首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Sensitivity analysis of electromagnetic (EM) measurements is important to quantify the effect of the subsurface conductivity on the measured response. Knowledge of the sensitivity functions helps in solving inverse problems related to field data. In the present paper, we have derived the sensitivity functions for exponentially varying conductivity earth models. The effect of the exponential variation of conductivity has been illustrated graphically on the sensitivity functions. The effect of varying the periods of the electromagnetic waves on the sensitivity functions has also been studied, which gives the characteristic behaviour of the sensitivity functions. This characteristic behaviour provides information about the exponentially decreasing or increasing conductivity earth models.  相似文献   

2.
The standard 1-D inversion approach for the interpretation of transient electromagnetic (TEM) data usually fails in the presence of near-surface conductivity anomalies. Since multidimensional inversion codes are not routinely available, the only alternative to discarding the data may be trial-and-error forward modelling. We interpret data from a long-offset transient electromagnetic (LOTEM) survey which was carried out in 1995 in the Odenwald area, using 2-D finite-difference modelling. We focus on a subsegment of the LOTEM profile, which was shot with two different electric dipole transmitters. A model is found which consistently explains the electric and magnetic field data at eight locations for both transmitters. First, we introduce a conductive dyke under the receiver spread to explain sign reversals in the magnetic field transients. A conductive slab under one of the transmitters is required to obtain a reasonable quantitative fit for that transmitter. Consideration of the electric field data then requires a modification of the layered earth background. Finally, we study the response of a crustal conductor, which was the original target of the survey. The data are sensitive to the conductor, and for the investigated subset of the data the fits are slightly better without the conductive layer.  相似文献   

3.
Inversion of time domain three-dimensional electromagnetic data   总被引:7,自引:0,他引:7  
We present a general formulation for inverting time domain electromagnetic data to recover a 3-D distribution of electrical conductivity. The forward problem is solved using finite volume methods in the spatial domain and an implicit method (Backward Euler) in the time domain. A modified Gauss–Newton strategy is employed to solve the inverse problem. The modifications include the use of a quasi-Newton method to generate a pre-conditioner for the perturbed system, and implementing an iterative Tikhonov approach in the solution to the inverse problem. In addition, we show how the size of the inverse problem can be reduced through a corrective source procedure. The same procedure can correct for discretization errors that inevidably arise. We also show how the inverse problem can be efficiently carried out even when the decay time for the conductor is significantly larger than the repetition time of the transmitter wave form. This requires a second processor to carry an additional forward modelling. Our inversion algorithm is general and is applicable for any electromagnetic field  ( E , H , d B / dt )  measured in the air, on the ground, or in boreholes, and from an arbitrary grounded or ungrounded source. Three synthetic examples illustrate the basic functionality of the algorithm, and a result from a field example shows applicability in a larger-scale field example.  相似文献   

4.
We present a spectral-finite-element approach to the 2-D forward problem for electromagnetic induction in a spherical earth. It represents an alternative to a variety of numerical methods for 2-D global electromagnetic modelling introduced recently (e.g. the perturbation expansion approach, the finite difference scheme). It may be used to estimate the effect of a possible axisymmetric structure of electrical conductivity of the mantle on surface observations, or it may serve as a tool for testing methods and codes for 3-D global electromagnetic modelling. The ultimate goal of these electromagnetic studies is to learn about the Earth's 3-D electrical structure.
Since the spectral-finite-element approach comes from the variational formulation, we formulate the 2-D electromagnetic induction problem in a variational sense. The boundary data used in this formulation consist of the horizontal components of the total magnetic intensity measured on the Earth's surface. In this the variational approach differs from other methods, which usually use spherical harmonic coefficients of external magnetic sources as input data. We verify the assumptions of the Lax-Milgram theorem and show that the variational solution exists and is unique. The spectral-finite-element approach then means that the problem is parametrized by spherical harmonics in the angular direction, whereas finite elements span the radial direction. The solution is searched for by the Galerkin method, which leads to the solving of a system of linear algebraic equations. The method and code have been tested for Everett & Schultz's (1995) model of two eccentrically nested spheres, and good agreement has been obtained.  相似文献   

