首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The Narryer Gneiss Complex of the Yilgarn Block is a key segment of the Western Australian Precambrian Shield. It is a regional granulite facies terrain comprised of predominantly quartzo-feldspathic gneisses derived from granitic intrusions c. 3.6–3.4 Ga old. Granulite facies metamorphism occurred c. 3.3 Ga ago, and conditions of 750–850°C and 7–10 kbar are estimated for the Mukalo Creek Area (MCA) near Errabiddy in the north. The P–T path of the MCA has been derived from metamorphic assemblages in younger rocks that intruded the gneisses during at least three subsequent events, and this path is supported by reaction coronas in the older gneisses. There is no evidence for uplift immediately following peak metamorphism of the MCA, and a period of isobaric cooling is inferred from the pressures recorded in younger rocks. Pressures and temperatures estimated from metadolerites, which intruded the older gneisses during ‘granite–greenstone’tectonism at about 2.6 Ga and during early Proterozoic thrusting show that the Errabiddy area remained in the lower crust, although it was probably reheated during the younger events. Isothermal uplift to upper crustal levels occurred at c. 1.6 Ga ago, and was followed by further deformation and patchy retrogression of high-grade assemblages. The effects of younger deformation, cooling and reheating can be discerned in the older gneisses, but as there has been no pervasive deformation or rehydration, the minerals and microstructures formed during early Archaean granulite facies metamorphism for the most part are retained. The MCA remained in the lower crust for about 1700 Ma following peak metamorphism and some event unrelated to the original metamorphism was required to exhume it. Uplift occurred during development of the Capricorn Orogen, when some 30–35 km were added to the crust beneath the Errabiddy area. The recognition of early Proterozoic thrusting, plus crustal thickening, suggests that the Capricorn Orogen is a belt of regional compression which resulted from convergence of the Yilgarn and Pilbara Cratons.  相似文献   

2.
陈海东  黎娇  景耀祖  鲁宁  张国忠 《中国地质》2014,41(4):1136-1142
对内蒙古中部凉城地区的紫苏(二辉)斜长麻粒岩进行了同位素地质年代学、岩石学和岩石地球化学研究,探讨了其形成时代和构造背景。利用LA-ICP-MS锆石U-Pb法测得紫苏斜长麻粒岩岩体的年龄为(1935±9)Ma,属古元古代;研究表明该岩体形成于板内构造环境,在19亿年左右,研究区有地幔上涌并伴随玄武质岩浆的底侵作用,底侵玄武质岩浆作为岩体在下地壳就位,并发生麻粒岩相变质作用。  相似文献   

3.
Ion microprobe dating of zircon and monazite from high-grade gneisses has been used to (1) determine the timing of metamorphism in the Western Province of New Zealand, and (2) constrain the age of the protoliths from which the metamorphic rocks were derived. The Western Province comprises Westland, where mainly upper crustal rocks are exposed, and Fiordland, where middle to lower crustal levels crop out. In Westland, the oldest recognisable metamorphic event occurred at 360–370 Ma, penecontemporaneously with intrusion of the mid-Palaeozoic Karamea Batholith (c. 375 Ma). Metamorphism took place under low-pressure/high-temperature conditions, resulting in upper-amphibolite sillimanite-grade metamorphism of Lower Palaeozoic pelites (Greenland Group). Orthogneisses of younger (Cretaceous) age formed during emplacement of the Rahu Suite granite intrusives (c. 110 Ma) and were derived from protoliths including Cretaceous Separation Point suite and Devonian Karamea suite granites. In Fiordland, high-grade paragneisses with Greenland Group zircon age patterns were metamorphosed (M1) to sillimanite grade at 360 Ma. Concomitant with crustal thickening and further granite emplacement, M1 mineral assemblages were overprinted by higher-pressure kyanite-grade metamorphism (M2) at 330 Ma. It remains unclear whether the M2 event in Fiordland was primarily due to tectonic burial, as suggested by regional recumbent isoclinal folding, or whether it was due to magmatic loading, in keeping with the significant volumes of granite magma intruded at higher structural levels in the formerly contiguous Westland region. Metamorphism in Fiordland accompanied and outlasted emplacement of the Western Fiordland Orthogneiss (WFO) at 110–125 Ma. The WFO equilibrated under granulite facies conditions, whereas cover rocks underwent more limited recrystallization except for high-strain shear zones where conditions of lower to middle amphibolite facies were met. The juxtaposition of Palaeozoic kyanite-grade rocks against Cretaceous WFO granulites resulted from late Mesozoic extensional deformation and development of metamorphic core complexes in the Western Province.  相似文献   

