首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 749 毫秒
1.
We determined the boron isotope and chemical compositions of tourmaline from the Hira Buddini gold deposit within the Archean Hutti-Maski greenstone belt in southern India to investigate the evolution of the hydrothermal system and to constrain its fluid sources. Tourmaline is a minor but widespread constituent in the inner and distal alteration zones of metabasaltic and metadacite host rocks associated with the hydrothermal gold mineralization. The Hira Buddini tourmaline belongs to the dravite–schorl series with variations in Al, Fe/(Fe+Mg), Ca, Ti, and Cr contents that can be related to their host lithology. The total range of δ11B values determined is extreme, from −13.3‰ to +9.0‰, but 95% of the values are between −4 and +9‰. The boron isotope compositions of metabasalt-hosted tourmaline show a bimodal distribution with peak δ11B values at about −2‰ and +6‰. The wide range and bimodal distribution of boron isotope ratios in tourmaline require an origin from at least two isotopically distinct fluid sources, which entered the hydrothermal system separately and were subsequently mixed. The estimated δ11B values of the hydrothermal fluids, based on the peak tourmaline compositions and a mineralization temperature of 550°C, are around +1 and +10‰. The isotopically lighter of the two fluids is consistent with boron released by metamorphic devolatilization reactions from the greenstone lithologies, whereas the 11B-rich fluid is attributed to degassing of I-type granitic magmas that intruded the greenstone sequence, providing heat and fluids to the hydrothermal system. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
The sulphide deposits of the Iberian Pyrite Belt (IPB) represent an ore province of global importance. Our study presents 113 new sulphur isotope analyses from deposits selected to represent the textural spectrum of ores. Measured 34S values range from −26 to +10‰ mostly for massive and stockwork ores, in agreement with data previously published. In situ laser 34S analyses reveals a close correlation of 34S with texture. Primary diagenetic textures are dominated by relatively low 34S (−8‰ to −2‰), whereas stockwork feeder textures are dominated by higher 34S (∼+3‰ to +5‰). Intermediate textures (mainly coarse textures in stratiform zones) have intermediate 34S, although they are mostly dominated by the high 34S component. Rare barite has a homogeneous 34S around +18‰, which is consistent with direct derivation from Lower Carboniferous seawater sulphate. A dual source of sulphide sulphur in the IPB deposits has been considered. A hydrothermal source, derived from reduction of coeval seawater sulphate in the convective systems, is represented by sulphide in the feeder zones. Here variations in 34S are caused by variations in the extent of the sulphate reduction, which governs the SO4:H2S ratio. The second end-member was derived from the bacterial reduction of coeval seawater sulphate at or near the surface, as reflected in the primary textures. A distinct geographical variation in 34S and texture from SW (more bacteriogenic and primary textures) to NE (more hydrothermal textures and 34S) which reflects a variation in the relative input of each source was likely controlled by local geological environments. Given that the sulphur isotope characteristics of the IPB deposits are unlike most VMS and Kuroko deposits, and noting the dominance of a mixed reduced sedimentary and volcanic environment, we suggest that the IPB could represent an ore style which is intermediate between volcanic and sedimentary hosted massive sulphide types. Received: 8 October 1997 / Accepted: 14 May 1998  相似文献   

3.
Tourmaline is widespread in metapelites and pegmatites from the Neoproterozoic Damara Belt, which form the basement and potential source rocks of the Cretaceous Erongo granite. This study traces the B-isotope variations in tourmalines from the basement, from the Erongo granite and from its hydrothermal stage. Tourmalines from the basement are alkali-deficient schorl-dravites, with B-isotope ratios typical for continental crust (δ11B average −8.4‰ ± 1.4, n = 11; one sample at −13‰, n = 2). Virtually all tourmaline in the Erongo granite occurs in distinctive tourmaline-quartz orbicules. This “main-stage” tourmaline is alkali-deficient schorl (20–30% X-site vacancy, Fe/(Fe + Mg) 0.8–1), with uniform B-isotope compositions (δ11B −8.7‰ ± 1.5, n = 49) that are indistinguishable from the basement average, suggesting that boron was derived from anatexis of the local basement rocks with no significant shift in isotopic composition. Secondary, hydrothermal tourmaline in the granite has a bimodal B-isotope distribution with one peak at about −9‰, like the main-stage tourmaline, and a second at −2‰. We propose that the tourmaline-rich orbicules formed late in the crystallization history from an immiscible Na–B–Fe-rich hydrous melt. The massive precipitation of orbicular tourmaline nearly exhausted the melt in boron and the shift of δ11B to −2‰ in secondary tourmaline can be explained by Rayleigh fractionation after about 90% B-depletion in the residual fluid. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Hydrothermal tourmaline is common in the iron oxide-copper-gold (IOCG) deposits of the Coastal Cordillera of Chile where it occurs as large crystals in the groundmass of magmatic-hydrothermal breccias, such as in the Silvita or Tropezón ore bodies, or as small grains in replacive bodies or breccia cement in the ore-bearing andesite, as seen at the Candelaria or Carola deposits. Tourmaline shows strong chemical zoning and has a composition of schorl–dravite with significant povondraite and uvite components. The observed boron isotope composition is fairly variable, between −10.4‰ and +6.0‰ with no major differences among the different deposits, suggesting a common genetic mechanism. The δ11B values are significantly lower than those of seawater or marine evaporites and very similar to those of younger porphyry copper deposits and volcanic rocks in the region, indicating that the boron has a common, likely magmatic, origin. The predominant boron source was ultimately dewatering of the subducting slab with a significant contribution derived from the overlying continental basement. The range of δ11B values is between those of the porphyry copper deposits and the porphyry tin deposits of the Andes, suggesting that the IOCG mineralization might be genetically related to fluids having more crustal contamination than the porphyry copper deposits; such an interpretation is at odds with current models that propose that the Andean IOCG deposits are related to juvenile melts or to the circulation of basinal brines. Furthermore, the obtained δ11B data are markedly different from those of the tourmaline in the Carajás IOCG district (Brazil), suggesting that IOCGs do not form by a unique mechanism involving only one type of fluids.  相似文献   

