首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Backstripping analysis and forward modeling of 162 stratigraphic columns and wells of the Eastern Cordillera (EC), Llanos, and Magdalena Valley shows the Mesozoic Colombian Basin is marked by five lithosphere stretching pulses. Three stretching events are suggested during the Triassic–Jurassic, but additional biostratigraphical data are needed to identify them precisely. The spatial distribution of lithosphere stretching values suggests that small, narrow (<150 km), asymmetric graben basins were located on opposite sides of the paleo-Magdalena–La Salina fault system, which probably was active as a master transtensional or strike-slip fault system. Paleomagnetic data suggesting a significant (at least 10°) northward translation of terranes west of the Bucaramanga fault during the Early Jurassic, and the similarity between the early Mesozoic stratigraphy and tectonic setting of the Payandé terrane with the Late Permian transtensional rift of the Eastern Cordillera of Peru and Bolivia indicate that the areas were adjacent in early Mesozoic times. New geochronological, petrological, stratigraphic, and structural research is necessary to test this hypothesis, including additional paleomagnetic investigations to determine the paleolatitudinal position of the Central Cordillera and adjacent tectonic terranes during the Triassic–Jurassic. Two stretching events are suggested for the Cretaceous: Berriasian–Hauterivian (144–127 Ma) and Aptian–Albian (121–102 Ma). During the Early Cretaceous, marine facies accumulated on an extensional basin system. Shallow-marine sedimentation ended at the end of the Cretaceous due to the accretion of oceanic terranes of the Western Cordillera. In Berriasian–Hauterivian subsidence curves, isopach maps and paleomagnetic data imply a (>180 km) wide, asymmetrical, transtensional half-rift basin existed, divided by the Santander Floresta horst or high. The location of small mafic intrusions coincides with areas of thin crust (crustal stretching factors >1.4) and maximum stretching of the subcrustal lithosphere. During the Aptian–early Albian, the basin extended toward the south in the Upper Magdalena Valley. Differences between crustal and subcrustal stretching values suggest some lowermost crustal decoupling between the crust and subcrustal lithosphere or that increased thermal thinning affected the mantle lithosphere. Late Cretaceous subsidence was mainly driven by lithospheric cooling, water loading, and horizontal compressional stresses generated by collision of oceanic terranes in western Colombia. Triassic transtensional basins were narrow and increased in width during the Triassic and Jurassic. Cretaceous transtensional basins were wider than Triassic–Jurassic basins. During the Mesozoic, the strike-slip component gradually decreased at the expense of the increase of the extensional component, as suggested by paleomagnetic data and lithosphere stretching values. During the Berriasian–Hauterivian, the eastern side of the extensional basin may have developed by reactivation of an older Paleozoic rift system associated with the Guaicáramo fault system. The western side probably developed through reactivation of an earlier normal fault system developed during Triassic–Jurassic transtension. Alternatively, the eastern and western margins of the graben may have developed along older strike-slip faults, which were the boundaries of the accretion of terranes west of the Guaicáramo fault during the Late Triassic and Jurassic. The increasing width of the graben system likely was the result of progressive tensional reactivation of preexisting upper crustal weakness zones. Lateral changes in Mesozoic sediment thickness suggest the reverse or thrust faults that now define the eastern and western borders of the EC were originally normal faults with a strike-slip component that inverted during the Cenozoic Andean orogeny. Thus, the Guaicáramo, La Salina, Bitúima, Magdalena, and Boyacá originally were transtensional faults. Their oblique orientation relative to the Mesozoic magmatic arc of the Central Cordillera may be the result of oblique slip extension during the Cretaceous or inherited from the pre-Mesozoic structural grains. However, not all Mesozoic transtensional faults were inverted.  相似文献   

2.
We combine geological and geophysical data to develop a generalized model for the lithospheric evolution of the central Andean plateau between 18° and 20° S from Late Cretaceous to present. By integrating geophysical results of upper mantle structure, crustal thickness, and composition with recently published structural, stratigraphic, and thermochronologic data, we emphasize the importance of both the crust and upper mantle in the evolution of the central Andean plateau. Four key steps in the evolution of the Andean plateau are as follows. 1) Initiation of mountain building by 70 Ma suggested by the associated foreland basin depositional history. 2) Eastward jump of a narrow, early fold–thrust belt at 40 Ma through the eastward propagation of a 200–400-km-long basement thrust sheet. 3) Continued shortening within the Eastern Cordillera from 40 to 15 Ma, which thickened the crust and mantle and established the eastern boundary of the modern central Andean plateau. Removal of excess mantle through lithospheric delamination at the Eastern Cordillera–Altiplano boundary during the early Miocene appears necessary to accommodate underthrusting of the Brazilian shield. Replacement of mantle lithosphere by hot asthenosphere may have provided the heat source for a pulse of mafic volcanism in the Eastern Cordillera and Altiplano at 24–23 Ma, and further volcanism recorded by 12–7 Ma crustal ignimbrites. 4) After 20 Ma, deformation waned in the Eastern Cordillera and Interandean zone and began to be transferred into the Subandean zone. Long-term rates of shortening in the fold–thrust belt indicate that the average shortening rate has remained fairly constant (8–10 mm/year) through time with possible slowing (5–7 mm/year) in the last 15–20 myr. We suggest that Cenozoic deformation within the mantle lithosphere has been focused at the Eastern Cordillera–Altiplano boundary where the mantle most likely continues to be removed through piecemeal delamination.  相似文献   

