首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 695 毫秒
1.
The relationships between the δ18O of quartz veins and veinlets pertaining to the main stage of gold mineralization at the Sukhoi Log deposit and metasomatically altered host slates are estimated. The oxygen isotopic composition of veined quartz and host slates is not uniform. The δ18O of quartz veins from the Western, Central, and Sukhoi Log areas of the deposit vary from +16 to + 18 ‰. The δ18O range of metasomatically altered slates in the Western and Sukhoi Log areas attains 6 ‰. The δ18O of quartz veins are always higher than those of host slates by 3–7‰. The regular difference in the δ18O between quartz veins and host slates indicates that the oxygen isotopic composition of the ore-bearing fluid forming the system of quartz veins and veinlets at the Sukhoi Log deposit could have formed as a result of interaction with silicate rocks, for instance, terrigenous slates enriched in δ18O. Such interaction, however, took place at deeper levels of the Sukhoi Log deposit. It is suggested that the fluid phase participating in the formation of the vein and veinlet system had initially high δ18O(>+10‰) due to interaction with the rocks enriched in δ18O at a low fluid/rock ratio. The oxygen isotope data indicate that the fluid participating in the formation of gold mineralization at the Sukhoi Log deposit was not in equilibrium with igneous rocks at high temperatures.  相似文献   

2.
The Longquanzhan gold deposit hosted in granitic cataclasites with mylontization of the foot wall of the main Yishui-Tangtou fault. 3He/4He ratios in fluid inclusions range from 0. 14 to 0. 24 R/Ra,close to those of the crust-source helium. 40Ar/36Ar ratios were measured to be 289-1811, slightly higher than those of atmospheric argon. The results of analysis of helium and argon isotopes suggested that ore-forming fluids were derived chiefly from the crust. The δ18O values of fluid inclusions from vein quartz range from -1.78‰ to 4.07‰, and the δD values of the fluid inclusions vary between -74‰ and -77‰. The hydrogen and oxygen isotope data indicated that the ore-forming fluid for the Longquanzhan gold deposit had mixed with meteoric water in the process of mineralization. This is consistent with the conclusion from the helium and argon isotope data.  相似文献   

3.
The Jinshan orogenic gold deposit is a world-class deposit hosted by a ductile shear zone caused by a transpressional terrane collision during Neoproterozoic time. Ore bodies at the deposit include laminated quartz veins and disseminated pyrite-bearing mylonite. Most quartz veins in the shear zone, with and without gold mineralization, were boudinaged during progressive shear deformation with three generations of boudinage structures produced at different stages of progressive deformation. Observations of ore-controlling structures at various scales indicate syn-deformational mineralization. Fluid inclusions from pyrite intergrown with auriferous quartz have 3He/4He ratios of 0.15–0.24 Ra and 40Ar/36Ar ratios 575–3,060. δ18Ofluid values calculated from quartz are 5.5–8.4‰, and δD values of fluid inclusions contained in quartz range between −61‰ and −75‰. The δ13C values of ankerite range from −5.0‰ to −4.2‰, and ankerite δ18O values from 4.4‰ to 8.0‰. The noble gas and stable isotope data suggest a predominant crustal source of ore fluids with less than 5% mantle component. Data also show that in situ fluids were generated locally by pervasive pressure solution, and that widespread dissolution seams acted as pathways of fluid flow, migration, and precipitation. The in situ fluids and fluids derived from deeper levels of the crust were focused by deformation and deformation structures at various scales through solution-dissolution creep, crack-seal slip, and cyclic fault-valve mechanisms during progressively localized deformation and gold mineralization.  相似文献   

4.
A set of sheeted quartz veins cutting 380 Ma monzogranite at Sandwich Point, Nova Scotia, Canada, provide an opportunity to address issues regarding fluid reservoirs and genesis of intrusion-related gold deposits. The quartz veins, locally with arsenopyrite (≤5%) and elevated Au–(Bi–Sb–Cu–Zn), occur within the reduced South Mountain Batholith, which also has other zones of anomalous gold enrichment. The host granite intruded (P = 3.5 kbars) Lower Paleozoic metaturbiditic rocks of the Meguma Supergroup, well known for orogenic vein gold mineralization. Relevant field observations include the following: (1) the granite contains pegmatite segregations and is cut by aplitic dykes and zones (≤1–2 m) of spaced fracture cleavage; (2) sheeted veins containing coarse, comb-textured quartz extend into a pegmatite zone; (3) arsenopyrite-bearing greisens dominated by F-rich muscovite occur adjacent the quartz veins; and (4) vein and greisen formation is consistent with Riedel shear geometry. Although these features suggest a magmatic origin for the vein-forming fluids, geochemical studies indicate a more complex origin. Vein quartz contains two types of aqueous fluid inclusion assemblages (FIA). Type 1 is a low-salinity (≤3 wt.% equivalent NaCl) with minor CO2 (≤2 mol%) and has T h = 280–340°C. In contrast, type 2 is a high-salinity (20–25 wt.% equivalent NaCl), Ca-rich fluid with T h = 160–200°C. Pressure-corrected fluid inclusion data reflect expulsion of a magmatic fluid near the granite solidus (650°C) that cooled and mixed with a lower temperature (400°C), wall rock equilibrated, Ca-rich fluid. Evidence for fluid unmixing, an important process in some intrusion-related gold deposit settings, is lacking. Stable isotopic (O, D, S) analyses for quartz, muscovite and arsenopyrite samples from vein and greisens indicate the following: (1) δ18Oqtz = +11.7‰ to 17.8‰ and δ18Omusc = +10.7‰ to +11.2‰; (2) δDmusc = −44‰ to−54‰; and (3) δ34Saspy = +7.8‰ to +10.3‰. These data are interpreted, in conjunction with fluid inclusion data, to reflect contamination of a magmatic-derived fluid (d18OH2O {\delta^{{{18}}}}{{\hbox{O}}_{{{{\rm{H}}_{{2}}}{\rm{O}}}}}  ≤ +10‰) by an external fluid (d18OH2O {\delta^{{{18}}}}{{\hbox{O}}_{{{{\rm{H}}_{{2}}}{\rm{O}}}}}  ≥ +15‰), the latter having equilibrated with the surrounding metasedimentary rocks. The δ34S data are inconsistent with a direct igneous source based on other studies for the host intrusion (d18OH2O {\delta^{{{18}}}}{{\hbox{O}}_{{{{\rm{H}}_{{2}}}{\rm{O}}}}}  = +5‰) and are, instead, consistent with an external reservoir for sulphur based on δ34SH2S data for the surrounding metasedimentary rocks. Divergent fluid reservoirs are also supported by analyses of Pb isotopes for pegmatitic K-feldspar and vein arsenopyrite. Collectively the data indicate that the vein- and greisen-forming fluids had a complex origin and reflect both magmatic and non-magmatic reservoirs. Thus, although the geological setting suggests a magmatic origin, the geochemical data indicate involvement of multiple reservoirs. These results suggest multiple reservoirs for this intrusion-related gold deposit setting and caution against interpreting the genesis of intrusion-related gold deposit mineralization in somewhat analogous settings based on a limited geochemical data set.  相似文献   