5.
Sulphur isotopic compositions of 29 sulphide samples from the Broken Hill-type Pinnacles Deposit, NSW, are found to cluster at 0%. (mean −0.8‰). The restricted range of the (δ34S) values between −3.5 and + 3.7‰ with a mean of −0.8‰, is interpreted as reflecting partial oxidation of a dominantly magmatic sulphur source. δ34S data for galena samples fall into two groups: (1) isotopically heavier galenas (range −0.7 to 0.0‰; mean −0.4‰) which come mainly from the footwall Zn lode and (2) isotopically lighter galenas (range −3.5 to −0.8‰; mean −2.2‰) which are from the main Pb lode. Sphalerite, pyrrhotite and chalcopyrite have slightly heavier isotopic compositions (range −1.6 to +3.7‰ mean +0.3‰) but exhibit the same stratigraphic differentiation. These data are interpreted as representing fluctuating conditions at the site of ore deposition, in which upwelling hydrothermal fluids were subject to increasing fO2 and decreasing temperature with time.  相似文献   

6.
The Bainiuchang deposit in Yunnan Province, China, is located geographically between the Gejiu ore field and the Dulong ore field. In addition to >7000 t Ag reserves, the deposit possesses large-scale Pb, Zn, Sn reserves and a mass of dispersed elements (i.e., In, Cd, Ge, Ga, etc.). Based on systematic studies of sulfur isotopic composition, the authors conclude: The Bainiuchang deposit experienced two epochs of metallogenesis, i.e., the Middle-Cambrian sea-floor exhalative sedimentary metallogenic epoch and the Yanshanian magmatic hydrothermal superimposition metallogenic epoch. In the two metallogenic epochs, the δ34S values of sulfides were all near 0, showing a tendency of being enriched slightly in heavy sulfur. The δ34S values of sulfides in the early metallogenic epoch are within the range of 2‰–5‰ with a peak value range of 2‰–3‰ and an average of 3.0‰, and those of sulfides in the late metallogenic epoch are within the range of 2‰–6‰ with a peak value of 3‰–4‰ and an average of 3.9‰. For the single metallogenic epoch, sulfur in the ore-forming fluids in the early epoch already reached isotopic equilibrium and was derived mainly from underneath the magma chamber or basement metamorphic igneous rocks. Sulfur in the sulfides in the late epoch was derived mainly from magmatic hydrothermal fluids formed in the process of remelting of the basement metamorphic igneous rocks.  相似文献   

7.
The strata-bound Cu−Pb−Zn polymetallic sulfide deposits occur in metamorphic rocks of greenschist phase of the middle-upper Proterozoic Langshan Group in central Inner Mongolia. δ34S values for sulfides range from −3.1‰ to +37.3‰, and an apparent difference is noticed between vein sulfides and those in bedded rocks. For example, δ34S values for bedded pyrite range from +10.6‰ to +20.0‰, while those for vein pyrite vary from −3.1‰ to +14.1‰. δ34S of bedded pyrrhotite is in the range +7.9‰–+23.5‰ in comparison with +6.5‰–+17.1‰ for vein pyrrhotite. The wide scatter of δ34S and the enrichment of heavier sulfur indicate that sulfur may have been derived from H2S as a result of bacterial reduction of sulfates in the sea water. Sulfur isotopic composition also differs from deposit to deposit in this area because of the difference in environment in which they were formed. The mobilization of bedded sulfides in response to regional metamorphism and magmatic intrusion led to the formation of vein sulfides. δ18O and δ13C of ore-bearing rocks and wall rocks are within the range typical of ordinary marine facies, with the exception of lower values for ore-bearing marble at Huogeqi probably due to diopsidization and tremalitization of carbonate rocks. Pb isotopic composition is relatively stable and characterized by lower radio-genetic lead. The age of basement rocks was calculated to be about 23.9 Ma and ore-forming age 7.8 Ma.207Pb/204Pb−206Pb/204Pb and208Pb/204Pb−206Pb/204Pb plots indicate that Pb may probably be derived from the lower crust or upper mantle. It is believed that the deposits in this region are related to submarine volcanic exhalation superimposed by later regional metamorphism and magmatic intrusion.  相似文献   