3.
A paleomagnetic study was carried out on the Late Jurassic Sarmiento Ophiolitic Complex (SOC) exposed in the Magallanes fold and thrust belt in the southern Patagonian Andes (southern Chile). This complex, mainly consisting of a thick succession of pillow-lavas, sheeted dikes and gabbros, is a seafloor remnant of the Late Jurassic to Early Cretaceous Rocas Verdes basin that developed along the south-western margin of South America. Stepwise thermal and alternating field demagnetization permitted the isolation of a post-folding characteristic remanence, apparently carried by fine grain (SD?) magnetite, both in the pillow-lavas and dikes. The mean “in situ” direction for the SOC is Dec: 286.9°, Inc: − 58.5°, α95: 6.9°, N: 11 (sites).Rock magnetic properties, petrography and whole-rock K–Ar ages in the same rocks are interpreted as evidence of correlation between remanence acquisition and a greenschist facies metamorphic overprint that must have occurred during latest stages or after closure and tectonic inversion of the basin in the Late Cretaceous.The mean remanence direction is anomalous relative to the expected Late Cretaceous direction from stable South America. Particularly, a declination anomaly over 50° is suggestively similar to paleomagnetically interpreted counter clockwise rotations found in thrust slices of the Jurassic El Quemado Fm. located over 100 km north of the study area in Argentina. Nevertheless, a significant ccw rotation of the whole SOC is difficult to reconcile with geologic evidence and paleogeographic models that suggest a narrow back-arc basin sub-parallel to the continental margin. A rigid-body 30° westward tilting of the SOC block around a horizontal axis trending NNW, is considered a much simpler explanation, being consistent with geologic evidence. This may have occurred as a consequence of inverse reactivation of old normal faults, which limit both the SOC exposures and the Cordillera Sarmiento to the East. The age of tilting is unknown but it must postdate remanence acquisition in the Late Cretaceous. Two major orogenic events of the southern Patagonian Andes, in the Eocene (ca. 42 Ma) and Middle Miocene (ca. 12 Ma), respectively, could have caused the proposed tilting.  相似文献   

4.
通过华北克拉通东部北缘和南缘盆地充填序列和盆地分布演化对比研究,解析了该区中生代构造转折过程。研究发现两侧盆地均大致从早侏罗世开始发育,约以晚侏罗世为界,之前盆地充填记录反映以挤压作用、岩石圈增厚为主,之后以陆内伸展、岩石圈减薄为主,显示晚侏罗世明显的构造转折,并且地壳浅部的构造体制转变均滞后于岩石圈深部构造环境的变化。然而,两侧盆地演化也有明显差别:①北缘燕辽地区从早侏罗世到白垩纪,发育了多层系的从基性、中基性到中酸性的火山岩及火山碎屑岩组合,而南缘合肥盆地仅在晚侏罗世早白垩世产出钙碱性火山岩及火山碎屑岩组合,反映出不同的深部构造过程和源区特征;②北缘的岩石圈减薄可能始于约163 Ma,南缘明显的岩石圈减薄则始于约149 Ma,而反映在盆地构造与充填尺度上的伸展作用分别对应于大约145 Ma和132 Ma;③晚侏罗世构造转折期,北缘燕辽地区粗碎屑沉积以河流体系为主,反映盆山地势高差较小;而南缘该期发育冲积扇体系,盆山地势高差较大;④北缘盆地沉积中心迁移规律复杂,而南缘总体呈现由南向北的迁移趋势。显然,大别山碰撞造山和后造山期强烈的隆升和剥露对南缘盆地演化具有极大的主导和制约作用,而北缘则显示出强烈的壳幔相互作用并伴有区域性的陆内挤压推覆(转折前)和张裂 伸展(转折后)交替的特点。华北克拉通晚中生代构造转折的时限北缘较南缘早,说明诱发这一转折事件的区域构造动力可能首先与华北北部壳幔相互作用密切关联。  相似文献   