5.
Gold Bar is one of several Carlin-type gold mining districts located in the Battle Mountain–Eureka trend, Nevada. It is composed of one main deposit, Gold Bar; five satellite deposits; and four resources that contain 1.6 Moz (50 t) of gold. All of the deposits and resources occur at the intersection of north-northwest- and northeast-trending high-angle faults in slope facies limestones of the Devonian Nevada Group exposed in windows through Ordovician basin facies siliciclastic rocks of the Roberts Mountains allochthon. Igneous intrusions and magnetic anomalies are notably absent. The Gold Bar district contains a variety of discordant and stratabound jasperoid bodies, especially along the Wall Fault zone, that were mapped and studied in some detail to identify the attributes of those most closely associated with gold ore and to constrain genetic models. Four types of jasperoids, J0, J1, J2, and J3, were distinguished on the basis of their geologic and structural settings and appearance. Field relations suggest that J0 formed during an early event. Petrographic observations, geochemistry, and δ18O values of quartz suggest it was overprinted by the hydrothermal event that produced ore-related J1, J2, and J3 jasperoids and associated gold deposits. The greater amount of siliciclastic detritus present in J0 jasperoids caused them to have higher δ18O values than J1,2,3 jasperoids hosted in underlying limestones. Ore-related jasperoids are composed of main-ore-stage replacements and late-ore-stage open-space filling quartz with variable geochemistry and an enormous range of δ18O values (24.5 and −3.7‰). Jasperoids hosted in limestones with the most anomalous Au, Ag, Hg, ±(As, Sb, Tl) concentrations and the highest δ18O values are associated with the largest deposits. The 28‰ range of jasperoid δ18O values is best explained by mixing between an 18O-enriched fluid and an 18O-depleted fluid. The positive correlation between the sizes of gold deposits and the δ18O composition of jasperoids indicates that gold was introduced by the 18O-enriched fluid. The lowest calculated δ18O value for water in equilibrium with late-ore-stage quartz at 200°C (−15‰) and the measured δD value of fluid inclusion water extracted from late-ore-stage orpiment and realgar (−116‰) indicate that the 18O-depleted fluid was composed of relatively unexchanged meteoric water. The source of the 18O-enriched ore fluid is not constrained. The δ34S values of late-ore-stage realgar, orpiment, and stibnite (5.7–15.5‰) and barite (31.5–40.9‰) suggest that H2S and sulfate were derived from sedimentary sources. Likewise, the δ13C and δ18O values of late-stage calcite (−4.8 to 1.5‰ and 11.5 to 17.4‰, respectively) suggest that CO2 was derived from marine limestones. Based on these data and the apparent absence of any Eocene intrusions in the district, Gold Bar may be the product of a nonmagmatic hydrothermal system.  相似文献   