8.
In northern Chile, between 27 and 33°S, there are numerous deposits where residual petroleum is associated with Cu-(Ag) mineralisation (the most famous being El Soldado). All of these deposits are hosted by Lower Cretaceous volcanic or volcanoclastic facies along the axis of a former backarc basin. This close relationship suggests that the generation, migration and emplacement of hydrocarbons in the Cretaceous volcanic units is a regional process, associated with the evolution of the Cretaceous backarc basin and points to the importance of pyrobitumen as an exploration tool for similar Cu–(Ag) deposits. The present work analyses four small strata-bound copper deposits located along a north–south belt approximately 10 km east of Copiapó in northern Chile. These deposits are typically hosted by pyrobitumen-rich andesitic volcanic to volcanoclastic rocks intercalated with the marine carbonate Pabellón Formation, the youngest formation within the Chañarcillo Group. The strong genetic and spatial relationships between the pyrobitumen-rich lavas and the mineral deposits allow us to define this volcanic belt as the Ocoita-Pabellón Metallotect. Two hydrothermal events can be distinguished based on the mineralogical, textural, fluid inclusion and isotope data of ore and gangue and on the optical properties of residual petroleum. During the early event, petroleum was mobilised from the source rocks into the primary and secondary porosity of the lavas by Fe-rich hydrothermal fluids, which precipitated pyrite as an early sulphide phase. The second event is characterised by Cu-rich hydrothermal fluids, which induced three successive sub-stages of Cu-sulphide precipitation. The hydrothermal fluids chemically and thermally altered the first-stage bitumen, transforming it into pyrobitumen. The present work documents similarities between the Ocoita-Pabellón Metallotect and the El Soldado ore deposit and emphasises important differences. In the El Soldado host rocks, a petroleum reservoir existed prior to the arrival of the mineralising hydrothermal fluids, the framboidal pyrite was formed by assistance of bacteria, the S of the Cu sulphides was inherited from the pyrite, and the fluid source was basin connate-metamorphic brine. In the Ocoita-Pabellón Metallotect, the hydrocarbons were mobilised into the host rocks by hydrothermal fluids; the pyrite is epigenetic, the δ34S values of pyrite and copper sulphides are very different, with distinctive light δ34S signature of Cu sulphides (δ34S between −44.7 and −17.9‰), and the calculated δ18O of hydrothermal fluids indicates the participation of meteoric water in the late phases of the hydrothermal system.
Juan HermosillaEmail:
  相似文献   

9.
At Sams Creek, a gold-bearing, peralkaline granite porphyry dyke, which has a 7 km strike length and is up to 60 m in thickness, intrudes camptonite lamprophyre dykes and lower greenschist facies metapelites and quartzites of the Late Ordovician Wangapeka formation. The lamprophyre dykes occur as thin (< 3 m) slivers along the contacts of the granite dyke. δ18Omagma values (+5 to +8‰, VSMOW) of the A-type granite suggest derivation from a primitive source, with an insignificant mature crustal contribution. Hydrothermal gold–sulphide mineralisation is confined to the granite and adjacent lamprophyre; metapelite country rocks have only weak hydrothermal alteration. Three stages of hydrothermal alteration have been identified in the granite: Stage I alteration (high fO2) consisting of magnetite–siderite±biotite; Stage II consisting of thin quartz–pyrite veinlets; and Stage III (low fO2) consisting of sulphides, quartz and siderite veins, and pervasive silicification. The lamprophyre is altered to an ankerite–chlorite–sericite assemblage. Stage III sulphide veins are composed of arsenopyrite + pyrite ± galena ± sphalerite ± gold ± chalcopyrite ± pyrrhotite ± rutile ± graphite. Three phases of deformation have affected the area, and the mineralised veins and the granite and lamprophyre dykes have been deformed by two phases of folding, the youngest of which is Early Cretaceous. Locally preserved early-formed fluid inclusions are either carbonic, showing two- or three-phases at room temperature (liquid CO2-CH4 + liquid H2O ± CO2 vapour) or two-phase liquid-rich aqueous inclusions, some of which contain clathrates. Salinities of the aqueous inclusions are in the range of 1.4 to 7.6 wt% NaCl equiv. Final homogenisation temperatures (Th) of the carbonic inclusions indicate minimum trapping temperatures of 320 to 355°C, which are not too different from vein formation temperatures of 340–380°C estimated from quartz–albite stable isotope thermometry. δ18O values of Stage II and III vein quartz range from +12 and +17‰ and have a bimodal distribution (+14.5 and +16‰) with Stage II vein quartz accounting for the lower values. Siderite in Stage III veins have δ18O (+12 to +16‰) and δ13C values (−5‰, relative to VPDB), unlike those from Wangapeka Formation metasediments (δ13Cbulk carbon values of −24 to −19‰) and underlying Arthur Marble marine carbonates (δ18O = +25‰ and δ13C = 0‰). Calculated δ18Owater (+8 to +11‰, at 340°C) and (−5‰) values from vein quartz and siderite are consistent with a magmatic hydrothermal source, but a metamorphic hydrothermal origin cannot be excluded. δ34S values of sulphides range from +5 to +10‰ (relative to CDT) and also have a bimodal distribution (modes at +6 and +9‰, correlated with Stage II and Stage III mineralisation, respectively). The δ34S values of pyrite from the Arthur Marble marine carbonates (range from +3 to +13‰) and Wangapeka Formation (range from −4 to +9.5‰) indicate that they are potential sources of sulphur for sulphides in the Sams Creek veins. Another possible source of the sulphur is the lithospheric mantle which has positive values up to +14‰. Ages of the granite, lamprophyre, alteration/mineralisation, and deformation in the region are not well constrained, which makes it difficult to identify sources of mineralisation with respect to timing. Our mineralogical and stable isotope data does not exclude a metamorphic source, but we consider that the source of the mineralisation can best be explained by a magmatic hydrothermal source. Assuming that the hydrothermal fluids were sourced from crystallisation of the Sams Creek granite or an underlying magma chamber, then the Sams Creek gold deposit appears to be a hybrid between those described as reduced granite Au–Bi deposits and alkaline intrusive-hosted Au–Mo–Cu deposits.  相似文献   

