesh ranged from 75.2 to 16.7 microg/g in fish collected from Town Branch remediated sites and were relatively low (1.23 microg/g) in Town Branch reference site fish. However, hepatic CYP1A activity was similar among individuals of most species collected from reference and contaminated/remediated sites. The absence of elevated CYP1A levels in resident fish species despite the presence of significant PCB body burdens may indicate these fish have developed reduced sensitivity to CYP1A induction, a condition associated with acquired resistance to toxicants.  相似文献   

4.
We are investigating the effects of in vivo exposure of prototypical enzyme inducing agents on hepatic biotransformation enzyme expression in largemouth bass (Micropterus salmoides), a predatory game fish found throughout the United States and Canada. The current study targeted those genes involved in biotransformation and oxidative stress that may be regulated by Ah-receptor-dependent pathways. Exposure of bass to beta-naphthoflavone (beta-NF, 66 mg/kg, i.p.) elicited a 7-9-fold increase in hepatic microsomal cytochrome P4501A-dependent ethoxyresorufin O-deethylase (EROD) activities, but did not affect cytosolic GST catalytic activities toward 1-chloro-2,4-dinitrobenzene (CDNB) or 5-androstene-3,17-dione (ADI). Glutathione S-transferase A (GST-A) mRNA expression exhibited a transient, but non-significant increase following exposure to beta-NF, and generally tracked the minimal changes observed in GST-CDNB activities. Expression of the mRNA encoding glutamate-cysteine ligase catalytic subunit (GCLC), the rate-limiting enzyme in glutathione (GSH) biosynthesis, was increased 1.7-fold by beta-NF. Changes in GCLC mRNA expression were paralleled by increases in intracellular GSH. In summary, largemouth bass hepatic CYP1A-dependent and GSH biosynthetic pathways, and to a lesser extent GST, are responsive to exposure to beta-NF.  相似文献   

5.
Recent advances in molecular immunology indicate that the expression of inducible pro-inflammatory proteins is increased in vertebrates in response to both infectious disease agents and various xenobiotics. For example, iNOS, COX-2, and CYP1A are induced by both inflammation and AhR ligands. Moreover, the expression of these proteins in response to stimuli varies among individuals within populations. Little is known of the differences among fish in the inducibility of proinflammatory proteins in response to both infectious agents and xenobiotics. Through random screening of a striped bass, Morone saxitilis, peritoneal macrophage cDNA library, a full length metallothionein (MT) gene was cloned and sequenced. MT is a low-molecular weight (6-8 kDa), cysteine-rich metal binding protein. Metals are required by pathogenic bacteria for growth, and by the host defense system by serving as a catalyst for the generation of reactive oxygen intermediates (ROIs) by phagocytes. A recombinant striped bass MT (rMT) was expressed and purified, then used to generate a specific mAb (MT-16). MT protein expression was followed in freshly isolated striped bass and channel catfish, Ictalurus punctatus, phagocytes after in vitro exposure to the naturally occurring intracellular pathogen Mycobacteria fortuitum or to 0.1 and 1 microM mercury (Hg), as HgCl(2). MT expression was increased by 24 h in both channel catfish and striped bass phagocytes as a result of exposure to M. fortuitum cells. On the other hand, MT was induced by Hg in channel catfish cells, but not those of striped bass. These results indicate that metal homeostasis in phagocytes is different between catfish and striped bass. In addition, these data suggest that care should be taken to distinguish between inflammation-induced vs. metal-induced MT when using MT expression as a biomarker of metal exposure.  相似文献   