6.
The Marcona–Mina Justa deposit cluster, hosted by Lower Paleozoic metaclastic rocks and Middle Jurassic shallow marine andesites, incorporates the most important known magnetite mineralization in the Andes at Marcona (1.9 Gt at 55.4% Fe and 0.12% Cu) and one of the few major iron oxide–copper–gold (IOCG) deposits with economic Cu grades (346.6 Mt at 0.71% Cu, 3.8 g/t Ag and 0.03 g/t Au) at Mina Justa. The Middle Jurassic Marcona deposit is centred in Ica Department, Perú, and the Lower Cretaceous Mina Justa Cu (Ag, Au) prospect is located 3–4 km to the northeast. New fluid inclusion studies, including laser ablation time-of-flight inductively coupled plasma mass spectrometry (LA-TOF-ICPMS) analysis, integrated with sulphur, oxygen, hydrogen and carbon isotope analyses of minerals with well-defined paragenetic relationships, clarify the nature and origin of the hydrothermal fluid responsible for these contiguous but genetically contrasted deposits. At Marcona, early, sulphide-free stage M-III magnetite–biotite–calcic amphibole assemblages are inferred to have crystallized from a 700–800°C Fe oxide melt with a δ18O value from +5.2‰ to +7.7‰. Stage M-IV magnetite–phlogopite–calcic amphibole–sulphide assemblages were subsequently precipitated from 430–600°C aqueous fluids with dominantly magmatic isotopic compositions (δ34S = +0.8‰ to +5.9‰; δ18O = +9.6‰ to +12.2‰; δD = −73‰ to −43‰; and δ13C = −3.3‰). Stages M-III and M-IV account for over 95% of the magnetite mineralization at Marcona. Subsequent non-economic, lower temperature sulphide–calcite–amphibole assemblages (stage M-V) were deposited from fluids with similar δ34S (+1.8‰ to +5.0‰), δ18O (+10.1‰ to +12.5‰) and δ13C (−3.4‰), but higher δD values (average −8‰). Several groups of lower (<200°C, with a mode at 120°C) and higher temperature (>200°C) fluids can be recognized in the main polymetallic (Cu, Zn, Pb) sulphide stage M-V and may record the involvement of modified seawater. At Mina Justa, early magnetite–pyrite assemblages precipitated from a magmatic fluid (δ34S = +0.8‰ to +3.9‰; δ18O = +9.5‰ to +11.5‰) at 540–600°C, whereas ensuing chalcopyrite–bornite–digenite–chalcocite–hematite–calcite mineralization was the product of non-magmatic, probably evaporite-sourced, brines with δ34S ≥ +29‰, δ18O = 0.1‰ and δ13C = −8.3‰. Two groups of fluids were involved in the Cu mineralization stage: (1) Ca-rich, low-temperature (approx. 140°C) and high-salinity, plausibly a basinal brine and (2) Na (–K)-dominant with a low-temperature (approx. 140°C) and low-salinity probably meteoric water. LA-TOF-ICPMS analyses show that fluids at the magnetite–pyrite stage were Cu-barren, but that those associated with external fluids in later stages were enriched in Cu and Zn, suggesting such fluids could have been critical for the economic Cu mineralization in Andean IOCG deposits.  相似文献   

7.
The El Cobre deposit is located in eastern Cuba within the volcanosedimentary sequence of the Sierra Maestra Paleogene arc. The deposit is hosted by tholeiitic basalts, andesites and tuffs and comprises thick stratiform barite and anhydrite bodies, three stratabound disseminated up to massive sulphide bodies produced by silicification and sulphidation of limestones or sulphates, an anhydrite stockwork and a siliceous stockwork, grading downwards to quartz veins. Sulphides are mainly pyrite, chalcopyrite and sphalerite; gold occurs in the stratabound ores. Fluid inclusions measured in sphalerite, quartz, anhydrite and calcite show salinities between 2.3 and 5.7 wt% NaCl eq. and homogenisation temperatures between 177 and 300°C. Sulphides from the stratabound mineralisation display δ 34S values of 0‰ to +6.0‰, whilst those from the feeder zone lie between −1.4‰ and +7.3‰. Sulphides show an intra-grain sulphur isotope zonation of about 2‰; usually, δ 34S values increase towards the rims. Sulphate sulphur has δ 34S in the range of +17‰ to +21‰, except two samples with values of +5.9‰ and +7.7‰. Sulphur isotope data indicate that the thermochemical reduction of sulphate from a hydrothermal fluid of seawater origin was the main source of sulphide sulphur and that most of the sulphates precipitated by heating of seawater. The structure of the deposit, mineralogy, fluid inclusion and isotope data suggest that the deposit formed from seawater-derived fluids with probably minor supply of magmatic fluids.  相似文献   

8.
Fluid inclusions in granite quartz and three generations of veins indicate that three fluids have affected the Caledonian Galway Granite. These fluids were examined by petrography, microthermometry, chlorite thermometry, fluid chemistry and stable isotope studies. The earliest fluid was a H2O-CO2-NaCl fluid of moderate salinity (4–10 wt% NaCl eq.) that deposited late-magmatic molybdenite mineralised quartz veins (V1) and formed the earliest secondary inclusions in granite quartz. This fluid is more abundant in the west of the batholith, corresponding to a decrease in emplacement depth. Within veins, and to the east, this fluid was trapped homogeneously, but in granite quartz in the west it unmixed at 305–390 °C and 0.7–1.8 kbar. Homogeneous quartz δ18O across the batholith (9.5 ± 0.4‰n = 12) suggests V1 precipitation at high temperatures (perhaps 600 °C) and pressures (1–3 kbar) from magmatic fluids. Microthermometric data for V1 indicate lower temperatures, suggesting inclusion volumes re-equilibrated during cooling. The second fluid was a H2O-NaCl-KCl, low-moderate salinity (0–10 wt% NaCl eq.), moderate temperature (270–340 °C), high δD (−18 ± 2‰), low δ18O (0.5–2.0‰) fluid of meteoric origin. This fluid penetrated the batholith via quartz veins (V2) which infill faults active during post-consolidation uplift of the batholith. It forms the most common inclusion type in granite quartz throughout the batholith and is responsible for widespread retrograde alteration involving chloritization of biotite and hornblende, sericitization and saussuritization of plagioclase, and reddening of K-feldspar. The salinity was generated by fluid-rock interactions within the granite. Within granite quartz this fluid was trapped at 0.5–2.3 kbar, having become overpressured. This fluid probably infiltrated the Granite in a meteoric-convection system during cooling after intrusion, but a later age cannot be ruled out. The final fluid to enter the Granite and its host rocks was a H2O-NaCl-CaCl2-KCl fluid with variable salinity (8–28 wt% NaCl eq.), temperature (125–205 °C), δD (−17 to −45‰), δ18O (−3 to + 1.2‰), δ13CCO2 (−19 to 0‰) and δ34Ssulphate (13–23‰) that deposited veins containing quartz, fluorite, calcite, barite, galena, chalcopyrite sphalerite and pyrite (V3). Correlations of salinity, temperature, δD and δ18O are interpreted as the result of mixing of two fluid end-members, one a high-δD (−17 to −8‰), moderate-δ18O (1.2–2.5‰), high-δ13CCO2 (> −4‰), low-δ34Ssulphate (13‰), high-temperature (205–230 °C), moderate-salinity (8–12 wt% NaCl eq.) fluid, the other a low-δD (−61 to −45‰), low-δ18O (−5.4 to −3‰), low-δ13C (<−10‰), high-δ34Ssulphate (20–23‰) low-temperature (80–125 °C), high-salinity (21–28 wt% NaCl eq.) fluid. Geochronological evidence suggests V3 veins are late Triassic; the high-δD end-member is interpreted as a contemporaneous surface fluid, probably mixed meteoric water and evaporated seawater and/or dissolved evaporites, whereas the low-δD end-member is interpreted as a basinal brine derived from the adjacent Carboniferous sequence. This study demonstrates that the Galway Granite was a locus for repeated fluid events for a variety of reasons; from expulsion of magmatic fluids during the final stages of crystallisation, through a meteoric convection system, probably driven by waning magmatic heat, to much later mineralisation, concentrated in its vicinity due to thermal, tectonic and compositional properties of granite batholiths which encourage mineralisation long after magmatic heat has abated. Received: 3 April 1996 / Accepted: 5 May 1997  相似文献   