4.
The results of geological study of the mountain framework of the southern part of the Lambert Glacier, Mawson Escarpment, Eastern Antarctica, are discussed. The studied territory is of key importance for understanding the regional geological history. The Ruker and the Lambert rock complexes have been distinguished at the Mawson Escarpment. The former is subdivided into the Mawson and Menzies groups. The polymetamorphic rocks of the Mawson Group comprise granite gneiss, orthopyroxene gneiss, and crystalline schists dated at >3000 Ma combined with tectonic wedges and blocks of the variegated sequence with ultramafic (komatiitic) rocks. The find of those rocks allows us to suggest that an ancient granite-greenstone domain existed in the territory of the Prince Charles Mts.; this domain is retained only as tectonic wedges amongst granite gneisses of the Mawson and Menzies groups composed of polymetamorphic terrigenous rocks with basic sills. The following sequence of metamorphic mineral assemblages in the Menzies Group has been established: (1) And-Crd ± St, (2) Ky-St-Grt-Bt-Ms, (3) Sil-Grt-Crd. The andalusite-type metamorphism of rocks pertaining to the Menzies Group probably has the same age as greenschist metamorphism of rocks belonging to the Collaboration Group (2917 ± 82–2878 ± 65 Ma at Mt. Ruker). The formation of kyanite-staurolite mineral assemblage (mounts Stinear, Maguire, Rymill; South Mawson Escarpment) might be related to a metamorphic event dated at 2400–2350 Ma. The formation of sillimanite-garnet and sillimanite-cordierite assemblages with staurolite relics correlates in time with emplacement of the MacColly granite 600–500 Ma ago. Polymetamorphic rocks of the Lambert Complex are migmatites and gneisses, often with orthopyroxene relics. Blocks of ultramafic rocks are localized amongst granite gneisses. The superimposed metamorphism of amphibolite and granulite facies took place 1800 Ma ago. The model Nd age of ultramafic rocks (2500 Ma) is treated as the time of emplacement of magma into the rocks of the Lambert Complex. Isotopic and geochemical evidence for Early Paleozoic granulite-facies metamorphism is known.  相似文献   

5.
Basement rocks from the Western Hindu Kush preserve evidence of multiple metamorphic and magmatic events that occurred along the boundary between the Archean–Proterozoic Afghan Central and Afghan–Tajik Blocks. To verify the different metamorphic stages or events, mineral textures and phase equilibria in metamorphic basement rocks and their age relations to magmatic episodes have been investigated. Quartzofeldspathic gneiss and migmatite with lenses of amphibolite (with assumed Proterozoic age for their metamorphism) are intruded by the Triassic Hindu Kush granitoid batholith and small Cretaceous and Oligocene granite intrusions. The age of thermal overprint (210–170 Ma) by the Triassic batholith is confirmed by new monazite data. Both Triassic and Cretaceous granitoids and surrounding basement rocks underwent subsequent metamorphism up to epidote–amphibolite facies. The degree of this metamorphism increases southward at the contact to the Kabul Block, which under-plates the Western Hindu Kush from the south. An early Miocene age was obtained by Pb–Th analyses in thorite and huttonite, which are close or slightly younger than the Oligocene granite in this area. The Cretaceous meta-granodiorite near the border with the Kabul Block contains xenoliths of granulite facies rocks that could come from the Neoarchean granulite facies basement of the Kabul Block. The multi-stage metamorphic and magmatic evolution classifies the Hindu Kush mountain belt as a long-lived suture zone that was active since the early Palaeozoic. The results of this study support the interpretation about possible relations of the Afghan Central Blocks to the southern margin of Eurasia during the evolution of Para- and Neotethys.  相似文献   