10.
New mineralogical, thermobarometric, isotopic, and geochemical data provide evidence for long and complex formation history of the Sarylakh and Sentachan Au-Sb deposits conditioned by regional geodynamics and various types of ore mineralization, differing in age and source of ore matter combined in the same ore-localizing structural units. The deposits are situated in the Taryn metallogenic zone of the East Yakutian metallogenic belt in the central Verkhoyansk-Kolyma Fold Region. They are controlled by the regional Adycha-Taryn Fault Zone that separates the Kular-Nera Terrane and the western part of the Verkhoyansk Fold-Thrust Belt. The fault extends along the strike of the northwest-trending linear folds and is deep-rooted and repeatedly reactivated. The orebodies are mineralized crush zones accompanied by sulfidated (up to 100 m wide) quartz-sericite metasomatic rocks and replacing dickite-pyrophyllite alteration near stibnite veinlets. Two stages of low-sulfide gold-quartz and stibnite mineralization are distinguished. The formation conditions of the early milk white quartz in orebodies with stibnite mineralization at the Sarylakh and Sentachan deposits are similar: temperature interval 340–280°C, salt concentration in fluids 6.8–1.6 wt % NaCl equiv, fluid pressure 3430–1050 bar, and sodic bicarbonate fluid composition. The ranges of fluid salinity overlapped at both deposits. In the late regenerated quartz that attends stibnite mineralization, fluid inclusions contain an aqueous solution with salinity of 3.2 wt % NaCl equiv and are homogenized into liquid at 304–189°C. Syngenetic gas inclusions contain nitrogen 0.19 g/cm3 in density. The pressure of 300 bar is estimated at 189°C. The composition of the captured fluid is characterized as K-Ca bicarbonatesulfate. The sulfur isotopic composition has been analyzed in pyrite and arsenopyrite from ore and metasomatic zones, as well as in coarse-, medium-, and fine-grained stibnite varieties subjected to dynamometamorphism. The following δ34S values, ‰ have been established at the Sarylakh deposit: −2.0 to −0.9 in arsenopyrite, −5.5 to −1.1 in pyrite, and −5.5 to −3.6 in stibnite. At the Sentachan deposit: −0.8 to +1.0 in arsenopyrite, +0.5 to +2.6 in pyrite, and −3.9 to +0.6 in stibnite. Sulfides from the Sentachan deposit is somewhat enriched in 34S. The 18O of milk white quartz at the Sarylakh deposit varies from +14.8 to 17.0‰ and from +16.4 to + 19.3‰ at the Sentachan. The δ18O of regenerated quartz is +16.5‰ at the Sarylakh and +17.6 to +19.8‰ at the Sentachan. The δ18O of carbonates varies from +15.0 to 16.3% at the Sarylakh and from +16.7 to +18.2‰ at the Sentachan. The δ13C of carbonates ranges from −9.5 to −12.1‰ and −7.8 to −8.5‰, respectively. The calculated $ \delta ^{18} O_{H_2 O} $ \delta ^{18} O_{H_2 O} of the early fluid in equilibrium with quartz and dolomite at 300δC are +7.9 to +10.1‰ for the Sarylakh deposit and +9.5 to +12.4‰ for the Sentachan deposit (+4.9 and 6.0‰ at 200°C for the late fluid, respectively). Most estimates fall into the interval characteristic of magmatic water (°18O = +5.5 to +9.5‰).  相似文献   