9.
The Xihuashan tungsten deposit, Jiangxi province, China, is a world-class vein-type ore deposit hosted in Cambrian strata and Mesozoic granitic intrusions. There are two major sets of subparallel ore-bearing quartz veins. The ore mineral assemblage includes wolframite and molybdenite, with minor amounts of arsenopyrite, chalcopyrite, and pyrite. There are only two-phase aqueous-rich inclusions in wolframite but at least three major types of inclusions in quartz: two- or three-phase CO2-rich inclusions, two-phase pure CO2 inclusions and two-phase aqueous inclusions, indicating boiling. Fluid inclusions in wolframite have relatively higher homogenization temperatures and salinities (239–380°C, 3.8–13.7 wt.% NaCl equiv) compared with those in quartz (177–329°C, 0.9–8.1 wt.% NaCl equiv). These distinct differences suggest that those conventional microthermometric data from quartz are not adequate to explain the ore formation process. Enthalpy–salinity plot shows a linear relationship, implying mixing of different sources of fluids. Although boiling occurred during vein-type mineralization, it seems negligible for wolframite deposition. Mixing is the dominant mechanism of wolframite precipitation in Xihuashan. δ34S values of the sulfides range from −1.6 to +0.1‰, indicative of a magmatic source of sulfur. δ18O values of wolframite are relatively homogeneous, ranging from +4.8‰ to +6.3‰. Oxygen isotope modeling of boiling and mixing processes also indicates that mixing of two different fluids was an important mechanism in the precipitation of wolframite.  相似文献   

10.
We determined the boron isotope and chemical compositions of tourmaline from the Hira Buddini gold deposit within the Archean Hutti-Maski greenstone belt in southern India to investigate the evolution of the hydrothermal system and to constrain its fluid sources. Tourmaline is a minor but widespread constituent in the inner and distal alteration zones of metabasaltic and metadacite host rocks associated with the hydrothermal gold mineralization. The Hira Buddini tourmaline belongs to the dravite–schorl series with variations in Al, Fe/(Fe+Mg), Ca, Ti, and Cr contents that can be related to their host lithology. The total range of δ11B values determined is extreme, from −13.3‰ to +9.0‰, but 95% of the values are between −4 and +9‰. The boron isotope compositions of metabasalt-hosted tourmaline show a bimodal distribution with peak δ11B values at about −2‰ and +6‰. The wide range and bimodal distribution of boron isotope ratios in tourmaline require an origin from at least two isotopically distinct fluid sources, which entered the hydrothermal system separately and were subsequently mixed. The estimated δ11B values of the hydrothermal fluids, based on the peak tourmaline compositions and a mineralization temperature of 550°C, are around +1 and +10‰. The isotopically lighter of the two fluids is consistent with boron released by metamorphic devolatilization reactions from the greenstone lithologies, whereas the 11B-rich fluid is attributed to degassing of I-type granitic magmas that intruded the greenstone sequence, providing heat and fluids to the hydrothermal system. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
At Sams Creek, a gold-bearing, peralkaline granite porphyry dyke, which has a 7 km strike length and is up to 60 m in thickness, intrudes camptonite lamprophyre dykes and lower greenschist facies metapelites and quartzites of the Late Ordovician Wangapeka formation. The lamprophyre dykes occur as thin (< 3 m) slivers along the contacts of the granite dyke. δ18Omagma values (+5 to +8‰, VSMOW) of the A-type granite suggest derivation from a primitive source, with an insignificant mature crustal contribution. Hydrothermal gold–sulphide mineralisation is confined to the granite and adjacent lamprophyre; metapelite country rocks have only weak hydrothermal alteration. Three stages of hydrothermal alteration have been identified in the granite: Stage I alteration (high fO2) consisting of magnetite–siderite±biotite; Stage II consisting of thin quartz–pyrite veinlets; and Stage III (low fO2) consisting of sulphides, quartz and siderite veins, and pervasive silicification. The lamprophyre is altered to an ankerite–chlorite–sericite assemblage. Stage III sulphide veins are composed of arsenopyrite + pyrite ± galena ± sphalerite ± gold ± chalcopyrite ± pyrrhotite ± rutile ± graphite. Three phases of deformation have affected the area, and the mineralised veins and the granite and lamprophyre dykes have been deformed by two phases of folding, the youngest of which is Early Cretaceous. Locally preserved early-formed fluid inclusions are either carbonic, showing two- or three-phases at room temperature (liquid CO2-CH4 + liquid H2O ± CO2 vapour) or two-phase liquid-rich aqueous inclusions, some of which contain clathrates. Salinities of the aqueous inclusions are in the range of 1.4 to 7.6 wt% NaCl equiv. Final homogenisation temperatures (Th) of the carbonic inclusions indicate minimum trapping temperatures of 320 to 355°C, which are not too different from vein formation temperatures of 340–380°C estimated from quartz–albite stable isotope thermometry. δ18O values of Stage II and III vein quartz range from +12 and +17‰ and have a bimodal distribution (+14.5 and +16‰) with Stage II vein quartz accounting for the lower values. Siderite in Stage III veins have δ18O (+12 to +16‰) and δ13C values (−5‰, relative to VPDB), unlike those from Wangapeka Formation metasediments (δ13Cbulk carbon values of −24 to −19‰) and underlying Arthur Marble marine carbonates (δ18O = +25‰ and δ13C = 0‰). Calculated δ18Owater (+8 to +11‰, at 340°C) and (−5‰) values from vein quartz and siderite are consistent with a magmatic hydrothermal source, but a metamorphic hydrothermal origin cannot be excluded. δ34S values of sulphides range from +5 to +10‰ (relative to CDT) and also have a bimodal distribution (modes at +6 and +9‰, correlated with Stage II and Stage III mineralisation, respectively). The δ34S values of pyrite from the Arthur Marble marine carbonates (range from +3 to +13‰) and Wangapeka Formation (range from −4 to +9.5‰) indicate that they are potential sources of sulphur for sulphides in the Sams Creek veins. Another possible source of the sulphur is the lithospheric mantle which has positive values up to +14‰. Ages of the granite, lamprophyre, alteration/mineralisation, and deformation in the region are not well constrained, which makes it difficult to identify sources of mineralisation with respect to timing. Our mineralogical and stable isotope data does not exclude a metamorphic source, but we consider that the source of the mineralisation can best be explained by a magmatic hydrothermal source. Assuming that the hydrothermal fluids were sourced from crystallisation of the Sams Creek granite or an underlying magma chamber, then the Sams Creek gold deposit appears to be a hybrid between those described as reduced granite Au–Bi deposits and alkaline intrusive-hosted Au–Mo–Cu deposits.  相似文献   