6.
Mummichogs, Fundulus heteroclitus, an estuarine fish with a relatively small home range found along the eastern coast of the United States are well-suited to monitoring contaminant effects, including those of polycyclic aromatic hydrocarbons (PAHs). One of the common PAHs in estuaries is pyrene. We report here on efforts to develop multiple biomarkers of pyrene exposure in this species. Adult male mummichogs were exposed in the laboratory to the weak aryl hydrocarbon receptor (AhR) agonist pyrene at 0, 30, or 50 microg/L in 7-day static renewal exposures. The RNA was extracted from livers and alterations in mRNA expression were assessed by subtractive hybridization and differential display in order to produce multiple biomarkers of pyrene exposure. Genes demonstrating differential expression were confirmed by quantitative-PCR (Q-PCR) and include cytochrome P-450 1A (CYP1A), a putative hepatocyte growth factor activator, a X-ray inducible retrotransposon, and several expressed sequenced tags (ESTs). Some of these genes represent new biomarkers of pyrene exposure and potential biomarkers of PAH exposure. Therefore, similar changes were investigated at a Superfund site in Charleston, SC. Mummichogs from a creosote contaminated site and from a reference site (North Inlet National Estuarine Research Reserve near Georgetown, SC) were trapped, RNA extracted from the livers, and Q-PCR performed. Many of the genes differentially expressed following pyrene exposure were not altered at the creosote contaminated site in comparison to the reference site. However, CYP1A and an EST were induced. CYP1A induction at Diesel Creek indicates that this population of fish does not demonstrate refractory CYP1A phenotypes observed at several sites with high levels of AhR agonists. Ultimately, we anticipate that the use of multiple biomarkers of PAH exposure will provide useful information on the potential effects of toxicants.  相似文献   

7.
Recent advances in molecular immunology indicate that the expression of inducible pro-inflammatory proteins is increased in vertebrates in response to both infectious disease agents and various xenobiotics. For example, iNOS, COX-2, and CYP1A are induced by both inflammation and AhR ligands. Moreover, the expression of these proteins in response to stimuli varies among individuals within populations. Little is known of the differences among fish in the inducibility of proinflammatory proteins in response to both infectious agents and xenobiotics. Through random screening of a striped bass, Morone saxitilis, peritoneal macrophage cDNA library, a full length metallothionein (MT) gene was cloned and sequenced. MT is a low-molecular weight (6–8 kDa), cysteine-rich metal binding protein. Metals are required by pathogenic bacteria for growth, and by the host defense system by serving as a catalyst for the generation of reactive oxygen intermediates (ROIs) by phagocytes. A recombinant striped bass MT (rMT) was expressed and purified, then used to generate a specific mAb (MT-16). MT protein expression was followed in freshly isolated striped bass and channel catfish, Ictalurus punctatus, phagocytes after in vitro exposure to the naturally occurring intracellular pathogen Mycobacteria fortuitum or to 0.1 and 1 μM mercury (Hg), as HgCl2. MT expression was increased by 24 h in both channel catfish and striped bass phagocytes as a result of exposure to M. fortuitum cells. On the other hand, MT was induced by Hg in channel catfish cells, but not those of striped bass. These results indicate that metal homeostasis in phagocytes is different between catfish and striped bass. In addition, these data suggest that care should be taken to distinguish between inflammation-induced vs. metal-induced MT when using MT expression as a biomarker of metal exposure.  相似文献   

8.
We are investigating the effects of in vivo exposure of prototypical enzyme inducing agents on hepatic biotransformation enzyme expression in largemouth bass (Micropterus salmoides), a predatory game fish found throughout the United States and Canada. The current study targeted those genes involved in biotransformation and oxidative stress that may be regulated by Ah-receptor-dependent pathways. Exposure of bass to β-naphthoflavone (β-NF, 66 mg/kg, i.p.) elicited a 7–9-fold increase in hepatic microsomal cytochrome P4501A-dependent ethoxyresorufin O-deethylase (EROD) activities, but did not affect cytosolic GST catalytic activities toward 1-chloro-2,4-dinitrobenzene (CDNB) or 5-androstene-3,17-dione (ADI). Glutathione S-transferase A (GST-A) mRNA expression exhibited a transient, but non-significant increase following exposure to β-NF, and generally tracked the minimal changes observed in GST–CDNB activities. Expression of the mRNA encoding glutamate-cysteine ligase catalytic subunit (GCLC), the rate-limiting enzyme in glutathione (GSH) biosynthesis, was increased 1.7-fold by β-NF. Changes in GCLC mRNA expression were paralleled by increases in intracellular GSH. In summary, largemouth bass hepatic CYP1A-dependent and GSH biosynthetic pathways, and to a lesser extent GST, are responsive to exposure to β-NF.  相似文献   