11.
The Marcona–Mina Justa deposit cluster, hosted by Lower Paleozoic metaclastic rocks and Middle Jurassic shallow marine andesites, incorporates the most important known magnetite mineralization in the Andes at Marcona (1.9 Gt at 55.4% Fe and 0.12% Cu) and one of the few major iron oxide–copper–gold (IOCG) deposits with economic Cu grades (346.6 Mt at 0.71% Cu, 3.8 g/t Ag and 0.03 g/t Au) at Mina Justa. The Middle Jurassic Marcona deposit is centred in Ica Department, Perú, and the Lower Cretaceous Mina Justa Cu (Ag, Au) prospect is located 3–4 km to the northeast. New fluid inclusion studies, including laser ablation time-of-flight inductively coupled plasma mass spectrometry (LA-TOF-ICPMS) analysis, integrated with sulphur, oxygen, hydrogen and carbon isotope analyses of minerals with well-defined paragenetic relationships, clarify the nature and origin of the hydrothermal fluid responsible for these contiguous but genetically contrasted deposits. At Marcona, early, sulphide-free stage M-III magnetite–biotite–calcic amphibole assemblages are inferred to have crystallized from a 700–800°C Fe oxide melt with a δ18O value from +5.2‰ to +7.7‰. Stage M-IV magnetite–phlogopite–calcic amphibole–sulphide assemblages were subsequently precipitated from 430–600°C aqueous fluids with dominantly magmatic isotopic compositions (δ34S = +0.8‰ to +5.9‰; δ18O = +9.6‰ to +12.2‰; δD = −73‰ to −43‰; and δ13C = −3.3‰). Stages M-III and M-IV account for over 95% of the magnetite mineralization at Marcona. Subsequent non-economic, lower temperature sulphide–calcite–amphibole assemblages (stage M-V) were deposited from fluids with similar δ34S (+1.8‰ to +5.0‰), δ18O (+10.1‰ to +12.5‰) and δ13C (−3.4‰), but higher δD values (average −8‰). Several groups of lower (<200°C, with a mode at 120°C) and higher temperature (>200°C) fluids can be recognized in the main polymetallic (Cu, Zn, Pb) sulphide stage M-V and may record the involvement of modified seawater. At Mina Justa, early magnetite–pyrite assemblages precipitated from a magmatic fluid (δ34S = +0.8‰ to +3.9‰; δ18O = +9.5‰ to +11.5‰) at 540–600°C, whereas ensuing chalcopyrite–bornite–digenite–chalcocite–hematite–calcite mineralization was the product of non-magmatic, probably evaporite-sourced, brines with δ34S ≥ +29‰, δ18O = 0.1‰ and δ13C = −8.3‰. Two groups of fluids were involved in the Cu mineralization stage: (1) Ca-rich, low-temperature (approx. 140°C) and high-salinity, plausibly a basinal brine and (2) Na (–K)-dominant with a low-temperature (approx. 140°C) and low-salinity probably meteoric water. LA-TOF-ICPMS analyses show that fluids at the magnetite–pyrite stage were Cu-barren, but that those associated with external fluids in later stages were enriched in Cu and Zn, suggesting such fluids could have been critical for the economic Cu mineralization in Andean IOCG deposits.  相似文献   

12.
The fractionation of boron isotopes between synthetic dravitic tourmaline and fluid was determined by hydrothermal experiments between 400 and 700°C at 200 MPa and at 500°C, 500 MPa. Tourmaline was crystallized from an oxide mix in presence of water that contained boron in excess. In one series of experiments, [B]fluid/[B]tour was 9 after the run; in another series it was 0.1. All experiments produced tourmaline as the sole boron-bearing solid, along with traces of quartz and talc. Powder XRD and Rietveld refinements revealed no significant amounts of tetrahedrally coordinated boron in tourmaline. 11B always preferentially fractionated into the fluid. For experiments where [B]fluid/[B]tour was 9, a consistent temperature-dependent boron isotope fractionation curve resulted, approximated by Δ11B(tour–fluid) = −4.20 · [1,000/T (K)] + 3.52; R 2 = 0.77, and valid from 400 to 700°C. No pressure dependence was observed. The fractionation (−2.7 ± 0.5‰ at 400°C; and −0.8 ± 0.5‰ at 700°C) is much lower than that previously presented by Palmer et al. (1992). Experiments where [B]fluid/[B]tour was 0.1 showed a significant larger apparent fractionation of up to −4.7‰. In one of these runs, the isotopic composition of handpicked tourmaline crystals of different size varied by 1.3‰. This is interpreted as resulting from fractional crystallization of boron isotopes during tourmaline growth due to the small boron reservoir of the fluid relative to tourmaline, thus indicating larger fractionation than observed at equilibrium. The effect is eliminated or minimized in experiments with very high boron excess in the fluid. We therefore suggest that values given by the above relation represent the true equilibrium fractionations.  相似文献   