12.
Oxygen isotopic composition was studied in the altered host rocks of the Dal’negorsk borosilicate deposit in order to establish a boron source and the origin of ore-forming fluids responsible for deposition of economic borosilicate ore. The relationships between oxygen isotopic composition and geochemistry of the altered igneous rocks occupying various structural and temporal positions in the ore zone were studied, including premineral high-potassium minor intrusions located in the zones of datolite mineralization; alkali basalt, gabbro, and breccia from the sedimentary framework of the deposit; and postmineral basaltic andesite, basalt, and dolerite dikes. It was suggested that interaction of aqueous fluid with host rocks brought about not only variation in oxygen isotopic composition but also shifts in geochemistry of these rocks, especially as concerns the chemical elements contained in ore-forming fluid. The disturbance of oxygen isotopic system is typical of all studied rocks: δ18O values sharply decrease indicating interaction with aqueous fluid at elevated temperatures. The lowest δ18O (from −2.9 to +0.1‰) is characteristic of the premineral high-potassium and ultrapotassium minor intrusions from skarn-datolite zone. Igneous rocks from the sedimentary framework of the deposit have δ18O of +2 to −0.9‰ The δ18O of postmineral basaltic andesite, basalt, and dolerite dikes varies from 0 to +7‰ with increasing distance from the ore zone. The oxygen isotopic composition of aqueous fluid evidences its exogenic origin. The geochemical and isotopic characteristics of ore-forming fluid show that it could have been deep-seated subsurface water similar to the contemporary water of the Alpine fold zone, which contain up to 700–1000 mg/l B and is distinguished by high K, Li, Rb, Cs contents and high K/Na ratio. Similar geochemistry is characteristic of the fluid inclusions in quartz from ore zones. It cannot be ruled out that continental evaporites were a source of boron as well. The relationships between δ18O, K-Ar age, and geochemical parameters of premineral and postmineral altered intrusive bodies allow us to suggest that the subsurface B-bearing water discharged through narrow channels controlled by premineral basaltic bodies. The discharge was probably initiated by emplacement of basalt and dolerite dikes.  相似文献   

13.
 Late Proterozoic to Cambrian carbonate rocks from Lone Mountain, west central Nevada, record multiple post-depositional events including: (1) diagenesis, (2) Mesozoic regional metamorphism, (3) Late Cretaceous contact metamorphism, related to the emplacement of the Lone Mountain granitic pluton and (4) Tertiary hydrothermal alteration associated with extension, uplift and intrusion of silicic porphyry and lamprophyre dikes. Essentially pure calcite and dolomite marbles have stable isotopic compositions that can be divided into two groups, one with positive δ13C values from+3.1 to +1.4 ‰ (PDB) and high δ18O values from +21.5 to +15.8 ‰ (SMOW), and the other with negative δ13C values from –3.3 to –3.6‰ and low δ18O values from +16.9 to +11.1‰. Marbles also contain minor amounts of quartz, muscovite and phlogopite. Brown and blue luminescent, clear, smooth textured quartz grains from orange luminescent calcite marbles have high δ18O values from +23.9 to +18.1‰, while brown luminescent, opaque, rough textured quartz grains from red luminescent dolomite marbles typically have low δ18O values from +2.0 to +9.3‰. The δ18O values of muscovite and phlogopite from marbles are typical of micas in metamorphic rocks, with values between +10.4 and +14.4‰, whereas mica δD values are very depleted, varying from −102 to −156‰. No significant lowering of the δ18O values of Lone Mountain carbonates is inferred to have occurred during metamorphism as a result of devolatilization reactions because of the essentially pure nature of the marbles. Bright luminescence along the edges of fractures, quartz cements and quartz overgrowths in dolomite marbles, low δD values of micas, negative δ13C values and low δ18O values of calcite and dolomite, and depleted δ18O values of quartz from dolomite marbles all indicate that meteoric fluids interacted with Lone Mountain marbles during the Tertiary. Partial oxygen isotopic exchange between calcite and low 18O meteoric fluids lowered the δ18O values of calcite, resulting in uniform quartz-calcite fractionations that define an apparent pseudoisotherm. These quartz-calcite fractionations significantly underestimate both the temperature of metamorphism and the temperature of post-metamorphic alteration. Partial oxygen isotopic exchange between quartz and meteoric fluids also resulted in 18O depletion of quartz from dolomite marbles. This partial exchange was facilitated by an increase in the surface area of the quartz as a result of its dissolution by meteoric fluids. The negative δ13C values in carbonates result from the oxidation of organic material by meteoric fluids following metamorphism. Stable isotopic data from Lone Mountain marbles are consistent with the extensive circulation of meteoric hydrothermal fluids throughout western Nevada in Tertiary time. Received: 1 February 1994/Accepted: 12 September 1995  相似文献   