9.
Estrogens appear to have a modulating effect on the expression of cytochrome P4501A (CYP1A) in fish. A number of in vivo studies have demonstrated that hepatic CYP1A expression in females decrease during sexual maturation when plasma levels of 17 beta-estradiol (E2) increase, or in cases when the fish in injected with E2. Since a number of environmental contaminants have weak estrogen-like activities, the question arises if these compounds are able to modulate CYP1A expression as well. In the present study, we used in vitro monolayer cultures of rainbow trout, Oncorhynchus mykiss, liver cells to compare concentration-dependent (10(-9) to 10(-5) M) effects of the natural steroid E2 and the non-steroidal xenoestrogen 4-tert-octylphenol (OP) on CYP1A-catalyzed 7-ethoxyresorufin-O-deethylase (EROD) activity. The concentration dependency of the estrogenic activity of the two test compounds was assessed by determination of hepatocellular vitellogenin (Vg) release into the culture medium. Exposure of hepatocytes to E2 concentrations of 10(-8) M and higher led to a significant inhibition of basal cellular EROD activity. On the contrary, exposure to OP did not result in an inhibition of EROD activity, even at OP concentrations (10(-6) M, 10(-5) M) which were associated with a significant induction of Vg synthesis.  相似文献   

10.
Induction of hepatic cytochrome P450-dependent microsomal mono-oxygenase by xenobiotics is a well-established phenomenon in teleost fish. As in laboratory mammals, fish possess multiple forms of cytochrome P450 that display overlapping substrate specificity. One such isoform, CYP1A1, which has been cloned and sequenced from rainbow trout, has been shown to be orthologous to rat CYP1A1 and, as in mammals, is inducible up to several hundred-fold by planar aromatic hydrocarbons, PCBs and dioxins. It has been suggested that induction of CYP1A1 orthologues might provide a sensitive biomonitor for environmental pollution by mixtures of such compounds. In the current study, polyclonal antibodies directed against CYP1A1 purified from rat and trout liver were used to monitor induction of the CYP1A1 orthologue in hepatic microsomes from the fresh water species, the channel catfish (Ictalurus punctatus). Catfish from a local fish farm were induced in the laboratory by three daily injections of 50 mg/kg of the PCB mixture Aroclor 1254 and compared with fish taken from a site in central Arkansas—the Bayou Meto, known to be polluted with dioxin. Hepatic microsomal activities towards ethoxyresorufin (EROD) and pentoxyresorufin (PROD) were measured and Western blot analysis carried out with the two antibodies. EROD was elevated in both the Aroclor-treated fish and in the Bayou Meto fish compared with untreated fish farm controls; smaller but significant increases were observed in PROD. Spearman's rank correlations of 0·74 and 0·89 were observed between EROD and immunoquantified cross-reactivity towards the rat CYP1A1 and trout CYP1A1 antibodies.  相似文献   

11.
English sole (Pleuronectes vetulus) and starry flounder (Platichthys stellatus) are two sympatric flatfish species which show markedly different responses to chemical contaminant exposure. Whereas English sole develop hepatic neoplasms, the prevalences of which are strongly linked to exposure to polycyclic aromatic hydrocarbons (PAHs), evidence of neoplasia is virtually nonexistent in starry flounder, even those residing in areas with very high levels of PAH in the sediments. Because PAHs are activated to genotoxic forms by the action of cytochrome P450 1A (CYP1A) in teleosts, we are examining the hypothesis that variation in the hepatic expression of this major inducible cytochrome P450 isozyme may contribute to the differential contaminant response. These two species were captured in the Duwamish Waterway, a contaminated area of Puget Sound, Washington. Catalytic activity of CYP1A [determined as aryl hydrocarbon hydroxylase (AHH) activity] was measured in the liver to quantitatively assess the relative induction of CYP1A in these two species, and AHH activity was significantly higher in English sole than in starry flounder (p = 0.015). Cellular expression of CYP1A was determined by immunohistochemical localization of tissues, using an avidin-biotin peroxidase complex method, with polyclonal rabbit anti-cod CYP1A. The results showed a markedly reduced expression of CYP1A in hepatocytes of starry flounder, which is consistent with the apparent resistance of this species to the development of hepatocellular neoplasia. This reduced expression of CYP1A in hepatocytes of contaminant-exposed fish was previously seen in oyster toadfish from the Elizabeth River, Virginia, and this species is also apparently resistant to hepatocellular neoplasia.  相似文献   