5.
The NW–SE-striking Northeast German Basin (NEGB) forms part of the Southern Permian Basin and contains up to 8 km of Permian to Cenozoic deposits. During its polyphase evolution, mobilization of the Zechstein salt layer resulted in a complex structural configuration with thin-skinned deformation in the basin and thick-skinned deformation at the basin margins. We investigated the role of salt as a decoupling horizon between its substratum and its cover during the Mesozoic deformation by integration of 3D structural modelling, backstripping and seismic interpretation. Our results suggest that periods of Mesozoic salt movement correlate temporally with changes of the regional stress field structures. Post-depositional salt mobilisation was weakest in the area of highest initial salt thickness and thickest overburden. This also indicates that regional tectonics is responsible for the initiation of salt movements rather than stratigraphic density inversion.Salt movement mainly took place in post-Muschelkalk times. The onset of salt diapirism with the formation of N–S-oriented rim synclines in Late Triassic was synchronous with the development of the NNE–SSW-striking Rheinsberg Trough due to regional E–W extension. In the Middle and Late Jurassic, uplift affected the northern part of the basin and may have induced south-directed gravity gliding in the salt layer. In the southern part, deposition continued in the Early Cretaceous. However, rotation of salt rim synclines axes to NW–SE as well as accelerated rim syncline subsidence near the NW–SE-striking Gardelegen Fault at the southern basin margin indicates a change from E–W extension to a tectonic regime favoring the activation of NW–SE-oriented structural elements. During the Late Cretaceous–Earliest Cenozoic, diapirism was associated with regional N–S compression and progressed further north and west. The Mesozoic interval was folded with the formation of WNW-trending salt-cored anticlines parallel to inversion structures and to differentially uplifted blocks. Late Cretaceous–Early Cenozoic compression caused partial inversion of older rim synclines and reverse reactivation of some Late Triassic to Jurassic normal faults in the salt cover. Subsequent uplift and erosion affected the pre-Cenozoic layers in the entire basin. In the Cenozoic, a last phase of salt tectonic deformation was associated with regional subsidence of the basin. Diapirism of the maturest pre-Cenozoic salt structures continued with some Cenozoic rim synclines overstepping older structures. The difference between the structural wavelength of the tighter folded Mesozoic interval and the wider Cenozoic structures indicates different tectonic regimes in Late Cretaceous and Cenozoic.We suggest that horizontal strain propagation in the brittle salt cover was accommodated by viscous flow in the decoupling salt layer and thus salt motion passively balanced Late Triassic extension as well as parts of Late Cretaceous–Early Tertiary compression.  相似文献   

6.
10Be terrestrial cosmogenic nuclide surface exposure ages from moraines on Nevado Illimani, Cordillera Real, Bolivia suggest that glaciers retreated from moraines during the periods 15.5-13.0 ka, 10.0-8.5 ka, and 3.5-2.0 ka. Late glacial moraines at Illimani are associated with an ELA depression of 400-600 m, which is consistent with other local reconstructions of late glacial ELAs in the Eastern Cordillera of the central Andes. A comparison of late glacial ELAs between the Eastern Cordillera and Western Cordillera indicates a marked change toward flattening of the east-to-west regional ELA gradient. This flattening is consistent with increased precipitation from the Pacific during the late glacial period.  相似文献   

7.
It is proposed that the Bentong–Raub Suture Zone represents a segment of the main Devonian to Middle Triassic Palaeo-Tethys ocean, and forms the boundary between the Gondwana-derived Sibumasu and Indochina terranes. Palaeo-Tethyan oceanic ribbon-bedded cherts preserved in the suture zone range in age from Middle Devonian to Middle Permian, and mélange includes chert and limestone clasts that range in age from Lower Carboniferous to Lower Permian. This indicates that the Palaeo-Tethys opened in the Devonian, when Indochina and other Chinese blocks separated from Gondwana, and closed in the Late Triassic (Peninsular Malaysia segment). The suture zone is the result of northwards subduction of the Palaeo-Tethys ocean beneath Indochina in the Late Palaeozoic and the Triassic collision of the Sibumasu terrane with, and the underthrusting of, Indochina. Tectonostratigraphic, palaeobiogeographic and palaeomagnetic data indicate that the Sibumasu Terrane separated from Gondwana in the late Sakmarian, and then drifted rapidly northwards during the Permian–Triassic. During the Permian subduction phase, the East Malaya volcano-plutonic arc, with I-Type granitoids and intermediate to acidic volcanism, was developed on the margin of Indochina. The main structural discontinuity in Peninsular Malaysia occurs between Palaeozoic and Triassic rocks, and orogenic deformation appears to have been initiated in the Upper Permian to Lower Triassic, when Sibumasu began to collide with Indochina. During the Early to Middle Triassic, A-Type subduction and crustal thickening generated the Main Range syn- to post-orogenic granites, which were emplaced in the Late Triassic–Early Jurassic. A foredeep basin developed on the depressed margin of Sibumasu in front of the uplifted accretionary complex in which the Semanggol “Formation” rocks accumulated. The suture zone is covered by a latest Triassic, Jurassic and Cretaceous, mainly continental, red bed overlap sequence.  相似文献   