14.
The Serrinha gold deposit of the Gurupi Belt, northern Brazil, belongs to the class of orogenic gold deposits. The deposit is hosted in highly strained graphitic schist belonging to a Paleoproterozoic (∼2,160 Ma) metavolcano-sedimentary sequence. The ore-zones are up to 11 m thick, parallel to the regional NW–SE schistosity, and characterized by quartz-carbonate-sulfide veinlets and minor disseminations. Textural and structural data indicate that mineralization was syn- to late-tectonic and postmetamorphic. Fluid inclusion studies identified early CO2 (CH4-N2) and CO2 (CH4-N2)-H2O-NaCl inclusions that show highly variable phase ratios, CO2 homogenization, and total homogenization temperatures both to liquid and vapor, interpreted as the product of fluid immiscibility under fluctuating pressure conditions, more or less associated with postentrapment modifications. The ore-bearing fluid typically has 18–33mol% of CO2, up to 4mol% of N2, and less than 2mol% of CH4 and displays moderate to high densities with salinity around 4.5wt% NaCl equiv. Mineralization occurred around 310 to 335°C and 1.3 to 3.0 kbar, based on fluid inclusion homogenization temperatures and oxygen isotope thermometry with estimated oxygen fugacity indicating relatively reduced conditions. Stable isotope data on quartz, carbonate, and fluid inclusions suggest that veins formed from fluids with δ18OH2O and δDH2O (310–335°C) values of +6.2 to +8.4‰ and −19 to −80‰, respectively, which might be metamorphic and/or magmatic and/or mantle-derived. The carbon isotope composition (δ13C) varies from −14.2 to −15.7‰ in carbonates; it is −17.6‰ in fluid inclusion CO2 and −23.6‰ in graphite from the host rock. The δ34S values of pyrite are −2.6 to −7.9‰. The strongly to moderately negative carbon isotope composition of the carbonates and inclusion fluid CO2 reflects variable contribution of organic carbon to an originally heavier fluid (magmatic, metamorphic, or mantle-derived) at the site of deposition and sulfur isotopes indicate some oxidation of the originally reduced fluid. The deposition of gold is interpreted to have occurred mainly in response to phase separation and fluid-rock interactions such as CO2 removal and desulfidation reactions that provoked variations in the fluid pH and redox conditions.  相似文献   

15.
The Zambian Copperbelt forms the southeastern part of the 900-km-long Neoproterozoic Lufilian Arc and contains one of the world’s largest accumulations of sediment-hosted stratiform copper mineralization. The Nchanga deposit is one of the most significant ore systems in the Zambian Copperbelt and contains two major economic concentrations of copper and cobalt, hosted within the Lower Roan Group of the Katangan Supergroup. A Lower Orebody (copper only) and Upper Orebody (copper and cobalt) occur towards the top of arkosic units and within the base of overlying shales. The sulfide mineralogy includes pyrite, bornite, chalcopyrite, and chalcocite, although in the Lower Orebody, sulfide phases are partially or completely replaced by malachite and copper oxides. Carrollite is the major cobalt-bearing phase and is restricted to fault-propagation fold zones within a feldspathic arenite. Hydrothermal alteration minerals include dolomite, phlogophite, sericite, rutile, quartz, tourmaline, and chlorite. Quartz veins from the mine sequence show halite-saturated fluid inclusions, ranging from ~31 to 38 wt% equivalent NaCl, with homogenisation temperatures (ThTOT) ranging between 140 and 180°C. Diagenetic pyrites in the lower orebody show distinct, relatively low δ 34S, ranging from −1 to −17‰ whereas arenite- and shale-hosted copper and cobalt sulfides reveal distinctly different δ 34S from −1 to +12‰ for the Lower Orebody and +5 to +18‰ for the Upper Orebody. There is also a clear distinction between the δ 34S mean of +12.1±3.3‰ (n=65) for the Upper Orebody compared with +5.2±3.6‰ (n=23) for the Lower Orebody. The δ 13C of dolomites from units above the Upper Orebody give δ 13C values of +1.4 to +2.5‰ consistent with marine carbon. However, dolomite from the shear-zones and the alteration assemblages within the Upper Orebody show more negative δ 13C values: −2.9 to −4.0‰ and −5.6 to −8.3‰, respectively. Similarly, shear zone and Upper Orebody dolomites give a δ 18O of +11.7 to +16.9‰ compared to Lower Roan Dolomites, which show δ 18O of +22.4 to +23.0‰. Two distinct structural regimes are recognized in the Nchanga area: a weakly deformed zone consisting of basement and overlying footwall siliciclastics, and a moderate to tightly folded zone of meta-sediments of the Katangan succession. The fold geometry of the Lower Roan package is controlled by internal thrust fault-propagation folds, which detach at the top of the lowermost arkose or within the base of the overlying stratigraphy and show vergence towards the NE. Faulting and folding are considered to be synchronous, as folding predominantly occurred at the tips of propagating thrust faults, with local thrust breakthrough. The data from Nchanga suggests a strong link between ore formation and the development of structures during basin inversion as part of the Lufilian Orogeny. Sulfides tend to be concentrated within arenites or coarser-grained layers within shale units, suggesting that host-rock porosity and possibly permeability played a role in ore formation. However, sulfides are also commonly orientated along, but not deformed by, a tectonic fabric or hosted within small fractures that suggest a significant role for deformation in the development of the mineralization. The ore mineralogy, hydrothermal alteration, and stable isotope data lend support to models consistent with the thermochemical reduction of a sulfate- (and metal) enriched hydrothermal fluid, at the site of mineralization. There is no evidence at Nchanga for a contribution of bacteriogenic sulfide, produced during sedimentation or early diagenesis, to the ores.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.Editorial handling: H. Frimmel  相似文献   