6.
Systematic mapping of a transect along the well-exposed shores of Georgian Bay, Ontario, combined with the preliminary results of structural analysis, geochronology and metamorphic petrology, places some constraints on the geological setting of high-grade metamorphism in this part of the Central Gneiss Belt. Correlations within and between map units (gneiss associations) have allowed us to recognize five tectonic units that differ in various aspects of their lithology, metamorphic and plutonic history, and structural style. The lowest unit, which forms the footwall to a regional decollement, locally preserves relic pre-Grenvillian granulite facies assemblages reworked under amphibolite facies conditions during the Grenvillian orogeny. Tectonic units above the decollement apparently lack the early granulite facies metamorphism; out-of-sequence thrusting in the south produced a duplex-like structure. Two distinct stages of Grenvillian metamorphism are apparent. The earlier stage (c. 1160–1120 Ma) produced granulite facies assemblages in the Parry Sound domain and upper amphibolite facies assemblages in the Parry Island thrust sheet. The later stage (c. 1040–1020 Ma) involved widespread, dominantly upper amphibolite facies metamorphism within and beneath the duplex. Deformation and metamorphism recently reported from south and east of the Parry Sound domain at c. 1100–1040 Ma have not yet been documented along the Georgian Bay transect. The data suggest that early convergence was followed by a period of crustal thickening in the orogenic core south-east of the transect area, with further advance to the north-west during and after the waning stages of this deformation.  相似文献   

7.
Autochthonous and parautochthonous charnockites in granulite facies of the Aldan Shield (the Aldan River upper flow) were dated. According to the geological observation data, the autochthonous and parautochthonous granite formation included successive development of nebulite (Lc1), its melting product such as early diatectite (Lc3), later “layer-by-layer” migmatite (Lc4), and diatectite (Lc5). The concordant ages of Lc1 and Lc3 were estimated at 2436 ± 10 and 2453 ± 14 Ma. The age of Lc5 was estimated by the upper concordia crossing at 1960 ± 8 Ma likely corresponding to the diatectic melt crystallization period. The process is accompanied by repeated high-temperature alterations of nebulite, diatectite, and their zircons yielding a concordant age of 1945 ± 13 Ma. This zircon making up the overgrowth rims is characterized by remarkable enrichment in uranium and thorium. The granulite facies metamorphism is confirmed by dating of monazite from migmatite after metapelite (1947.7 ± 8.7 Ma). The two main stages of the autochthonous and parautochthonous charnockite formation initiated the development of the crust magmatic chambers. The first stage (2430–2450 Ma) was synchronous to allochthonous high-K alkali granite in the Olekma granite-greenstone region. The second stage (1900–1960) implied the formation of autochthonous and parautochthonous charnockites under the granulite facies conditions and development of allochthonous charnockite and granite in the central part of the granulite areal.  相似文献   

8.
In the southeastern margin of the North China Craton, high-pressure (HP) granulite facies meta-basic rocks exposed as bands or lenses in the Precambrian metamorphic basement (e.g. Bengbu) and as xenoliths in Mesozoic intrusions (e.g. Jiagou) are characterized by the assemblage garnet + clinopyroxene + plagioclase + quartz + rutile ± Ti-rich hornblende. Cathodoluminescence imaging and mineral inclusions reveal that most zircon from the three dated samples displays distinct core-mantle-rim structures. The cores show typical igneous zircon characteristics and give ages of 2.5–2.4 Ga, thus dating the protolith of the metabasites. The mantles formed at granulite facies conditions as evidenced by inclusions of the HP granulite mineral assemblage garnet + clinopyroxene + rutile + plagioclase + quartz ± hornblende and Ti-rich biotite and yield ages of 1839 ± 31, 1811 ± 19 and 1800 ± 15 Ma. An inclusion-free rim yields an age of 176 ± 2 Ma with the lower Th/U ratio of 0.02. The geochronological and preliminary petrological data of this study suggest that the lower crust beneath the southeastern margin of the North China Craton formed at 2.5–2.4 Ga and underwent HP granulite facies metamorphism at c. 1.8 Ga. This HT-HP metamorphic event may be ascribed to large-scale crustal heating and thickening related to mantle-derived magma underplating at the base of the lower crust, as evidenced by widespread extension, rifting and related mafic magma emplacement in the North China Craton during this period. The age of 176 ± 2 Ma most likely records the late amphibolite facies retrogression occurring during exhumation.  相似文献   