12.
Three biomarkers of hydrocarbon exposure, CYP1A in liver vascular endothelium, liver ethoxyresorufin O-deethylase (EROD), and biliary fluorescent aromatic compounds (FACs), were examined in the nearshore fishes, masked greenling (Hexagrammos octogrammus) and crescent gunnel (Pholis laeta), collected in Prince William Sound, Alaska, 7-10 years after the Exxon Valdez oil spill (EVOS). All biomarkers were elevated in fish collected from sites originally oiled, in comparison to fish from unoiled sites. In 1998, endothelial CYP1A in masked greenling from sites that were heavily oiled in 1989 was significantly higher than in fish collected outside the spill trajectory. In 1999, fishes collected from sites adjacent to intertidal mussel beds containing lingering Exxon Valdez oil had elevated endothelial CYP1A and EROD, and high concentrations of biliary FACs. Fishes from sites near unoiled mussel beds, but within the original spill trajectory, also showed evidence of hydrocarbon exposure, although there were no correlations between sediment petroleum hydrocarbon and any of the biomarkers. Our data show that 10 years after the spill, nearshore fishes within the original spill zone were still exposed to residual EVOS hydrocarbons.  相似文献   

13.
To assess chemical contaminant stress in the marine environment, ethoxyresorufin-O-deethylase (EROD) activity and cytochrome P450 1A (CYP1A) expression were measured in 88 English Sole (Pleuronectes vetulus) collected during May and June 1999 from four sites in Vancouver Harbour and at an expected reference site outside the harbour. Hepatic microsomes were prepared from the fish and analyzed for total CYP content, EROD activity, and CYP1A protein levels. Hepatic EROD activity and CYP1A protein levels were elevated in fish from two sites in the inner harbour. A comparison with sediment chemistry data showed that fish with increased EROD activity and CYP1A levels came from sites containing relatively high levels of polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Unexpectedly high levels of EROD activity and CYP1A protein were also found in fish from a reference site near Gibsons, in Howe Sound. The elevated EROD activity and CYP1A expression in fish from this site cannot be explained by the chemical analysis data collected.  相似文献   

14.
Normal operation of oil well platforms results in the discharge of produced formation water (PFW). The expression of CYP1A, CYP2M1- and 2K1-like proteins was examined for use as possible biomarkers of PFW exposure. A pilot study on the Northwest Shelf of Australia had indicated that PFW contamination possibly contributes to induction of CYP1A-like proteins in Gold-Spotted Trevally (Carangoides fulvoguttatus). The pilot study samples were re-examined for CYP1A, and, in addition, CYP2K1/2M1-like proteins. In a subsequent caged fish study in the same location a second species, Stripey seaperch (Lutjanus carponotatus), caught at a clean site, were distributed to three caging sites in a PFW gradient from the Harriet A production platform: A (near-field), B (far-field) and C (a non-impacted reference site). Fish were sampled at time (T) T = 0, T = 3 and T = 10 days. Significant increases of CYP1A, one CYP2K1- and two CYP2M1-like proteins were noted at Site A at T = 10d. For another CYP2K1-like protein, a significant increase was observed at Site A only at T = 3d. These results support a previous study indicating that CYP1A protein is sensitive to PFW exposure. Importantly, statistically significant environmental induction of both CYP2M1- and CYP2K1-like proteins in tropical fish due to PFW exposure had not previously been described and induction of enzymes in the CYP2 family suggest new biomarkers for PFW. In addition, the novel response of one CYP2K-like protein requires further verification, but offers promise for improved monitoring of sub-lethal responses in marine organisms.  相似文献   