16.
Vein-type tin mineralization in the Dadoushan deposit, Laochang ore field, Gejiu district, SW China, is predominantly hosted in Triassic carbonate rocks (Gejiu Formation) over cupolas of the unexposed Laochang equigranular granite intrusion. The most common vein mineral is tourmaline, accompanied by skarn minerals (garnet, diopside, epidote, phlogopite) and beryl. The main ore mineral is cassiterite, accompanied by minor chalcopyrite, pyrrhotite, and pyrite, as well as scheelite. The tin ore grade varies with depth, with the highest grades (~1.2 % Sn) prevalent in the lower part of the vein zone. Muscovite 40Ar–39Ar dating yielded a plateau age of 82.7 ± 0.7 Ma which defines the age of the vein-type mineralization. Measured sulfur isotope compositions (δ 34S = −4.1 to 3.9 ‰) of the sulfides (arsenopyrite, chalcopyrite, pyrite, and pyrrhotite) indicate that the sulfur in veins is mainly derived from a magmatic source. The sulfur isotope values of the ores are consistent with those from the underlying granite (Laochang equigranular granite, −3.7 to 0.1 ‰) but are different from the carbonate wall rocks of the Gejiu Formation (7.1 to 11.1 ‰). The calculated and measured oxygen and hydrogen isotope compositions of the ore-forming fluids (δ 18OH2O = −2.4 to 5.5 ‰, δD = −86 to −77 ‰) suggest an initially magmatic fluid which gradually evolved towards meteoric water during tin mineralization.  相似文献   

17.
The Samgwang mine is located in the Cheongyang gold district (Cheonan Metallogenic Province) of the Republic of Korea. It consists of eight massive, gold-bearing quartz veins that filled NE- and NW-striking fractures along fault zones in Precambrian granitic gneiss of the Gyeonggi massif. Their mineralogy and paragenesis allow two separate vein-forming episodes to be recognized, temporally separated by a major faulting event. The ore minerals occur in quartz and calcite of stage I, associated with fracturing and healing of veins. Hydrothermal wall-rock alteration minerals of stage I include Fe-rich chlorite (Fe/(Fe+Mg) ratios 0.74-0.81), muscovite, illite, K-feldspar, and minor arsenopyrite, pyrite, and carbonates. Sulfide minerals deposited along with electrum during this stage include arsenopyrite, pyrite, pyrrhotite, sphalerite, marcasite, chalcopyrite, galena, argentite, pyrargyrite, and argentian tetrahedrite. Only calcite was deposited during stage II. Fluid inclusions in quartz contain three main types of C–O–H fluids: CO2-rich, CO2–H2O, and aqueous inclusions. Quartz veins related to early sulfides in stage I were deposited from H2O–NaCl–CO2 fluids (1,500–5,000 bar, average 3,200) with T htotal values of 200°C to 383°C and salinities less than about 7 wt.% NaCl equiv. Late sulfide deposition was related to H2O–NaCl fluids (140–1,300 bar, average 700) with T htotal values of 110°C to 385°C and salinities less than about 11 wt.% NaCl equiv. These fluids either evolved through immiscibility of H2O–NaCl–CO2 fluids as a result of a decrease in fluid pressure, or through mixing with deeply circulated meteoric waters as a result of uplift or unloading during mineralization, or both. Measured and calculated sulfur isotope compositions (δ34SH2S = 1.5 to 4.8‰) of hydrothermal fluids from the stage I quartz veins indicate that ore sulfur was derived mainly from a magmatic source. The calculated and measured oxygen and hydrogen isotope compositions (δ18OH2O = −5.9‰ to 10.9‰, δD = −102‰ to −87‰) of the ore-forming fluids indicate that the fluids were derived from magmatic sources and evolved by mixing with local meteoric water by limited water–rock exchange and by partly degassing in uplift zones during mineralization. While most features of the Samgwang mine are consistent with classification as an orogenic gold deposit, isotopic and fluid chemistry indicate that the veins were genetically related to intrusions emplaced during the Jurassic to Cretaceous Daebo orogeny.  相似文献   