9.
豫西秦岭杂岩变质带的分布及主期变质时代的限定   总被引:2,自引:1,他引:1  
豫西秦岭杂岩中变质分级可呈与造山带大致平行的带状分布,从两侧向中心变质级别升高,尤其南侧分带明显:由南向北,依次为黑云母带-石榴子石带-蓝晶石带-夕线石带,直至斜方辉石带,而不是整体上经历了麻粒岩相变质作用。局部发生的麻粒岩相变质未见明显向角闪岩相变质转化的退变结构。通过几种岩石的锆石LA-MC-ICPMS测年研究,多数样品中的锆石经受了后期强烈的改造,同位素体系或多或少被重置。尽管如此,侵位花岗岩和伟晶岩年龄限定了主期变质作用的时代应老于484±3Ma,并可能与早期的榴辉岩相变质作用在演化上有联系。主期变质(不包括榴辉岩相变质)性质与经典的巴罗式变质带可以对比;此外,研究区未经历明显的地壳增厚,与高喜马拉雅结晶岩系类似,秦岭杂岩可能经历了中、下地壳物质沿隧道流上升过程。  相似文献   

10.
Exposed cross‐sections of the continental crust are a unique geological situation for crustal evolution studies, providing the possibility of deciphering the time relationships between magmatic and metamorphic events at all levels of the crust. In the cross‐section of southern and northern Calabria, U–Pb, Rb–Sr and K–Ar mineral ages of granulite facies metapelitic migmatites, peraluminous granites and amphibolite facies upper crustal gneisses provide constraints on the late‐Hercynian peak metamorphism and granitoid magmatism as well as on the post‐metamorphic cooling. Monazite from upper crustal amphibolite facies paragneisses from southern Calabria yields similar U–Pb ages (295–293±4 Ma) to those of granulite facies metamorphism in the lower crust and of intrusions of calcalkaline and metaluminous granitoids in the middle crust (300±10 Ma). Monazite and xenotime from peraluminous granites in the middle to upper crust of the same crustal section provide slightly older intrusion ages of 303–302±0.6 Ma. Zircon from a mafic to intermediate sill in the lower crust yields a lower concordia intercept age of 290±2 Ma, which may be interpreted as the minimum age for metamorphism or intrusion. U–Pb monazite ages from granulite facies migmatites and peraluminous granites of the lower and middle crust from northern Calabria (Sila) also point to a near‐synchronism of peak metamorphism and intrusion at 304–300±0.4 Ma. At the end of the granulite facies metamorphism, the lower crustal rocks were uplifted into mid‐crustal levels (10–15 km) followed by nearly isobaric slow cooling (c. 3 °C Ma?1) as indicated by muscovite and biotite K–Ar and Rb–Sr data between 210±4 and 123±1 Ma. The thermal history is therefore similar to that of the lower crust of southern Calabria. In combination with previous petrological studies addressing metamorphic textures and P–T conditions of rocks from all crustal levels, the new geochronological results are used to suggest that the thermal evolution and heat distribution in the Calabrian crust were mainly controlled by advective heat input through magmatic intrusions into all crustal levels during the late‐Hercynian orogeny.  相似文献   