5.
Controlled-source electromagnetic (CSEM) surveys have the ability to provide tomo-graphic images of electrical conductivity within the Earth. the interpretation of such data sets has long been hampered by inadequate modelling and inversion techniques. In this paper, a subspace inversion technique is described that allows electric dipole-dipole data to be inverted for a 2-D electrical conductivity model more efficiently than with existing techniques. the subspace technique is validated by comparison with conventional inversion methods and by inverting data collected over the East Pacific Rise in 1989. A model study indicates that, with adequate data, a variety of possible mid-ocean-ridge conductivity models could be distinguished on the basis of a CSEM survey.  相似文献   

6.
郭井学  孙波 《极地研究》2007,18(1):36-46
As an important component of the cryosphere,sea ice is very sensitive to the climate change.The study of the sea ice physics needs accurate sea ice thickness.This paper presents an electromagnetic-induction(EM) technique which can be used to measure the sea ice thickness distribution efficiently,and the successful application in Bothnian Bay.Based on the electromagnetic field theory and the electrical properties of sea ice and seawater,EM technique can detect the distance between the instrument and the ice/water interface accurately,than the sea ice thickness is obtained.Contrastive analysis of the apparent conductivity data obtained by EM and the value of drill-hole at same positions allows a construction of a transformable formula of the apparent conductivity to sea ice thickness.The verification of the sea ice thickness calculated by this formula indicates that EM technique is able to get reliable sea ice thickness with average relative error of only 12%.The statistic of all ice thickness profiles shows that the level ice distribution in Bothnian Bay was 0.4-0.6 m.  相似文献   

7.
郭井学  程斌  孙波  崔祥斌  田钢 《极地研究》2007,19(2):99-110
海冰作为冰雪圈的重要组成部分,对气候变化十分敏感,海冰物理过程研究需要得到精确的海冰厚度。本文介绍一种能够高效探测海冰厚度的电磁感应方法及其在波罗的海(Baltic Sea)的成功应用。该技术方法针对海冰和海水的电特性,利用电磁感应原理精确探测仪器至冰水交界面的距离,以实现海冰厚度的测定。通过电磁感应(EM)仪直接观测的视电导率与同点位钻孔测量数据对比分析,获得视电导率与海冰厚度的转换关系式,并对通过该关系式计算出的海冰厚度进行验证,表明电磁感应技术能够获得可靠的海冰厚度数据,平均相对误差仅为12%。对波西尼亚海湾(Bothnian Bay)海冰厚度探测剖面的统计结果表明,2007年春季该区域平整冰厚度范围在0.4-0.6m之间。  相似文献   

8.
快速、无损监测农田土壤水分含量,是智慧农业的重要研究内容。以新疆南疆阿拉尔国家农业科技园区膜下滴灌棉田为研究对象,运用EM38-MK2大地电导率仪快速、高效的获取了4组不同时期的棉田土壤表观电导率数据,并同步采集表层土壤(0~20 cm)样品,通过构建表观电导率数据与室内测定含水量数据间的反演模型获取了测点的含水量数据,并按照土壤水分干旱分级标准对研究区土壤水分进行划分,综合利用GIS软件和地统计方法对土壤水分的时空变异性进行研究。结果表明:4个时期的土壤水分反演模型决定系数均大于0.80且均方根误差(RMSE)和平均绝对百分误差(MAPE)均较小,表明反演模型精度较高,土壤表观电导率与表层土壤水分相关性较好;不同时期土壤含水量数据表明土壤水分具有很强的时间变异性,变异性由中等变异转变为弱变异再转变为中等变异;受人为灌溉等因素的影响,变异函数模型也存在差异;半方差分析中4个时期的土壤水分块金值与基台值之比均大于75%,表明土壤水分在空间上趋近于弱空间相关;高程反距离权重(IDW)插值图及水分克里格插值图表明微地形是影响土壤水分分布的重要因素。本研究可为干旱区膜下滴灌棉田土壤水分动态监测提供重要的方法支撑,从而更好地指导农业灌溉。  相似文献   

9.
This paper presents a simple non-linear method of magnetotelluric inversion that accounts for the computation of depth averages of the electrical conductivity profile of the Earth. The method is not exact but it still preserves the non-linear character of the magnetotelluric inverse problem. The basic formula for the averages is derived from the well-known conductance equation, but instead of following the tradition of solving directly for conductivity, a solution is sought in terras of spatial averages of the conductivity distribution. Formulas for the variance and the resolution are then readily derived. In terms of Backus-Gilbert theory for linear appraisal, it is possible to inspect the classical trade-off curves between variance and resolution, but instead of resorting to linearized iterative methods the curves can be computed analytically. The stability of the averages naturally depends on their variance but this can be controlled at will. In general, the better the resolution the worse the variance. For the case of optimal resolution and worst variance, the formula for the averages reduces to the well-known Niblett-Bostick transformation. This explains why the transformation is unstable for noisy data. In this respect, the computation of averages leads naturally to a stable version of the Niblett-Bostick transformation. The performance of the method is illustrated with numerical experiments and applications to field data. These validate the formula as an approximate but useful tool for making inferences about the deep conductivity profile of the Earth, using no information or assumption other than the surface geophysical measurements.  相似文献   