13.
Gold Bar is one of several Carlin-type gold mining districts located in the Battle Mountain–Eureka trend, Nevada. It is composed of one main deposit, Gold Bar; five satellite deposits; and four resources that contain 1.6 Moz (50 t) of gold. All of the deposits and resources occur at the intersection of north-northwest- and northeast-trending high-angle faults in slope facies limestones of the Devonian Nevada Group exposed in windows through Ordovician basin facies siliciclastic rocks of the Roberts Mountains allochthon. Igneous intrusions and magnetic anomalies are notably absent. The Gold Bar district contains a variety of discordant and stratabound jasperoid bodies, especially along the Wall Fault zone, that were mapped and studied in some detail to identify the attributes of those most closely associated with gold ore and to constrain genetic models. Four types of jasperoids, J0, J1, J2, and J3, were distinguished on the basis of their geologic and structural settings and appearance. Field relations suggest that J0 formed during an early event. Petrographic observations, geochemistry, and δ18O values of quartz suggest it was overprinted by the hydrothermal event that produced ore-related J1, J2, and J3 jasperoids and associated gold deposits. The greater amount of siliciclastic detritus present in J0 jasperoids caused them to have higher δ18O values than J1,2,3 jasperoids hosted in underlying limestones. Ore-related jasperoids are composed of main-ore-stage replacements and late-ore-stage open-space filling quartz with variable geochemistry and an enormous range of δ18O values (24.5 and −3.7‰). Jasperoids hosted in limestones with the most anomalous Au, Ag, Hg, ±(As, Sb, Tl) concentrations and the highest δ18O values are associated with the largest deposits. The 28‰ range of jasperoid δ18O values is best explained by mixing between an 18O-enriched fluid and an 18O-depleted fluid. The positive correlation between the sizes of gold deposits and the δ18O composition of jasperoids indicates that gold was introduced by the 18O-enriched fluid. The lowest calculated δ18O value for water in equilibrium with late-ore-stage quartz at 200°C (−15‰) and the measured δD value of fluid inclusion water extracted from late-ore-stage orpiment and realgar (−116‰) indicate that the 18O-depleted fluid was composed of relatively unexchanged meteoric water. The source of the 18O-enriched ore fluid is not constrained. The δ34S values of late-ore-stage realgar, orpiment, and stibnite (5.7–15.5‰) and barite (31.5–40.9‰) suggest that H2S and sulfate were derived from sedimentary sources. Likewise, the δ13C and δ18O values of late-stage calcite (−4.8 to 1.5‰ and 11.5 to 17.4‰, respectively) suggest that CO2 was derived from marine limestones. Based on these data and the apparent absence of any Eocene intrusions in the district, Gold Bar may be the product of a nonmagmatic hydrothermal system.  相似文献   

14.
The Janggun iron deposits, Republic of␣Korea, occur as lens-shaped magnesian skarn, magnetite and base-metal sulfide orebodies developed in the Cambrian Janggun Limestone Formation. Mineralization stage of the deposits can be divided into two separate events. The skarn stage (107 Ma) consists of magnetite, pyrrhotite, base-metal sulfides, carbonates and magnesian skarn minerals. The hydrothermal stage (70 Ma) consists of base-metal sulfides, native bismuth, bismuthinite, tetrahedrite, boulangerite, bournonite and stannite. Mineral assemblages, chemical compositions and thermodynamic considerations indicate that formation temperatures, −log fs2 and −log fo2 values of ore fluids from the skarn stage were 433 to 345 °C, 8.1 to 9.7 bar and 29.4 to 31.6 bar, and the hydrothermal stage was 245 to 315 °C, 10.4 to 13.2 bar and 33.6 to 35.4 bar, respectively. Thermochemical considerations indicate that the XCO2 during magnesian skarnization ranged from 0.06 to 0.09, and the activity of H+ presumably decreased when the fluids equilibrated with host dolomitic limestone which resulted in a pH change from about 6.1 to 7.8, and decreases in fo2 and fs2. The δ34S values of ore sulfides have a wide range from 3.2 to 11.6 ‰ (CDT). Calculated 34SH2 S values of ore fluids are 2.9 to 5.4 ‰ (skarn stage) and 8.7 to 13.5 ‰ (hydrothermal stage). These are interpreted to represent an initial deep-seated, igneous source of sulfur which gave way to influence of oxidized sedimentary sulfur to hydrothermal stage. The δ13C values of carbonates in ores range from −4.6 to −2.5 ‰ (PDB). It is likely that carbon in the ore fluids was a mixture of deep-seated magmatic carbon and dissolved carbon of dolomitic limestone. The δ18OH2 O and δD values (SMOW) of water in the ore fluids were 14.7 to 1.8 and −85 to −73 ‰ during the skarn stage and 11.1 to −0.2 and −87 to −80 ‰ in the hydrothermal stage. Received: 5 March 1997 / Accepted: 28 August 1997  相似文献   