11.
靳胜凯  刘博  马明  殷嘉乐 《地质学报》2024,98(1):116-137
本文对华北克拉通北缘中段内蒙古化德地区二叠纪—三叠纪5个花岗质侵入体进行了岩相学、地球化学、锆石U Pb年代学以及Sr Nd Hf同位素研究。结果表明本次所研究的岩体主要起源于华北克拉通古老下地壳的部分熔融,八音察汗岩体形成于早二叠世(276±1 Ma),在岩浆上升过程中发生了岩浆混合作用;白音特拉岩体形成于中二叠世(270±1 Ma),为地壳加厚作用下变质杂砂岩部分熔融形成的S型花岗岩;毛忽庆岩体形成于晚二叠世(254±1 Ma),为I型花岗岩;张万良岩体与康家地岩体分别形成于早三叠世(248±1 Ma)和晚三叠世(229±1 Ma),两者均为A型花岗岩。综合前人研究,本文认为研究区在早二叠世—晚三叠世经历了古亚洲洋向华北板块俯冲、俯冲 同碰撞、持续碰撞以及造山后的伸展4个阶段,古亚洲洋东段在研究区的闭合时间应为中二叠世晚期。  相似文献   

12.
北秦岭造山带的早古生代多期变质作用   总被引:15,自引:13,他引:2  
张建新  于胜尧  孟繁聪 《岩石学报》2011,27(4):1179-1190
北秦岭造山带的秦岭岩群以高级变质岩石为特征,主要包括少量榴辉岩、高压麻粒岩和区域上广泛分布的麻粒岩-角闪岩相变质岩石。年代学研究显示秦岭岩群中不同岩石记录了多期变质作用。已有的定年资料给出北秦岭官坡地区的榴辉岩的年龄为500Ma左右,代表榴辉岩相的变质时代。结合岩相学资料,对两个高压麻粒岩样品的SHRIMP和LA-ICPMS U-Pb测定分别获得504±7Ma 和506±3Ma的年龄,应代表高压麻粒岩相变质时代。这表明高压麻粒岩和相邻的榴辉岩有相近的变质时代,但形成在造山带中不同的构热造环境中。西峡地区的角闪二辉麻粒岩的U-Pb定年给出两组早古生代年龄,一组为440±2Ma,可能代表了中低压麻粒岩相的变质时代,另一组为426±1Ma,应代表区域角闪岩相的变质时代。桐柏山北部的石榴二辉麻粒岩的U-Pb定年数据给出436±1Ma的年龄,为中压麻粒岩相的变质时代。这些资料表明北秦岭造山带经历了早奥陶世的俯冲和地壳增厚作用,并在晚志留世遭受了广泛的巴罗式区域变质作用。  相似文献   

13.
Summary The Haiyangsuo Complex in the NE Sulu ultrahigh-pressure (UHP) terrane has discontinuous, coastal exposures of Late Archean gneiss with amphibolitized granulite, amphibolite, Paleoproterozoic metagabbroic intrusives, and Cretaceous granitic dikes over an area of about 15 km2. The U–Pb SHRIMP dating of zircons indicates that theprotolith age of a garnet-biotite gneiss is >2500 Ma, whereas the granulite-facie metamorphism occurred at around 1800 Ma. A gabbroic intrusion was dated at ∼1730 Ma, and the formation of amphibolite-facies assemblages in both metagabbro and granulite occurred at ∼340–460 Ma. Petrologic and geochronological data indicate that these various rocks show no evidence of Triassic eclogite-facies metamorphism and Neoproterozoic protolith ages that are characteristics of Sulu-Dabie HP-UHP rocks, except Neoproterozoic inherited ages from post-collisional Jurassic granitic dikes. Haiyangsuo retrograde granulites with amphibolite-facies assemblages within the gneiss preserve relict garnet formed during granulite-facies metamorphism at ∼1.85 Ga. The Paleoproterozoic metamorphic events are almost coeval with gabbroic intrusions. The granulite-bearing gneiss unit and gabbro-dominated unit of the Haiyangsuo Complex were intruded by thin granitic dikes at about 160 Ma, which is coeval with post-collisional granitic intrusions in the Sulu terrane. We suggest that the Haiyangsuo Complex may represent a fragment of the Jiao-Liao-Ji Paleoproterozoic terrane developed at the eastern margin of the Sino-Korean basement, which was juxtaposed with the Sulu terrane prior to Jurassic granitic activity and regional deformation.  相似文献   