18.
The Early Devonian Gumeshevo deposit is one of the largest ore objects pertaining to the dioritic model of the porphyry copper system paragenetically related to the low-K quartz diorite island-arc complex. The (87Sr/86Sr)t and (ɛNd)t of quartz diorite calculated for t = 390 Ma are 0.7038–0.7045 and 5.0–5.1, respectively, testifying to a large contribution of the mantle component to the composition of this rock. The contents of typomorphic trace elements (ppm) are as follows: 30–48 REE sum, 5–10 Rb, 9–15 Y, and 1–2 Nb. The REE pattern is devoid of Eu anomaly. Endoskarn of low-temperature and highly oxidized amphibole-epidote-garnet facies is surrounded by the outer epidosite zone. Widespread retrograde metasomatism is expressed in replacement of exoskarn and marble with silicate (chlorite, talc, tremolite)-magnetite-quartz-carbonate mineral assemblage. The 87Sr/86Sr ratios of epidote in endoskarn and carbonate in retrograde metasomatic rocks (0.7054–0.7058 and 0.7053–0.7065, respectively) are intermediate between the Sr isotope ratios of quartz dioritic rocks and marble (87Sr/86Sr = 0.70784 ± 2). Isotopic parameters of the fluid equilibrated with silicates of skarn and retrograde metasomatic rocks replacing exoskarn at 400°C are δ18O = +7.4 to +8.5‰ and δD = −49 to −61‰ (relative to SMOW). The δ13C and δ18O of carbonates in retrograde metasomatic rocks after marble are −5.3 to +0.6 (relative to PDB) and +13.0 to +20.2% (relative to SMOW), respectively. Sulfidation completes metasomatism, nonuniformly superimposed on all metasomatic rocks and marbles with formation of orebodies, including massive sulfide ore. The δ34S of sulfides is 0 to 2‰ (relative to CDT);87Sr/86Sr of calcite from the late calcite-pyrite assemblage replacing marble is 0.704134 ± 6. The δ13C and 87Sr/86Sr of postore veined carbonates correlate positively (r = 0.98; n = 6). The regression line extends to the marble field. Its opposite end corresponds to magmatic (in terms of Bowman, 1998b) calcite with minimal δ13C, δ18O, and 87Sr/86Sr values (−6.9 ‰, +6.7‰, and 0.70378 ± 4, respectively). The aforementioned isotopic data show that magmatic fluid was supplied during all stages of mineral formation and interacted with marble and other rocks, changing its Sr, C, and O isotopic compositions. This confirms the earlier established redistribution of major elements and REE in the process of metasomatism. A contribution of meteoric and metamorphic water is often established in quartz from postore veins.  相似文献   

19.
The succession of the formation of ore zones and sulfur isotope ratio of sulfides at the Mangazeya Ag deposit have been studied. The deposit is located in the Nyuektame Fault Zone in the eastern limb of the Endybal Anticline. The ore zones are hosted in the Middle Carboniferous to Middle Jurassic terrigenous sequences of the Verkhoyansk Complex intruded by the Endybal subvolcanic stock and felsic and mafic dikes. Three ore stages are distinguished: (I) gold-rare metal, (II) cassiterite-sulfide, and (III) silver-base-metal. Products of these stages are spatially isolated. The δ34S of sulfides ranges from −6.4 to +8.0‰. In the sulfides of the gold-rare metal assemblage, this value varies from −1.8 to +4.7‰; in the sulfides of the cassiterite-sulfide stage, −6.4 to +6.6‰; and in the sulfides of the silver-base-metal assemblage, -5.6 to +8.0‰. A sulfur isotope thermometer indicates the temperature of mineral deposition at 315–415°C for the first stage and 125–280°C for the third stage. Possible causes of variable sulfur isotopic composition in sulfides are discussed. The data on the sulfur isotope ratio is interpreted in terms of involvement of magmatic fluid (δ34S ∼ 0) in the mineralizing process along with low-temperature fluid taking sulfur from host rocks (δ34S ≫ 0). Boiling and mixing of magmatic fluid with heated meteoric water were important at the last stage of the deposit formation.  相似文献   

20.
The Dongsheng sandstone-type uranium deposit is one of the large-sized sandstone-type uranium deposits discovered in the northern part of the Ordos Basin of China in recent years. Geochemical characteristics of the Dongsheng uranium deposit are significantly different from those of the typical interlayered oxidized sandstone-type uranium ore deposits in the region of Middle Asia. Fluid inclusion studies of the uranium deposit showed that the uranium ore-forming temperatures are within the range of 150–160℃. Their 3He/4He ratios are within the range of 0.02–1.00 R/Ra, about 5–40 times those of the crust. Their 40Ar/36Ar ratios vary from 584 to 1243, much higher than the values of atmospheric argon. The δ18OH2O and δD values of fluid inclusions from the uranium deposit are -3.0‰– -8.75‰ and -55.8‰– -71.3‰, respectively, reflecting the characteristics of mixed fluid of meteoric water and magmatic water. The δ18OH2O and δD values of kaolinite layer at the bottom of the uranium ore deposit are 6.1‰ and -77‰, respectively, showing the characteristics of magmatic water. The δ13CV-PDB and δ18OH2O values of calcite veins in uranium ores are -8.0‰ and 5.76‰, respectively, showing the characteristics of mantle source. Geochemical characteristics of fluid inclusions indicated that the ore-formation fluid for the Dongsheng uranium deposit was a mixed fluid of meteoric water and deep-source fluid from the crust. It was proposed that the Jurassic-Cretaceous U-rich metamorphic rocks and granites widespread in the northern uplift area of the Ordos Basin had been weathered and denudated and the ore-forming elements, mainly uranium, were transported by meteoric waters to the Dongsheng region, where uranium ores were formed. Tectonothermal events and magmatic activities in the Ordos Basin during the Mesozoic made fluids in the deep interior and oil/gas at shallow levels upwarp along the fault zone and activated fractures, filling into U-bearing clastic sandstones, thus providing necessary energy for the formation of uranium ores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号