10.
We investigate the reconstruction of a conductive target using crosswell time-domain electromagnetic tomography in the diffusive limit. The work is a natural extension of our ongoing research in the modification of time-domain methods for the rugged marine mid-ocean-ridge environment, an environment characterized by extreme topography and pronounced variations in crustal conductivity on all scales. We have proved both in theory and in practice that 'traveltime', the time taken for an electromagnetic signal to be identified at a receiver following a change of current in the transmitter, is an excellent, robust estimator of average conductivity on a path between transmitter and receiver. A simple estimate of the traveltime for a parallel electric dipole-dipole system is the time at which the derivative of the electric field with respect to logarithmic time at the receiver reaches its maximum. We have derived the fundamental relationship between the traveltime and the conductivity of the medium for a uniform whole-space. We have applied the concept of the traveltime inversion to the related crosswell problem and demonstrated reconstructions of finite targets based on tomographic analyses. Results show that the crosswell time-domain electromagnetic tomography can supply useful information, such as the location and shape of a conductive target.  相似文献   

11.
姚远  丁建丽  张芳  江红南  雷磊 《中国沙漠》2014,34(3):765-772
土壤盐渍化是影响绿洲农业生产、抑制作物生长的主要生态环境问题。当前,将电磁感应技术与地面实测技术相结合是监测土壤盐渍化分布及其变化的先进方法。本文以新疆渭干河-库车河三角洲绿洲为研究区,以电磁感应仪在水平模式下(EMH)和垂直模式下(EMV)所获取的土壤表观电导率数据以及野外实测数据为基础,通过建立EMV和EMH与土壤盐分含量及组成元素的多元线性回归模型,采用泛克里格法(Universal Kriging)对研究区两个关键季节(干季、湿季)的土壤盐分含量及组成的空间变异特征进行了分析。结果表明:研究区干季和湿季表层盐渍土含盐量均与EMV和EMH具有良好的相关性,以EMV+EMH为自变量建立的土壤盐分解译模型的精度较高,且通过0.01水平检验;研究区干、湿两季的表层土壤含盐量数据符合P-P正态分布,空间分布均呈现强相关性;采用能够充分考虑到干旱区表层土壤盐分空间变异的球状套合模型,能够更好地拟合土壤表层含盐量的空间结构;研究采用泛克里格法将解译出的土壤盐分及其主要组成离子(Na+、Cl-)含量进行空间插值分析,其变化趋势与土壤含盐量的变化趋势基本一致,因而采用电磁感应技术可以有效地监测不同季节干旱区绿洲土壤盐分及其组成的空间变化。  相似文献   

12.
Electromagnetic investigations are usually intended to examine regional structures where induction takes place at a given period range. However, the regional information is often distorted by galvanic effects at local conductivity boundaries. Bahr (1985) and Groom & Bailey (1989) developed a physical distortion model for decomposing the MT impedance tensor, based upon local galvanic distortion of a regional 2-D electromagnetic field. We have extended their method to predict the magnetic variation fields created at an array of sites. The magnetic response functions at periods around 1000 s may be distorted by large-scale inhomogeneities in the upper or middle crust. In this period range, the data measured by a magnetometer array contain common information that can be extracted if the data set is treated as a unit, for example by using hypothetical event analysis. With this technique it is always possible to recover the regional strike direction from distorted data, even if a strong, spatially varying regional vertical field component is present in the data set. The determination of the regional impedance phases, on the other hand, is far more sensitive to deviations from the physical distortion model.
The approach has been used to investigate the Iapetus data set. For the array, which covers an area of 200  km × 300  km in northern England/southern Scotland, the technique revealed a common regional strike azimuth of ca . N125° E in the period range 500–2000  s. This direction differs from the strike indicated by the induction arrows, which seem influenced mainly by local current concentrations along the east–west-striking Northumberland Trough and a NE–SW-striking mid-crustal conductor. Both impedance phases are positive and differ by ca . 10°, which supports the assumptions of distortion fields in the data set and that the regional structure is 2-D.  相似文献   