14.
Study of the magmatics in the Nakyn kimberlite field, with consideration of the isotope dating results, allowed us to establish a sequence of their formation. First, 368.5–374.4 Ma ago intrusions of the Vilyui–Markha dike belt formed. Then (363–364 Ma) intrusion of kimberlites took place. In the Early Carboniferous (338.2–345.6 Ma), alkaline basaltic magma intruded through faults controlling the kimberlites. The magmatic activity finished 331–324.9 Ma ago with the formation of explosive breccias. It has been found that the Nyurba kimberlite pipe consists of two bodies: their kimberlite melts have successively intruded through independent channels.  相似文献   

15.
耿元生 《岩石学报》2009,25(8):1830-1842
位于华北克拉通西缘的贺兰山杂岩主要由孔兹岩系和变形花岗岩(正片麻岩)所组成,前者主要由夕线石榴片麻岩、石榴二长片麻岩、变粒岩和少量的大理岩及麻粒岩所组成,后者主要包括黑云斜长片麻岩、石榴子石花岗岩、斑状花岗岩和片麻状变质闪长岩.本文报道了该区变形花岗岩的锆石SHRIMP U-Pb定年结果.黑云二长片麻岩和石榴子石花岗岩分别形成于2053±58Ma和2047±42Ma,斑状花岗岩和片麻状闪长岩分别在1955Ma和1920Ma侵位.大量的年代学资料表明,在华北克拉通北缘存在一条古元古代晚期的花岗杂岩带,该带中的花岗杂岩主要形成于三个阶段,第一阶段大于2.0Ga,第二阶段主要出现在2.0~1.87Ga期间,第三阶段的花岗杂岩在1.85~1.80Ga期间侵位.年代学研究还表明,古元古代晚期的花岗岩浆作用常常与变质事件紧密相关.  相似文献   

16.
胶北地体位于华北克拉通东部陆块胶-辽-吉带南端,主要由闪长质-TTG-花岗质片麻岩、变质表壳岩系和变质镁铁-超镁铁质岩所组成。本文通过对胶北早前寒武纪变质岩系的岩石学、矿物化学、变质反应结构和序列、变质温度和压力估算与同位素年代学资料的综合研究和总结,得出以下重要结论:(1)与华北克拉通东部陆块其它地区太古宙变质基底类似,本区也存在~2500Ma区域性新太古代变质事件,且与本区2550~2500Ma岩浆作用在时间上非常接近,其变质作用发生的时间比岩浆作用要晚10~50Myr,指示本区~2500Ma区域性变质事件可能与大规模的幔源岩浆底侵作用存在密切的成因关系。(2)胶北还存在1950~1850Ma区域性古元古代变质事件,并导致了大量高压基性和泥质麻粒岩的形成,高压基性麻粒岩主要以不规则透镜体、变形岩墙群或岩脉群的形式赋存于闪长质-TTG-花岗质片麻岩之中,并集中分布在安丘-平度-莱西-莱阳-栖霞一带,大致沿北东-南西向断续带状分布,构成了一条长约300km的古元古代高压麻粒岩相变质带。(3)本区古元古代高压麻粒岩以记录近等温减压(ITD)及随后近等压降温(IBC)的顺时针P-T-t轨迹为特征,指示本区变质杂岩在古元古代晚期曾强烈地卷入了与俯冲-拼贴-碰撞造山有关的构造过程,并可能经历了如下复杂的构造演化:(I)在古元古代晚期2000~1950Ma,随着有限大洋地壳的持续俯冲作用,本区各类变质岩的原岩开始经历一次构造增厚事件,并导致了它们的原岩经历了早期绿片岩相-角闪岩相进变质作用;(II)1950~1870Ma,大洋地壳俯冲作用结束,本区开始发生弧-陆拼贴和陆-陆碰撞作用,大陆地壳持续缩短和加厚,在加厚下地壳或岛弧根部带约50km的深度,发生了区域性高压麻粒岩相变质作用,并导致了本区变基性岩和变泥质岩分别形成了石榴石+单斜辉石+斜长石±角闪石±石英±铁-钛氧化物和石榴石+蓝晶石+钾长石+斜长石+黑云母+石英+铁-钛氧化物+熔体的高压麻粒岩相矿物组合。(III)1870~1800Ma,在同碰撞峰期变质结束之后,本区造山作用进入了后碰撞构造折返-伸展演化阶段,先后经历了早期快速构造折返和晚期缓慢冷却降温两个构造热演化阶段。其中,在早期快速构造折返阶段,高压麻粒岩经历了峰后近等温或略微增温减压退变质作用的叠加,高压基性麻粒岩表现为沿石榴石边部形成了含斜方辉石的后成合晶。与此同时,早期快速构造折返阶段还伴随着热松弛和伸展作用,出现一系列的幔源基性岩浆活动,不仅导致了本区大量未经历高压麻粒岩相变质的变基性岩群的形成,同时也诱发了区内大规模的地壳深熔作用的发生。自温度高峰期之后,本区地壳岩石还经历了一个近等压冷却降温过程,并发生了区域性角闪岩相退变质作用,高压基性麻粒岩表现为石榴石和斜方辉石边部常出现含角闪石的退变边或后成合晶。最终,在1800Ma左右,本区含电气石花岗伟晶质岩脉的大量出现,则标志着胶北地体古元古代晚期(2000~1800Ma)俯冲-拼贴-碰撞造山作用的最终结束。  相似文献   