8.
Qing-Ren Meng   《Tectonophysics》2003,369(3-4):155-174
The northern China–Mongolia tract exhibited a tectonic transition from contractional to extensional deformation in late Mesozoic time. Late Middle to early Late Jurassic crustal shortening is widely thought to have resulted from collision of an amalgamated North China–Mongolia block and the Siberian plate, but widespread late Late Jurassic–Early Cretaceous extension has not been satisfactorily explained by existing models. Some prominent features of the extensional tectonics of the northern China–Mongolia tract are: (1) Late Jurassic voluminous volcanism prior to Early Cretaceous large-magnitude rapid extension; (2) overlapping in time of contractional deformation in the Yinshan–Yanshan belt with development of extension-related basins in the interior of the northern China–Mongolia tract; and (3) widespread occurrence of alkali granitic plutonism, extensional basins and metamorphic core complexes in the Early Cretaceous. A new explanation is advanced in this study for this sequence of events. The collision of amalgamated North China–Mongolia with Siberia led to crustal overthickening of the northern China–Mongolia tract and formation of a high-standing plateau. Subsequent breakoff at depth of the north-dipping Mongol–Okhotsk oceanic slab is suggested as the main trigger for late Mesozoic lithospheric extension of that tract. Slab breakoff resulted in mantle lithospheric stretching of the adjacent northern China–Mongolia tract with subsequent ascent of hot asthenosphere and magmatic underplating at the base of the crust. Collectively, these phenomena triggered gravitational collapse of the previously thickened crust, leading to late Late Jurassic–Early Cretaceous crustal extension, and importantly, coeval contraction along the southern margin of the plateau in the Yinshan–Yanshan belt. The proposed model provides a framework for interpreting the spatial and temporal relationships of distinct processes and reconciling some seemingly contradictory phenomena, such as the synchronous extension of northerly terranes during major contraction in the neighboring Yanshan–Yinshan belt.  相似文献   

9.
Systematic inversion of double couple focal mechanisms of shallow earthquakes in the northern Andes reveals relatively homogeneous patterns of crustal stress in three main regions. The first region, presently under the influence of the Caribbean plate, includes the northern segment of the Eastern Cordillera of Colombia and the western flank of the Central Cordillera (north of 4°N). It is characterized by WNW–ESE compression of dominantly reverse type that deflects to NW–SE in the Merida Andes of Venezuela, where it becomes mainly strike–slip in type. A major bend of the Eastern thrust front of the Eastern Cordillera, near its junction with the Merida Andes, coincides with a local deflection of the stress regime (SW–NE compression), suggesting local accommodation of the thrust belt to a rigid indenter in this area. The second region includes the SW Pacific coast of Colombia and Ecuador, currently under the influence of the Nazca plate. In this area, approximately E–W compression is mainly reverse in type. It deflects to WSW–ENE in the northern Andes south of 4°N, where it is accommodated by right-lateral displacement of the Romeral fault complex and the Eastern front of the northern Andes. The third, and most complex, region is the area of the triple junction between the South American, Nazca and Caribbean plates. It reveals two major stress regimes, both mainly strike–slip in type. The first regime involves SW–NE compression related to the interaction between the Nazca and Caribbean plates and the Panama micro-plate, typically accommodated in an E–W left-lateral shear zone. The second regime involves NW–SE compression, mainly related to the interaction between the Caribbean plate and the North Andes block which induces left-lateral displacement on the Uramita and Romeral faults north of 4°N.Deep seismicity (about 150–170 km) concentrates in the Bucaramanga nest and Cauca Valley areas. The inversion reveals a rather homogeneous attitude of the minimum stress axis, which dips towards the E. This extension is consistent with the present plunge of the Nazca and Caribbean slabs, suggesting that a broken slab may be torn under gravitational stresses in the Bucaramanga nest. This model is compatible with current blocking of the subduction in the western northern Andes, inhibiting the eastward displacement of slabs, which are forced to break and sink in to the asthenosphere under their own weight.  相似文献   