13.
Summary . Using a variational formulation for the response function V ( r ), commonly used in the inversion of electromagnetic induction data for a spherically symmetric earth, a number of independent expressions for the total variation of this response function with respect to perturbations in the (electrical) conductivity S o have been derived. These results have been used to indicate:
(1) How the boundary constraints contained in the expressions for the total variation of V ( r ) affect any computational implementation.
(2) How refinement modelling for the inversion of electromagnetic induction data can be implemented iteratively without the use of linearization.
In addition, these results have been used to examine the validity of Parker's linearization proposal by showing that his results depend heavily on the exclusion of certain boundary constraints, and the choice of the L 2 norm as the norm to use.  相似文献   

14.
All explanations of the high-conductivity layers (HCL) found by magnetotellurics in the middle or lower crust incorporate a mixture of a low-conductivity rock matrix and a highly conductive phase, for example graphite or saline fluids. In most cases the bulk conductivity of the mixture does not depend on the conductivity of the rock matrix but rather (1) on the amount of high-conductivity material and, in particular, (2) on its geometry. The latter is quantitatively described by the parameter 'electrical connectivity'. Decomposition of the observed bulk conductivity of the mixture into these two parameters results in an ill-posed problem. Even if anisotropy occurs in the HCL, three output parameters (highly conductive phase fraction, connectivity with respect to the X direction, connectivity with respect to the Y direction) have to be estimated from the two bulk conductivities of the anisotropic HCL. The additional information required for solving this problem is provided if instead of single-site data the conductivities from many field sites are evaluated: a sample distribution of the conductivity can then be obtained. Ensembles of random networks are used to create theoretical distribution functions which match the empirical distribution functions to some extent. The use of random resistor networks is discussed in the context of other established techniques for the treatment of two-phase systems, such as percolation theory and the renormalization group approach. Models of embedded networks explain the discrepancy between 'small' anisotropy (2-3) on the laboratory scale and large anisotropy (10-100) found in electromagnetic field surveys encompassing volumes of several cubic kilometres. Strong anisotropy can indicate low electrical connectivity, and a possible explanation is that a network stays close to the percolation threshold.  相似文献   

15.
Long-period geomagnetic data can resolve large-scale 3-D mantle electrical conductivity heterogeneities which are indicators of physiochemical variations found in the Earth's dynamic mantle. A prerequisite for mapping such heterogeneity is the ability to model accurately electromagnetic induction in a heterogeneous sphere. A previously developed finite element method solution to the geomagnetic induction problem is validated against an analytic solution for a fully 3-D geometry: an off-axis spherical inclusion embedded in a uniform sphere. Geomagnetic induction is then modelled in a uniform spherical mantle overlain by a realistic distribution of oceanic and continental conductances. Our results indicate that the contrast in electrical conductivity between oceans and continents is not primarily responsible for the observed geographic variability of long-period geomagnetic data. In the absence of persistent high-wavenumber magnetospheric disturbances, this argues strongly for the existence of large-scale, high-contrast electrical conductivity heterogeneities in the mid-mantle. Lastly, for several periods the geomagnetic anomaly associated with a mid-mantle spherical inclusion is calculated. A high-contrast inclusion can be readily detected beneath the outer shell of oceans and continents. A comparison between observed and computed c responses suggests that the mid-mantle contains more than one order of magnitude of lateral variability in electrical conductivity, while the upper mantle contains at least two orders of magnitude of lateral variability in electrical conductivity.  相似文献   

16.
Magnetotelluric studies in the Market Weighton area of eastern England   总被引:1,自引:0,他引:1  
Summary Magnetotelluric measurements at periods from 30 to 1000s were made at eight locations in the Market Weighton (MW) area, along an east—west profile across gravity and magnetic anomalies. Dimensional parameters were developed for assessing the structural dimensionality of the electrical conductivity of the Earth from the data. One-dimensional inversion modelling techniques were employed to interpret the data at each site, and four-layer models were obtained to explain the main structure of the crust in the area studied. If it is assumed that all strata are unmagnetized then the results show that there is a highly resistive layer in the crust, the thickness of the highly resistive layer ranges from 12 km in the east to 44 km in the west with a large change in the middle near the MW site. A structural boundary lying north—south near MW was also indicated by the principal directions of rotated apparent resistivities and transfer functions. Both electrical conductivity and magnetic permeability contrast in the ground were considered in an attempt to interpret the observed variations in apparent resistivity at different periods.  相似文献   