17.
Mid-Cretaceous granulite gneisses crop out in a narrow belt in the Cucamonga region of the south-eastern foothills of the San Gabriel Mountains, southern California. Interlayered mafic granulites and pelitic, carbonate, calc-silicate and quartzofeldspathic metasediments record hornblende granulite subfacies metamorphism at approximately 8 kbar and 700–800°C. Regional deformation and formation of banded gneisses ceased by c. 108 Ma. although mafic-intermediate magmatism and high-grade metamorphism continued locally as late as c. 88 Ma. Garnet zoning in metapelitic gneisses suggests that peak metamorphism was followed locally by a period of near-isobaric cooling, but this interpretation requires diachronous cooling of the granulite belt which cannot be demonstrated without detailed thermo-chronological data. It is more likely that the entire terrane remained at granulite facies P–T conditions until 88 Ma, followed by rapid uplift associated with juxtaposition against adjacent middle and upper crustal arc terranes. Uplift occurred between c. 88 and 78 Ma at rates of approximately 1–2 km Ma-1. The geotectonic evolution of the Cucamonga granulites is similar to mid-Cretaceous high- P granulites in the Sierra Nevada and Salinian block of central California. Late Cretaceous uplift common to these granulites may provide an important tectonic link between dismembered Mesozoic batholithic terranes in the California Cordillera.  相似文献   

18.
本区经历四期变质作用,太古宙上壳岩系麻粒岩相变质、晚太古宙英云闪长岩高角闪岩相变质、早元古宙紫苏花岗岩类低角闪岩相变质和元古宙绿片岩相变质。麻粒岩相变质期可分三个阶段,早期角闪岩相、峰期麻粒岩相和晚期角闪岩相,其P-T-t轨迹为逆时针,与IBC型轨迹相似。导致麻粒岩相变质作用的热源为英云闪长质岩浆的垫托作用,形成于岛弧或活动大陆边缘。区内广泛发育的钾长花岗岩与晚太古宙高角闪岩相变质作用晚期的深熔作用有关。  相似文献   

19.
高压基性麻粒岩出露在柴北缘HP/UHP变质带的绿梁山地区,它主要呈透镜体状分布在石榴蓝晶(夕线)黑云片麻岩中。岩石学和矿物学数据显示高压基性麻粒岩经历了多阶段变质历史,早期可能经历了榴辉岩相变质作用(p>15kbar),以石榴子石中保留的少量绿辉石为特征;高压麻粒岩组合(Grt-Cpx-Pl-Qtz±Amp±Rt-Ilm)为退变质作用产物,其形成的变质条件为p=9.6~13.5kbar,T=730~870℃。晚期的变质反应以围绕石榴子石和后成合晶生成斜方辉石的为特征,形成的p-T条件为6.2~8.5kbar和720~860℃。高压基性麻粒岩中的锆石SHRIMP测定共获得两组年龄,分别为(448±3)Ma和(421±5)Ma。结合锆石阴极发光和矿物包体研究,前者代表高压麻粒岩阶段的变质年龄,后者代表晚期与斜方辉石形成有关的中低压麻粒岩阶段的变质年龄。这些年龄结果显示麻粒岩相变质作用持续了大约27Ma,这可能与早古生代祁连地块与柴达木地块碰撞作用所引起的地壳加厚和后来的热松驰有关。  相似文献   