10.
The Rhine Rift System (RRS) forms part of the European Cenozoic Rift System (ECRIS) and transects the Variscan Orogen, Permo-Carboniferous troughs and Late Permian to Mesozoic thermal sag basins. Crustal and lithospheric thicknesses range in the RRS area between 24–36 km and 50–120 km, respectively. We discuss processes controlling the transformation of the orogenically destabilised Variscan lithosphere into an end-Mesozoic stabilised cratonic lithosphere, as well as its renewed destabilisation during the Cenozoic development of ECRIS. By end-Westphalian times, the major sutures of the Variscan Orogen were associated with 45–60 km deep crustal roots. During the Stephanian-Early Permian, regional exhumation of the Variscides was controlled by their wrench deformation, detachment of subducted lithospheric slabs, asthenospheric upwelling and thermal thinning of the mantle-lithosphere. By late Early Permian times, when asthenospheric temperatures returned to ambient levels, lithospheric thicknesses ranged between 40 km and 80 km, whilst the thickness of the crust was reduced to 28–35 km in response to its regional erosional and local tectonic unroofing and the interaction of mantle-derived melts with its basal parts. Re-equilibration of the lithosphere-asthenosphere system governed the subsidence of Late Permian-Mesozoic thermal sag basins that covered much of the RRS area. By end-Cretaceous times, lithospheric thicknesses had increased to 100–120 km. Paleocene mantle plumes caused renewed thermal weakening of the lithosphere. Starting in the late Eocene, ECRIS evolved in the Pyrenean and Alpine foreland by passive rifting under a collision-related north-directed compressional stress field. Following end-Oligocene consolidation of the Pyrenees, west- and northwest-directed stresses originating in the Alps controlled further development of ECRIS. The RRS remained active until the Present, whilst the southern branch of ECRIS aborted in the early Miocene. Extensional strain across ECRIS amounts to some 7 km. Plume-related thermal thinning of the lithosphere underlies uplift of the Rhenish Massif and Massif Central. Lithospheric folding controlled uplift of the Vosges-Black Forest Arch.  相似文献   

11.
Creation of the Cocos and Nazca plates by fission of the Farallon plate   总被引:4,自引:0,他引:4  
Peter Lonsdale   《Tectonophysics》2005,404(3-4):237-264
Throughout the Early Tertiary the area of the Farallon oceanic plate was episodically diminished by detachment of large and small northern regions, which became independently moving plates and microplates. The nature and history of Farallon plate fragmentation has been inferred mainly from structural patterns on the western, Pacific-plate flank of the East Pacific Rise, because the fragmented eastern flank has been subducted. The final episode of plate fragmentation occurred at the beginning of the Miocene, when the Cocos plate was split off, leaving the much reduced Farallon plate to be renamed the Nazca plate, and initiating Cocos–Nazca spreading. Some Oligocene Farallon plate with rifted margins that are a direct record of this plate-splitting event has survived in the eastern tropical Pacific, most extensively off northern Peru and Ecuador. Small remnants of the conjugate northern rifted margin are exposed off Costa Rica, and perhaps south of Panama. Marine geophysical profiles (bathymetric, magnetic and seismic reflection) and multibeam sonar swaths across these rifted oceanic margins, combined with surveys of 30–20 Ma crust on the western rise-flank, indicate that (i) Localized lithospheric rupture to create a new plate boundary was preceded by plate stretching and fracturing in a belt several hundred km wide. Fissural volcanism along some of these fractures built volcanic ridges (e.g., Alvarado and Sarmiento Ridges) that are 1–2 km high and parallel to “absolute” Farallon plate motion; they closely resemble fissural ridges described from the young western flank of the present Pacific–Nazca rise. (ii) For 1–2 m.y. prior to final rupture of the Farallon plate, perhaps coinciding with the period of lithospheric stretching, the entire plate changed direction to a more easterly (“Nazca-like”) course; after the split the northern (Cocos) part reverted to a northeasterly absolute motion. (iii) The plate-splitting fracture that became the site of initial Cocos–Nazca spreading was a linear feature that, at least through the 680 km of ruptured Oligocene lithosphere known to have avoided subduction, did not follow any pre-existing feature on the Farallon plate, e.g., a “fracture zone” trail of a transform fault. (iv) The margins of surviving parts of the plate-splitting fracture have narrow shoulders raised by uplift of unloaded footwalls, and partially buried by fissural volcanism. (v) Cocos–Nazca spreading began at 23 Ma; reports of older Cocos–Nazca crust in the eastern Panama Basin were based on misidentified magnetic anomalies.There is increased evidence that the driving force for the 23 Ma fission of the Farallon plate was the divergence of slab-pull stresses at the Middle America and South America subduction zones. The timing and location of the split may have been influenced by (i) the increasingly divergent northeast slab pull at the Middle America subduction zone, which lengthened and reoriented because of motion between the North America and Caribbean plates; (ii) the slightly earlier detachment of a northern part of the plate that had been entering the California subduction zone, contributing a less divergent plate-driving stress; and (iii) weakening of older parts of the plate by the Galapagos hotspot, which had come to underlie the equatorial region, midway between the risecrest and the two subduction zones, by the Late Oligocene.  相似文献   