17.
The relation between the seafloor electric field and the surface magnetic field is studied. It is assumed that the fields are created by a 2-D ionospheric current distribution resulting in the E-polarization. The layered earth below the sea water is characterized by a surface impedance. The electric field at the seafloor can be expressed either as an inverse Fourier transform integral over the wavenumber or as a spatial convolution integral. In both integrals the surface magnetic field is multiplied by a function that depends on the depth and conductivity of the sea water and on the properties of the basement. The fact that surface magnetic data are usually available on land, not at the sea surface, is also considered. Test computations demonstrate that the numerical inaccuracies involved in the convolution method are negligible. The theoretical equations are applied to calculate the seafloor electric fields due to an ionospheric line current or associated with real magnetic data collected by the IMAGE magnetometer array in northern Europe. Two different sea depths are considered: 100 m (the continental shelf) and 5 km (the deep ocean). It is seen that the dependence of the electric field on the oscillation period is weaker in the 5 km case than for 100 m.  相似文献   

18.
A general correspondence principle is presented that relates any time-domain electromagnetic diffusion field to an electromagnetic wavefield in a 'corresponding' configuration. The principle applies to arbitrarily inhomogeneous and anisotropic media and arbitrary transmitters and receivers. For the correspondence between the two types of electromagnetic fields to hold, the electric conductivity in the diffusive case and the permittivity in the wavefield case should have the same spatial variation, while the permeability distributions in space in the two cases are to be identical. Essential steps in the derivation of the correspondence principle are the use of the time Laplace transformation of causal signals, taken at real, positive values of the transform parameter, the Schouten-Van der Pol theorem in the theory of the Laplace transformation, and the reliance upon Lerch's theorem of the uniqueness of the interrelation between causal field quantities and their time-Laplace-transform representations at real, positive values of the transform parameter. Correspondence is then established between the tensorial Green's functions in the two cases, where the Green's functions are the point-receiver responses (either electric or magnetic field) to point-transmitter excitations (either electric- or magnetic-current source).
Through the correspondence principle, all transient electromagnetic wavefields (where losses are neglected) have as a counterpart a transient diffusive electromagnetic field (where the electric displacement current is neglected). The interrelation yields the tool to compare quantitatively the potentialities of the two types of fields in transient electromagnetic geophysical prospecting.
Finally, a general medium-parameter scaling law for time-domain electromagnetic wavefields is presented.  相似文献   

19.
An iterative solution to the non-linear 3-D electromagnetic inverse problem is obtained by successive linearized model updates using the method of conjugate gradients. Full wave equation modelling for controlled sources is employed to compute model sensitivities and predicted data in the frequency domain with an efficient 3-D finite-difference algorithm. Necessity dictates that the inverse be underdetermined, since realistic reconstructions require the solution for tens of thousands of parameters. In addition, large-scale 3-D forward modelling is required and this can easily involve the solution of over several million electric field unknowns per solve. A massively parallel computing platform has therefore been utilized to obtain reasonable execution times, and results are given for the 1840-node Intel Paragon. The solution is demonstrated with a synthetic example with added Gaussian noise, where the data were produced from an integral equation forward-modelling code, and is different from the finite difference code embedded in the inversion algorithm  相似文献   

20.
Telluric distortion occurs when electric charges accumulate along near-surface inhomogeneities. At low frequencies, the electric currents associated with these charges can be neglected compared to currents induced deeper in the Earth. At higher frequencies, the magnetic fields associated with these currents may be significant. Some parameters describing the distortion magnetic fields can be estimated from measured magneto-telluric impedance matrices. For regional magnetic fields aligned with regional strike directions, parameters associated with the distortion magnetic field component parallel to the regional magnetic field are undeterminable, whereas parameters associated with the distortion magnetic field component perpendicular to the regional magnetic field can be estimated. Optimal estimates are straightforward even for the realistic case of measurement errors that are correlated between elements of a measured impedance matrix. In a simple example of a 1-D anisotropic model with anisotropy direction varying with depth, the modelling of distortion magnetic fields results in regional impedance estimates corresponding more closely to the responses of uncoupled isotropic models, allowing sensible interpretation of an additional one and a half decades of data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号