20.
在一些典型碰撞造山带中,高压麻粒岩与榴辉岩在空间和时间上密切相关,它们之间的关系对揭示碰撞造山带的造山过程和造山机制具有重要意义.本文以中国西部的南阿尔金、柴北缘及中部的北秦岭造山带为例,详细陈述了这3个地区榴辉岩和相关的高压麻粒岩的野外关系、变质演化和形成时代,目的是要建立大陆碰撞造山带中榴辉岩和相关高压麻粒岩形成的地球动力学背景模式.南阿尔金榴辉岩呈近东西向分布在江尕勒萨依,玉石矿沟一带,与含夕线石副片麻岩、花岗质片麻岩和少量大理岩构成榴辉岩一片麻岩单元,榴辉岩中含有柯石英假象,其峰期变质条件为P=2.8~3.0GPa,T=730~850℃,并在抬升过程中经历了角闪岩-麻粒岩相的叠加;大量年代学研究显示其峰期变质时代为485~500Ma.南阿尔金高压麻粒岩分布在巴什瓦克地区,包括高压基性麻粒岩和高压长英质麻粒岩,它们与超基性岩构成了一个大约5km宽的构造岩石单元,与周围角闪岩相的片麻岩为韧性剪切带接触.长英质麻粒岩和基性麻粒岩的峰期组合均具有蓝晶石和三元长石(已变成条纹长石),形成的温压条件为T=930~1020℃,P=1.8~2.5GPa,并在退变质过程中经历了中压麻粒岩相变质作用叠加.锆石SHRIMP测定显示巴什瓦克高压麻粒岩的峰期变质时代为493~497Ma.都兰地区的榴辉岩分布柴北缘HP-UHP变质带的东端,在榴辉岩和围岩副片麻岩中均发现有柯石英保存,形成的峰期温压条件为T=670~730℃和P=2.7~3.25GPa,退变质阶段经过了角闪岩相的叠加;榴辉岩相变质时代为420~450Mao都兰地区的高压麻粒岩分布在阿尔茨托山西部,高压麻粒岩包括基性麻粒岩长英质麻粒岩,基性麻粒岩的峰期矿物组合为Grt+Cpx+Pl±Ky±Zo+Rt±Qtz,长英质麻粒岩的峰期矿物组合为:Grt+Kf+Ky+Pl+Qtz.峰期变质条件为T=800~925℃,P=1.4~1.85GPa,退变质阶段经历了角闪岩-绿片岩的改造,高压麻粒岩的变质时代为420~450Ma.北秦岭榴辉岩分布在官坡-双槐树一带,榴辉岩的峰期变质组合为Grt+Omp±Phe+Qtz+Rt,所计算的峰期温压条件为T=680~770℃和P=2.25~2.65GPa,年代学数据显示榴辉岩的变质时代为500Ma左右.北秦岭高压麻粒岩分布在含榴辉岩单元的南侧松树沟一带,包括高压基性麻粒岩和高压长英质麻粒岩,与超基性岩在空间上密切伴生,高压麻粒岩的峰期温压条件为T=850~925℃,P=1.45~1.80GPa,锆石U-Pb年代学研究显示其峰期变质时代为485~507Ma.以上三个实例显示,出现在同一造山带、在空间上伴生的高压麻粒岩和榴辉岩有各自不同的变质演化历史,但榴辉岩中的榴辉岩相变质时代和相邻的高压麻粒岩中的高压麻粒岩相变质作用时代相同或相近,这种成对出现的榴辉岩和高压麻粒岩代表了它们同时形成在造山带中不同的构造环境中,即榴辉岩的形成于大陆俯冲带中,而高压麻粒岩可能形成在俯冲带之上增厚的大陆地壳根部.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号