15.
The boron isotopic composition of zoned tourmaline in two metasediments from the island of Syros, determined by secondary-ion mass spectrometry (SIMS), reflects the sedimentary and metamorphic record of the rocks. Tourmaline from a silicate-bearing marble contains small (≤20 μm) detrital cores with highly variable δ 11B values (−10.7 to +3.6‰), pointing to a heterogeneous protolith derived from multiple sources. The sedimentary B isotopic record survived the entire metamorphic cycle with peak temperatures of ∼500°C. Prograde to peak metamorphic rims are homogeneous and similar among all analysed grains (δ 11B ≈ +0.9‰). The varying δ 11B values of detrital cores in the siliceous marble demonstrate that in situ B isotope analysis of tourmaline by SIMS is a potentially powerful tool for provenance studies not only in sediments but also in metasediments. A meta-tuffitic blueschist bears abundant tourmaline with dravitic cores of detrital or authigenic origin (δ 11B ≈ −3.3‰), and prograde to peak metamorphic overgrowth zones (−1.6‰). Fe-rich rims, formed during influx of B-bearing fluids under retrograde conditions, show strongly increasing δ 11B values (up to +7.7‰) towards the margins of the grains. The δ 11B values of metamorphic tourmaline from Syros, formed in mixed terrigenous–marine sediments, reflect the B signal blended from these two different sources, and was probably not altered by dehydration during subduction.  相似文献   

16.
The Eastern Iberian Central System has abundant ore showings hosted by a wide variety of hydrothermal rocks; they include Sn-W, Fe and Zn-(W) calcic and magnesian skarns, shear zone- and episyenite-hosted Cu-Zn-Sn-W orebodies, Cu-W-Sn greisens and W-(Sn), base metal and fluorite-barite veins. Systematic dating and fluid inclusion studies show that they can be grouped into several hydrothermal episodes related with the waning Variscan orogeny. The first event was at about 295 Ma followed by younger pulses associated with Early Alpine rifting and extension and dated near 277, 150 and 100 to 20 Ma, respectively (events II–IV). The δ18O-δD and δ34S studies of hydrothermal rocks have elucidated the hydrological evolution of these systems. The event I fluids are of mixed origin. They are metamorphic fluids (H2O-CO2-CH4-NaCl; δ18O=4.7 to 9.3‰; δD ab.−34‰) related to W-(Sn) veins and modified meteoric waters in the deep magnesian Sn-W skarns (H2O-NaCl, 4.5–6.4 wt% NaCl eq.; δ18O=7.3–7.8‰; δD=−77 to −74‰) and epizonal shallow calcic Zn-(W) and Fe skarns (H2O-NaCl, <8 wt% NaCl eq.; δ18O=−0.4 to 3.4‰; δD=−75 to −58‰). They were probably formed by local hydrothermal cells that were spatially and temporally related to the youngest Variscan granites, the metals precipitating by fluid unmixing and fluid-rock reactions. The minor influence of magmatic fluids confirms that the intrusion of these granites was essentially water-undersaturated, as most of the hydrothermal fluids were external to the igneous rocks. The fluids involved in the younger hydrothermal systems (events II–III) are very similar. The waters involved in the formation of episyenites, chlorite-rich greisens, retrograde skarns and phyllic and chlorite-rich alterations in the shear zones show no major chemical or isotopic differences. Interaction of the hydrothermal fluids with the host rocks was the main mechanism of ore formation. The composition (H2O-NaCl fluids with original salinities below 6.2 wt% NaCl eq.) and the δ18O (−4.6 to 6.3‰) and δD (−51 to −40‰) values are consistent with a meteoric origin, with a δ18O-shift caused by the interaction with the, mostly igneous, host rocks. These fluids circulated within regional-scale convective cells and were then channelled along major crustal discontinuities. In these shear zones the more easily altered minerals such as feldspars, actinolite and chlorite had their δ18O signatures overprinted by low temperature younger events while the quartz inherited the original signature. In the shallower portions of the hydrothermal systems, basement-cover fluorite-barite-base metal veins formed by mixing of these deep fluids with downwards percolating brines. These brines are also interpreted as of meteoric origin (δ18O< ≈ −4‰; δD=−65 to −36‰) that leached the solutes (salinity >14 wt% NaCl eq.) from evaporites hosted in the post-Variscan sequence. The δD values are very similar to most of those recorded by Kelly and Rye in Panasqueira and confirm that the Upper Paleozoic meteoric waters in central Iberia had very negative δD values (≤−52‰) whereas those of Early Mesozoic age ranged between −65 and −36‰. Received: 9 June 1999 / Accepted: 19 January 2000  相似文献   

