首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution seismic survey was conducted to investigate acoustic characteristics of gassy sediments along the southern shelf of the Sea of Marmara. The acoustic turbidity zones outlined within the study area are generally below 2–9 m (2-10 ms TWT) the seafloor whilst this vertical distance varies between 9 and 21 m (10–25 ms TWT) for acoustic blanket type reflections. The gassy sediments cover an area of sea floor of about 45, 110, and 75 km2 in front of Gönen River, Kocasu River, and Gemlik Bay, respectively. The gassy sediments in the center of Gemlik Bay exhibited an elliptical geometry similar to its basin while the others have deltaic forms in front of the rivers. The sea bottom and near surface sedimentary units are made-up of organic-rich sediments, mostly transported by the southern rivers. The gas observed in sediments is thought to be of biogenic origin, which may be caused by degradation of organic matter in the sediment.  相似文献   

2.
The organically rich, fine-grained, very soft, high porosity sediments in the inner portion of Eckernförde Bay, Germany have varying amounts of methane gas, with the horizon of gas fluctuating vertically on a seasonal cycle. The sharp vertical gradient in water content, with values exceeding 500% at the sediment–water interface, and corresponding gradient in density can be expected to cause a significant subbottom acoustic impedance contrast in these surficial sediments. Equations are presented to characterize geotechnical property variations of the upper 5 m. The upper 1.5 m exhibits appreciable ‘apparent’ overconsolidation with a trend toward a normally consolidated stress state at 2.5 m depth. The coefficient of permeability of the upper 40 cm is low (4×10-6 cm s-1) and the sediment is highly compressible with compression indices of 2.7–6.8. Triaxial compression test results indicate that the sediment behaves as a normally consolidated clay with a low friction angle (22°). The rheological behavior of the upper 20–30 cm, determined with a small vane device, is indicative of a shear-thinning material, implying that the resistance to penetration decreases with increasing velocity.  相似文献   

3.
The seafloor of central Eckernförde Bay is characterised by soft muddy sediments that contain free methane gas. Bubbles of free gas cause acoustic turbidity which is observed with acoustic remote sensing systems. Repeated surveys with subbottom profiler and side scan sonar revealed an annual period both of depth of the acoustic turbidity and backscatter strength. The effects are delayed by 3–4 months relative to the atmospheric temperature cycle. In addition, prominent pockmarks, partly related to gas seepage, were detected with the acoustic systems. In a direct approach gas concentrations were measured from cores using the gas chromatography technique. From different tests it is concluded that subsampling of a core should start at its base and should be completed as soon as possible, at least within 35 min after core recovery. Comparison of methane concentrations of summer and winter cores revealed no significant seasonal variation. Thus, it is concluded that the temperature and pressure influences upon solubility control the depth variability of acoustic turbidity which is observed with acoustic remote sensing systems. The delay relative to the atmospheric temperature cycle is caused by slow heat transfer through the water column. The atmospheric temperature cycle as ‘exiting function’ for variable gas solubility offers an opportunity for modelling and predicting the depth of the acoustic turbidity. In practice, however, small-scale variations of, e.g., salinity, or gas concentration profile in the sediment impose limits to predictions. In addition, oceanographic influences as mixing in the water column, variable water inflow, etc. are further complications that reduce the reliability of predictions.  相似文献   

4.
Acoustic turbidity caused by the presence of gas bubbles in seafloor sediments is a common occurrence worldwide,but is as yet poorly understood. The Coastal Benthic Boundary Layer experiment in the Baltic off northern Germany was planned to better characterize the acoustic response of a bubbly sediment horizon. In this context, in situ measurements of compressional wave speed and attenuation were made over the frequency range of 5–400 kHz in gassy sediments of Eckernförde Bay. Dispersion of compressional speed data was used to determine the upper limit of the frequency of methane bubble resonance at between 20 and 25 kHz. These data, combined with bubble size distributions determined from CT scans of sediments in cores retained at ambient pressure, yield estimates of effective bubble sizes of 0.3–5.0 mm equivalent radius. The highly variable spatial distribution of bubble volume and bubble size distribution is used to reconcile the otherwise contradictory frequency-dependent speed and attenuation data with theory. At acoustic frequencies above resonance (>25 kHz) compressional speed is unaffected by bubbles and scattering from bubbles dominates attenuation. At frequencies below resonance (<1 kHz) ‘compressibility effects’ dominate, speed is much lower (250 m s-1) than bubble-free sediments, and attenuation is dominated by scattering from impedance contrasts. Between 1.5 and 25 kHz bubble resonance greatly affects speed and attenuation. Compressional speed in gassy sediments (1100–1200 m s-1) determined at 5–15 kHz is variable and higher than predicted by theory (<250 m s-1). These higher measured speeds result from two factors: speeds are an average of lower speeds in gassy sediments and higher speeds in bubble-free sediments; and the volume of smaller-sized bubbles which contribute to the lower observed speeds is much lower than total gas volume. The frequency-dependent acoustic propagation is further complicated as the mixture of bubble sizes selectively strips energy near bubble resonance frequencies (very high attenuation) allowing lower and higher frequency energy to propagate. It was also demonstrated that acoustic characterization of gassy sediments can be used to define bubble size distribution and fractional volume.  相似文献   