12.
Two stages of extension affected the Yiwulüshan area, forming the Yiwulü High-Temperature Extensional Ductile Shear Zone (YHED) and the Waziyu Low-Temperature Extensional Ductile Shear Zone (WLED) during the Middle–Late Jurassic and Early Cretaceous, respectively. The YHED and WLED are characterized by elongation strain and plane strain, respectively. Kinematic vorticity values (Wk ), estimated from polar Mohr diagrams, suggest that pure shear-dominated and thinning-related shearing generated the YHED, whereas simple and pure shearing created the WLED during crustal thinning. From the thickness (H) and the thinning rate (μ) of the ductile shear zones, the reduced crustal thickness due to ductile shearing was estimated to be approximately 3.72 km. Based on structural analysis, contact relationships, and geochronological data, we propose that intense extensional detachment contributed to the stratigraphic gap along a Middle–Late Jurassic ductile detachment shear zone at the contact between Palaeo-Mesoproterozoic metasedimentary rocks and the Archaean basement. Furthermore, this ductile detachment shear zone was reactivated in the Early Cretaceous and lasted for 7.48 million years. After correlating the stratigraphy of the Yiwulüshan area with regions adjacent to it, we conclude that a 1.46–1.69 km-thick section of Proterozoic and Archaean basement is missing along the ductile detachment shear zone. We estimate that the crustal thickness in the Yiwulüshan region has been reduced by more than 5.41 km because of extension-related shearing and this stratigraphic gap. In addition, numerous Mesozoic extensional structures occur throughout the northeastern North China Craton, and crustal thinning has been accommodated along all of them. Our findings highlight the importance of extensional detachments and crustal thinning to lithospheric thinning.  相似文献   

13.
The Eastern Cordillera of Peru represents one of the longest (> 1200 km) Paleozoic metamorphic and magmatic belts exposed along the western Andean margin of South America. In this study, we examine the tectonothermal evolution of a key segment of the metasedimentary basement of the Eastern Cordillera of Peru (the Huaytapallana Complex) and demonstrate that it has experienced a hitherto undocumented high-grade orogenic event at 260 Ma (latest Middle Permian) based on U–Pb and Th–Pb monazite age data from paragneisses and U–Pb dating of zircon rims from leucosomes. These ages are interpreted as recording crystallization and are consistent with 255 Ma rutile growth in lower-grade units. U–Pb apatite data (c. 260–230 Ma) in all units are consistent with slow cooling from this 260 Ma metamorphic peak. U–Pb zircon geochronology of pre-tectonic plutons yield ages ranging from c. 302 Ma to c. 260 Ma. These geochronological data are augmented by new U–Pb apatite age data from other segments along the Eastern Cordillera of Peru. A regional synthesis of existing geochronological constraints from the Eastern Cordillera of Peru demonstrates that the margin has experienced a polycyclic orogenic history. Deformation and magmatism occurred at c. 480 Ma and c. 435 Ma during the Famatinian orogenic cycle, was followed by a Late Silurian to Early Carboniferous (c. 420–350 Ma) magmatic and metamorphic gap, and terminated with Gondwanide magmatism and metamorphism at c. 315 Ma and c. 260 Ma. These Famatinian and Gondwanide orogenic phases can be correlated into the Proto-Andean margin of Argentina and Chile and are thus of regional extent. The evolution of the Proto-Andean margin is thus best explained by changes in tectonic plate reorganization in a long-lived Paleozoic accretionary orogen which was undergoing phases of advance and retreat, resulting in magmatic pulses and orogenic phases which can be correlated along the length of the plate boundary.  相似文献   

14.
A 3D backstripping approach considering salt flow as a consequence of spatially changing overburden load distribution, isostatic rebound and sedimentary compaction for each backstripping step is used to reconstruct the subsidence history in the Northeast German Basin. The method allows to determine basin subsidence and the salt-related deformation during Late Cretaceous–Early Cenozoic inversion and during Late Triassic–Jurassic extension. In the Northeast German Basin, the deformation is thin-skinned in the basinal part, but thick-skinned at the basin margins. The salt cover is deformed due to Late Triassic–Jurassic extension and Late Cretaceous–Early Cenozoic inversion whereas the salt basement remained largely stable in the basin area. In contrast, the basin margins suffered strong deformation especially during Late Cretaceous–Early Cenozoic inversion. As a main question, we address the role of salt during the thin-skinned extension and inversion of the basin. In our modelling approach, we assume that the salt behaves like a viscous fluid on the geological time-scale, that salt and overburden are in hydrostatical near-equilibrium at all times, and that the volume of salt is constant. Because the basement of the salt is not deformed due to decoupling in the basin area, we consider the base of the salt as a reference surface, where the load pressure must be equilibrated. Our results indicate that major salt movements took place during Late Triassic to Jurassic E–W directed extension and during Late Cretaceous–Early Cenozoic NNE–SSW directed compression. Moreover, the study outcome suggests that horizontal strain propagation in the salt cover could have triggered passive salt movements which balanced the cover deformation by viscous flow. In the Late Triassic, strain transfer from the large graben systems in West Central Europe to the east could have caused the subsidence of the Rheinsberg Trough above the salt layer. In this context, the effective regional stress did not exceed the yield strength of the basement below the Rheinsberg Trough, but was high enough to provoke deformation of the viscous salt layer and its cover. During the Late Cretaceous–Early Cenozoic phase of inversion, horizontal strain propagation from the southern basin margin into the basin can explain the intensive thin-skinned compressive deformation of the salt cover in the basin. The thick-skinned compressive deformation along the southern basin margin may have propagated into the salt cover of the basin where the resulting folding again was balanced by viscous salt flow into the anticlines of folds. The huge vertical offset of the pre-Zechstein basement along the southern basin margin and the amount of shortening in the folded salt cover of the basin indicate that the tectonic forces responsible for this inversion event have been of a considerable magnitude.  相似文献   