17.
More than 140 middle-small sized deposits or minerals are present in the Weishan-Yongping ore concentration area which is located in the southern part of a typical Lanping strike-slip and pull-apart basin. It has plenty of mineral resources derived from the collision between the Indian and Asian plates. The ore-forming fluid system in the Weishan-Yongping ore concentration area can be divided into two subsystems, namely, the Zijinshan subsystem and Gonglang arc subsystem. The ore-forming fluids of Cu, Co deposits in the Gonglang arc fluid subsystem have δD values between −83.8‰ and −69‰, δ18O values between 4.17‰ and 10.45‰, and δ13C values between −13.6‰ and 3.7‰, suggesting that the ore-forming fluids of Cu, Co deposits were derived mainly from magmatic water and partly from formation water. The ore-forming fluids of Au, Pb, Zn, Fe deposits in the Zijinshan subsystem have δD values between −117.4‰ and −76‰, δ18O values between 5.32‰ and 9.56‰, and Δ13C values between −10.07‰ and −1.5‰. The ore-forming fluids of Sb deposits have δD values between −95‰ and −78‰, δ18O values between 4.5‰ and 32.3‰, and Δ13C values between −26.4‰ and −1.9‰. Hence, the ore-forming fluids of the Zijinshan subsystem must have been derived mainly from formation water and partly from magmatic water. Affected by the collision between the Indian and Asian plates, ore-forming fluids in Weishan-Yongping basin migrated considerably from southwest to northeast. At first, the Gonglang arc subsystem with high temperature and high salinity was formed. With the development of the ore-forming fluids, the Zijinshan subsystem with lower temperature and lower salinity was subsequently formed. Translated from Mineral Deposits, 2006, 25(1): 60–70 [译自: 矿床地质]  相似文献   

18.
Tourmaline in Proterozoic Massive Sulfide Deposits from Rajasthan, India   总被引:1,自引:0,他引:1  
We have analyzed the chemical composition and boron isotope composition of tourmaline from tourmalinites, granite and a quartz-tourmaline vein from the Deri ore zone and from a pegmatitic band in the Rampura-Agucha ore body. These two Proterozoic massive sulfide deposits occur in the Aravalli-Delhi orogenic belt, Rajasthan, northwest India. Tourmaline from stratiform tourmalinites closely associated with the massive sulfides in the Deri deposit have preserved their original chemical compositions despite regional and thermal metamorphism in the area. These tourmalines have low Fe/(Fe + Mg) ratios (0.19–0.30; mean 0.26) that suggest formation close to the sediment-sea water interface. The δ11B values (−15.5 and −16.4‰) are compatible with boron derived from leaching of argillaceous sediments and/or felsic volcanics underlying the original massive sulfide deposit during its formation. Boron isotope compositions measured in tourmaline from a post-ore granite and quartz-tourmaline vein in the Deri deposit indicate that boron in these tourmalines was derived from the tourmalinites produced during ore formation. The boron isotope systematics of a coarse brown tourmaline crystal from a pegmatitic band on the hanging wall contact of the Rampura-Agucha deposit indicate that 45 ± 25% of the boron within the original tourmaline was lost during upper amphibolite facies regional metamorphism. Received: 3 April 1996 / Accepted: 11 April 1996  相似文献   

19.
The origin and evolution of different ore deposits grouped in the same district are often complex and may involve inheritance from crustal or mantle geochemical anomalies, remobilization of former ore deposits and a polyphase hydrothermal history. Localized in a Proterozoic basement in the Parana state, the Ribeira fluorite district is such an example composed of three deposit types with distinct geological and geochemical characters. Emplaced at different periods from the late Proterozoic to the Cretaceous, they are roughly aligned along a belt nearly 10 km in width and 50 km in length, the southern boundary of which is a transcurrent fault. Two main ore facies are present: (1) microcrystalline ore (< 0.1 mm grains) and (2) macrocrystalline ore (with a grain size of several millimetres). The former results from the replacement of metalimestones or internal karstic sediments and the latter from microcrystalline ore dissolution and pore precipitation or recrystallization. At least two different groups of source rocks can be proposed for the trapped REE in CaF2: (1) fluorite samples associated with the Mato Preto carbonatitic rocks display a slightly negative ɛNd compatible with a mantle source and a REE pattern with the higher ΣREE and La/Yb ratio in the district; (2) other fluorites have a strongly negative ɛNd (− 14 to − 20) which indicates a crustal source. That fluorine and REE have the same source is possible in strata-bound and fracture-filling deposits, but is doubtful at Mato Preto, the only economic fluorite deposit associated with carbonatite rocks in Brazil. This occurrence within a Precambrian fluorite belt suggests that remobilization of a former strata-bound deposit was a more significant metallogenic process than magmatic differentiation. Editorial handling: DR  相似文献   

20.
Natural gases of shallow reservoirs with the carbon isotopic compositions of methane ranging from -50‰ to -60‰ (PDB) were considered as mixed gases of biogenic and thermogenic origins previously and some of them were considered as low-mature (or low temperature thermogenic) gases lately. In this paper natural gases with the carbon isotopic compositions of methane in the above range were identified using the molecular and stable carbon isotopic compositions of methane, ethane and propane. The mixed gases of biogenic and mature thermogenic origins display the characteristics of δ 13 C1 ranging from -50‰to -60‰,δ13C2 > -35‰,Δvalues (δ13C3 -δ13C2) < 5‰ and C1/∑C2 ratios < 40. Immature to low-mature gases display the characteristics of δ 13 C1 ranging from - 50‰ to - 60‰, δ13 C2 <- 40‰,Δ values (δ13C3 -δ13C2) >7‰, and C1/∑C 2 ratios >60.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号