15.
The cytochrome P450 1 (CYP1) family has expanded with the addition of the CYP1B and CYP1C subfamilies. We recently identified a new CYP1 subfamily in zebrafish, CYP1D, with a single gene, CYP1D1. Here we examined sequences found in other fish genomes, i.e., stickleback (Gasterosteus aculeatus) and medaka (Oryzias latipes), for similarities among fish CYP1D1 genes. The full-length deduced amino acid sequences for CYP1D1 in these two species averaged about 43% identity to the CYP1As, but nearly 50% when sequence alignment ambiguities were masked. CYP1D1 has seven exons, similar in size and position to the exons in CYP1D1 and CYP1A in zebrafish. However, the intronic distances were substantially smaller in the medaka and stickleback. There also were differing numbers of putative xenobiotic response elements in the CYP1D1 of the various species. Whether the stickleback or medaka genes are inducible by aryl hydrocarbon receptor (AHR) agonists is yet to be determined.  相似文献   

16.
Paralytic shellfish poisoning (PSP) toxins have been implicated as the causative agent of a number of fish kills. Exposure experiments indicate that fish are susceptible to PSPs by intraperitoneal (i.p.) and oral administration, while sampling of fish affected by toxic blooms reveals that these toxins can be accumulated. In spite of the potential impact to marine fisheries, little research has been conducted on the potential metabolism and detoxification of PSPs in marine fishes. Previous work by this group has shown that the xenobiotic metabolising enzyme (XME) cytochrome P-450 (CYP1A) is induced in Atlantic salmon (Salmo salar) following i.p. exposure to saxitoxin (STX). Salmon injected i.p. with sub-lethal doses of STX show a four- to eight-fold induction of hepatic CYP1A (as shown by ethoxyresorufin-O-deethylase activity) over controls after 96 h. Results presented here show that the phase II XME glutathione S-transferase (GST) is also induced in salmon following PSP exposure. Post smolts were exposed to three injections of PSPs (2 micrograms STXeq/kg) over 21 days. Injection of both STX and PSPs extracted from a toxic strain of dinoflagellate (Alexandrium fundyense, CCMP 1719) resulted in induction of hepatic GST, as measured by activity for 1-chloro 2,4-dinitrobenzene. Such inductions indicate a potential role for XMEs in PSP metabolism. Possible roles for other enzymes are also discussed.  相似文献   

17.
The biotransformation of xenobiotics by microsomal cytochromes P450 is known to be pivotal in the effects of some compounds, and thought to be so for many. A knowledge of CYP gene diversity and CYP function and regulation in aquatic species is pursued, expecting that it will disclose mechanisms, allow predictions regarding species differences in susceptibility, and provide markers for exposure to xenobiotics. As well, it is hoped that such knowledge will provide clues to CYP endogenous functions, and to the origin and functional significance of CYP gene diversity. The knowledge of CYP in marine and other aquatic species is expanding rapidly. The diversity of CYP genes in non-mammalian vertebrates may approximate that in mammals. At present, cloning studies have identified members of gene families 1 to 4 have been cloned from one or more fish species. Where known, the gene structures of fish CYP genes are like those of mammalian homologues. Only one CYP1A gene has been identified in most fish species examined. Fish CYP1As, including multiple forms from recent divergence in some genera, have structural and catalytic properties more like CYP1A1, but also have properties that are 1A2-like, consistent with fish CYP1As representing the CYP ancestral to both CYP1A1 and CYP1A2. A number of genes cloned from several species have been classified in the 3A subfamily. Fish CYP3As catalyze steroid 6β-hydroxylase, and have other properties consistent with mammalian 3As. Recently identified CYP4 genes classify to novel subfamilies but apparently are homologues of mammalian CYP4 genes, and may act on similar substrates. The greatest diversity of fish CYP genes is in family 2; there are now six fish CYP2 subfamilies known. Four of these are novel subfamilies, although cladistic analysis suggests distinct relationships to mammalian CYP2 subfamilies. Heterologous expression and characterization of some of these CYP have identified similar functions among genes in different subfamilies. For example, fish CYP2Ns and CYP2Ps are related to mammalian CYP2Js, and CYP2P3 and CYP2J2 have strikingly similar functions as fatty acid epoxygenases and hydroxylases, with nearly identical regio- and enantioselectivity for metabolism of arachidonic acid. In addition to sequence and catalytic similarities, there also are indications that CYP regulation, tissue and cellular localization are similar between fish and mammals. Yet even in cases where orthology is strongly suggested, e.g. CYP1A, there appear to be taxonomic differences in active site structure suggesting potential differences in involvement of CYP1A in toxicity. In contrast to fish, CYP diversity and functions in aquatic invertebrates are poorly known. Investigators have identified novel gene families and subfamilies in crustaceans (CYP2L; CYP45), molluscs (CYP30, CYP10) and sponges (CYP38). CYP4C genes occur in crustaceans, molluscs and echinoderms, and a new subfamily (CYP4Y) in molluscs. The future? There is no doubt that new CYP will continue to be discovered in non-mammalian vertebrates; some (e.g. CYP51) can be predicted confidently. And, there is no doubt that the numbers known in invertebrates will expand greatly. In insects and C. elegans the numbers are very high, and even slime molds have 18 CYP genes. It is virtually certain that CYP genes with unique functions will be discovered. While the knowledge of CYP genes is increasing, knowledge of CYP function and regulation lag well behind. Technical approaches to speed the aquisition of such knowledge are available. The information will be essential to discern the role that CYP play in the disposition and toxicity of xenobiotics, during development as well as in adults. Yet, when such data are in hand, we may have to face the paucity of information on the diversity, function and regulation other enzymes, notably the glutathione S-transferases, glucuronyl transferases and sulfotransferases, in aquatic species. Discerning orthologous relationships among CYP genes, as well as those for phase II enzymes, could highlight gene lineages associated with conserved and endogenous functions. Understanding CYP endogenous functions, as well as their metabolism of xenobiotics, may reveal fully the ways that chemicals cause toxicity. [Support: Sea Grant NA46RG0470-R/P61, EPA R-829890, NIH ES07381].  相似文献   