15.
The integrated use of geological, geophysical, and geochemical data from Eastern Tunisia onshore and offshore samples indicate a crustal thinning induced from the Tethyan rifting. This is responsible for the subsequent evolution of the North African passive margin during the Late Cretaceous, and the creation of the fold–thrust belt and associated foreland deformations. This thinned crust was an area of mantle upwelling that favoured the increase of isotherms, the uprise of basalt magma, and the circulation of hydrothermal fluids. The Cretaceous magmatism generated a major hydrothermal event characterised by the circulation of hot fluids along faults and a relatively high heat flow in the basin. Temperature elevation and hydrothermal conditions led to alteration of basalts and generated a new mineral equilibrium around the enclosing sedimentary deposits.  相似文献   

16.
The Salar de Atacama basin, the largest “pre-Andean” basin in Northern Chile, was formed in the early Late Cretaceous as a consequence of the tectonic closure and inversion of the Jurassic–Early Cretaceous Tarapacá back arc basin. Inversion led to uplift of the Cordillera de Domeyko (CD), a thick-skinned basement range bounded by a system of reverse faults and blind thrusts with alternating vergence along strike. The almost 6000-m-thick, upper Cretaceous to lower Paleocene sequences (Purilactis Group) infilling the Salar de Atacama basin reflects rapid local subsidence to the east of the CD. Its oldest outcropping unit (Tonel Formation) comprises more than 1000 m of continental red sandstones and evaporites, which began to accumulate as syntectonic growth strata during the initial stages of CD uplift. Tonel strata are capped by almost 3000 m of sandstones and conglomerates of western provenance, representing the sedimentary response to renewed pulses of tectonic shortening, which were deposited in alluvial fan, fluvial and eolian settings together with minor lacustrine mudstone (Purilactis Formation). These are covered by 500 m of coarse, proximal alluvial fan conglomerates (Barros Arana Formation). The top of the Purilactis Group consists of Maastrichtian-Danian alkaline lava and minor welded tuffs and red beds (Cerro Totola Formation: 70–64 Ma K/Ar) deposited during an interval of tectonic quiescence when the El Molino–Yacoraite Late Cretaceous sea covered large tracts of the nearby Altiplano-Puna domain. Limestones interbedded with the Totola volcanics indicate that this marine incursion advanced westwards to reach the eastern CD slope. CD shortening in the Late Cretaceous was accompanied by volcanism and continental sedimentation in fault bounded basins associated to strike slip along the north Chilean magmatic arc to the west of the CD domain, indicating that oblique plate convergence prevailed during the Late Cretaceous. Oblique convergence seems to have been resolved into a highly partitioned strain system where margin-parallel displacements along the thermally weakened arc coexisted with margin-orthogonal shortening associated with syntectonic sedimentation in the Salar de Atacama basin. A regionally important Early Paleocene compressional event is echoed, in the Salar de Atacama basin by a, distinctive, angular unconformity which separates Paleocene continental sediments from Purilactis Group strata. The basin also records the Eocene–Early Oligocene Incaic transpressional episode, which produced, renewed uplift in the Cordillera de Domeyko and triggered the accumulation of a thick blanket of syntectonic gravels (Loma Amarilla Formation).  相似文献   

17.
《地学前缘(英文版)》2020,11(3):895-914
A section from the Linglong gold deposit on the northwestern Jiaodong Peninsula,East China,containing Late Mesozoic magmatic rocks from mafic and intermediate dikes and felsic intrusions,was chosen to investigate the lithospheric evolution of the eastern North China Craton(NCC).Zircon U-Pb data showed that low-Mg adakitic monzogranites and granodiorite intrusions were emplaced during the Late Jurassic(~145 Ma) and late Early Cretaceous(112-107 Ma),respectively;high-Mg adakitic diorite and mafic dikes were also emplaced during the Early Cretaceous at~139 Ma and ~118 Ma,and 125-145 Ma and 115-120 Ma,respectively.The geochemical data,including whole-rock major and trace element compositions and Sr-Nd-Pb isotopes,imply that the mafic dikes originated from the partial melting of a lithospheric mantle metasomatised through hydrous fluids from a subducted oceanic slab.Low-Mg adakitic monzogranites and granodiorite intrusions originated from the partial melting of the thickened lower crust of the NCC,while high-Mg adakitic diorite dikes originated from the mixing of mafic and felsic melts.Late Mesozoic magmatism showed that lithosphere-derived melts showed a similar source depth and that crust-derived felsic melts originated from the continuously thickened lower crust of the Jiaodong Peninsula from the Late Jurassic to Early Cretaceous.We infer that the lower crust of the eastern NCC was thickened through compression and subduction of the Palaeo-Pacific plate beneath the NCC during the Middle Jurassic.Slab rollback of the plate from ~160 Ma resulted in lithospheric thinning and accompanied Late Mesozoic magmatism.  相似文献   