18.
Information about the expression of CYP1A in wildlife species is essential for understanding the impact of organochlorine exposure on the health status of an exposed population. Therefore, we aimed at characterising a putative CYP1A enzyme expression in both hepatic and extrahepatic tissues of ringed and grey seals from the Baltic Sea and from less polluted waters. The cellular localisation of CYP1A was identified using a monoclonal antibody against scup P4501A1 (MAb 1-12-3). Immunohistochemical staining showed the highest level of CYP1A expression in liver hepatocytes, and the second highest level in the endothelial cells of capillaries and larger blood vessels in the liver and other organs. The most frequent and strongest staining was found in Baltic ringed seals. Although CYP1A-positive staining was observed in only a few tissues in the other seal populations, it was more intense in Baltic grey seals than in Canadian grey seals. The CYP1A enzyme activity, expressed as ethoxyresorufin O-deethylation (EROD), followed a similar tissue distribution and geographical pattern as the immunohistochemistry with clearly elevated EROD activities in most tissues of both Baltic seal populations. Immunochemical characterisation by immunoblotting confirmed the presence and elevation pattern of a putative CYP1A protein in ringed and grey seals, supporting our findings using other methods. The evenly distributed elevation of CYP1A expression among most of the tissues examined indicates that Baltic seals are exposed to CYP1A inducing agents affecting the whole body. This may result in an increased or decreased toxic potential of foreign substances, which may ultimately determine the biological effects of the contaminants.  相似文献   

19.
20.
Methoxychlor (MXC) has been shown to possess estrogenic activity in mammals and fish. Although MXC does not appear to appreciably bind the mammalian estrogen receptor, its demethylated metabolites have been shown to be significantly more potent agonists and are believed responsible for estrogenic effects in mammals following exposure to this pesticide. To determine whether catfish were capable of MXC demethylotion, and, hence, activation to a more estrogenic compound, in vitro biotransformation studies were carried out using hepatic microsomes from mature male channel catfish. Hepatic microsomes catalyzed the NADPH-dependent formation of monodemethylated (mono-MXC) and bisdemethylated (bis-MXC) metabolites of MXC. Treatment with mono-MXC at 40% of the MXC dose in catfish significantly induced serum vitellogenin (Vg) levels compared to MXC. Estrogen receptor binding studies in catfish liver cytosol showed that a racemic mixture of the mono-MXC had approximately 43 times the affinity for the receptor than MXC, but was still over 1000-fold less potent that 17β-estradiol. These results demonstrate that catfish are capable of biochemically activating MXC to a more potent hepatic estrogen receptor agonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号