18.
Neotectonic observations allow a new interpretation of the recent tectonic behaviour of the outer fore arc in the Caldera area, northern Chile (27°S). Two periods of deformation are distinguished, based on large-scale Neogene to Quaternary features of the westernmost part of the Coastal Cordillera: Late Miocene to Early Pliocene deformations, characterized by a weak NE–SW to E–W extension is followed by uppermost Pliocene NW–SE to E–W compression. The Middle Pleistocene to Recent time is characterized by vertical uplift and NW–SE extension. These deformations provide clear indications of the occurrence of moderate to large earthquakes. Microseismic observations, however, indicate a lack of shallow crustal seismicity in coastal zone. We propose that both long-term brittle deformation and uplift are linked to the subduction seismic cycle.  相似文献   

19.
Faruk Aydin  Orhan Karsli  Bin Chen 《Lithos》2008,104(1-4):249-266
Whole-rock geochemistry, Sr–Nd–Pb isotopes and K–Ar data are reported for alkaline samples collected from the Neogene alkaline volcanics (NAVs) in the Eastern Pontides, northeastern Turkey, in order to investigate their source and petrogenesis and geodynamic evaluation of the region. The NAVs were made of three groups that comprise of basanite–tephrite (feldspar-free; Group A), tephrite–tephriphonolite (feldspar and feldspathoid-bearing; Group B) and alkaline basalt–rhyolite (feldspathoid-free; Group C) series. These rocks cover a broad compositional range from silica-undersaturated to silica-oversaturated types, almost all of which are potassic in character. They show enrichment of LREE and LILE and depletion of HFSE, without a Eu anomaly in most of the mafic samples. Textural features and calculated pressures based on the Cpx-barometer in each series indicate that the alkaline magma equilibrated at shallow crustal depths under a pressure of about 3–4.5 kbar and approximating a crystallization depth of 9–14 km. The NAVs are slightly depleted in isotopic composition, with respect to 87Sr/86Sr (ranging from 0.705018 to 0.705643) and 143Nd/144Nd (ranging from 0.512662 to 0.512714) that indicate young Nd model ages (0.51–059 Ga). This may indicate that the parent melts tapped a homogeneous and young lithospheric mantle source which was metasomatized by subduction-derived sediments during the Late Mesozoic. Pb isotopic compositions (206Pb/204Pb = 18.85–18.95; 207Pb/204Pb = 15.60–15.74; 208Pb/204Pb = 38.82–39.25) may also be consistent with a model for an enriched subcontinental lithospheric mantle source. Lithospheric thinning and resultant upwelling of asthenosphere induced by lithospheric delamination may have favoured partial melting of chemically enriched, young lithospheric mantle beneath the Eastern Pontides. Then, the melt subsequently underwent a fractional crystallization process along with or without minor amounts of crustal assimilation, generating a wide variety of rock types in a post-collision extensional regime in the Eastern Pontides during the Neogene.  相似文献   

20.
赤峰地区晚中生代火山岩锆石U-Pb年代学及地球化学特征   总被引:1,自引:0,他引:1  
内蒙古赤峰地区发育大面积的晚中生代火山岩,是我国东部巨型火山岩带的重要组成部分。锆石U-Pb定年结果显示,火山岩主要形成于晚侏罗世160~147 Ma和早白垩世132~129 Ma两个时期,早期以中酸性火山岩为主,晚期主要为酸性火山岩,局部夹少量的基性火山岩。晚侏罗世早期的安山岩SiO_2含量较低,MgO含量较高,可能是岩石圈地幔部分熔融的产物,流纹岩是安山质熔浆底侵导致下地壳发生部分熔融的产物。晚侏罗世晚期的流纹岩具有与A型花岗岩相似的地球化学特征,表明其形成于伸展构造背景下。早白垩世晚期的流纹岩属于钾玄岩系列,与同时代的玄武岩构成双峰式岩石组合,流纹岩来源于地壳的部分熔融。结合前人研究成果,认为赤峰地区晚中生代的两期火山活动都与蒙古–鄂霍次克缝合带的演化有关,它们分别形成于两次陆壳加厚之后的陆内伸展环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号