5.
海洋环境中天然气水合物层是理想的毛细管封闭层,游离气被抑制在水合物层下,游离气层的气体压力随气体聚集和气层厚度的增加而升高,当气压超过封闭层的毛细管力时,游离气会克服毛细管进入压力、刺入上伏封闭层孔隙空间,毛细管封闭作用随之消失,从而形成水合物下伏游离气向海底的渗漏.通过对该过程进行的数值模拟计算表明:渗漏气体是以活塞式驱动上伏沉积层中的孔隙水向海底排出,水合物稳定带内流体渗漏速度随水流柱高度的减小而增加,当水流阻抗大于相应沉积层段的静岩压力时,沉积层将转变为流沙,流沙沉积被海流移除后便在海底留下凹陷麻坑.麻坑形成后流体运移通道演化为气体通道,气体快速排放.麻坑深度主要取决于游离气层的厚度和水合物封闭层(底界)的深度,而与沉积层的渗透率无关.麻坑深度一定程度上指示了渗漏前水合物层下伏游离气层的资源量.对布莱克海台海底麻坑深度的数值模拟计算表明,形成4 m深的海底麻坑需要至少22 m厚的游离气层.  相似文献   

6.
Anomalies in data taken with acoustic profiling systems often have been interpreted as indications of the widespread occurrence of free gas (gaseous state compounds) in the continental margins of the world’s oceans. Direct demonstration of the correlation between seafloor free gas and such acoustic anomalies has been rare. Interpretations have relied on occasional measurements of gas concentration in recovered seafloor samples, indirect indicators of in situ seafloor free gas and presumed analogous dynamic response of bubbles in sediments to the response of gas bubbles in water. Here, examples are provided of the measurement of free gas bubbles under in situ conditions for samples from the floor of Eckernförde Bay on the Baltic coast of Germany. The occurrence of this population of sediment gas bubbles has been related to the measured acoustic response of the region’s seafloor via model calculations. Indications of volume scattering of the acoustic energy by bubbles in a buried gassy layer are contrasted with evidence of possible gas bubble returns from a thin surficial gassy zone.  相似文献   

7.
Two sandy sediment cores (Cores D227-120 and D380) were collected from inside a deep-sea giant clam (Calyptogena soyoae) community off Hatsushima Island, western Sagami Bay, central Japan (35°59.9′N, 139°13.6′E; 1160 m deep) and a muddy sediment core (Core D227-202) was obtained from outside the community by the submersibleShinkai 2000. The chloride concentration of the pore waters is constant vertically and sulfate reduction using sedimentary organic matter occurs in Core D227-202 (21 cm long). The chloride concentrations are lower by 7% at the 7.5–9 cm depth in Core D227-120 (9 cm long) and by 3% at the 11–12 cm depth in Core D380 (16 cm long) than those of the overlying bottom waters in the cores from inside of the community. Sulfate concentration decreases remarkably and dissolved inorganic carbon, alkalinity, ammonium-N, and hydrogen sulfide concentrations increase significantly with increasing depth in Core D380.δ34S values of sulfate ions increase from +20.5 to +35.3‰ andδ13C values of dissolved inorganic carbon decrease drastically from −7.0 to −45‰ with increasing depth from the top to the bottom of the core, although theδ13C values of the organic carbon of the sediments are−23.7 ± 0.9‰ in Core D380. These results indicate that sulfate reduction using methane is active within the sediments just beneath the living clams and that the hydrogen sulfide produced can be used by endosymbiotic sulfur oxidizing bacteria living in the gills ofC. soyoae in the community.  相似文献   

8.
Experiments were made on 58 sediment samples from four sites(1244,1245,1250 and 1251) of ODP204 at five temperature points(25,35,45,55 and 65℃) to simulate methane production from hydrate-bearing sediments.Simulation results from site 1244 show that the gas components consist mainly of methane and carbon dioxide,and heavy hydrocarbons more than C2+ cannot be detected.This site also gives results,similar to those from the other three,that the methane production is controlled by experimental temperatures,gene...  相似文献   

9.
Detailed acoustic mapping have been carried out in the Århus Bay in order to establish the general Late Weichselian and Holocene stratigraphy, and to map the gas related acoustic blanking.The mapping results show that the oldest seismic unit is glacial till, probably related to the latest glacial advance in the region. The glacial till is covered by late-glacial ice-lake clay and silt reaching a thickness of up to 10 m. In the deeper part of the bay, early Holocene organic material and peat has been recorded in a few cores. A thin seismic unit is observed, which probably represents an early Holocene lowstand period, when most of the Århus Bay was dry land. The three upper seismic units are related to the Holocene transgression of the region representing different hydrographical conditions. The lowermost unit (Marine unit 1) partly drapes the basin area with clay sediments and partly shows prograding sandy coastal deposits around glacial ridges. Marine shells from this unit date back to 8700 cal. years BP which are the oldest marine shells found south of the threshold in the northern Great Belt. The next unit (Marine unit 2) consists in general of mud to sandy mud, which cover most of the western central part of the Århus Bay and in some places reach the present seabed in areas of erosion or non-deposition. The distribution of the youngest seismic unit (mud, Marine unit 3) is confined to the sub-recent to recent sedimentation basins in the eastern central part of the area. Acoustical blanking shows that the methane production takes place in the Holocene marine sediments. A map of the distribution and depth to free methane in the muddy sediments has been produced. Combined information from the different seismic equipment used allowed a mapping of the distribution and depth to free gas in the intervals 0.5–2, 2–4 and >4 m. The map shows that acoustic blanking is found in the central part of Århus Bay about 4 m below the seabed. In areas with high sedimentation rate, the acoustic blanking is found closer to the sediment surface and in selected key stations, pore-water chemistry have documented that depth to acoustical blanking is comparable to the methane saturation depth.Barotropic induced inflow dominates the present current system in the semi-enclosed Århus Bay. The inflow events create turbulence in the outer eastern parts of the bay, followed by high sedimentation rates. The recent situation is reflected in the seabed sediments in the eastern part of the bay, which are characterised as soft sandy mud deposits, with gas bubbles close to the seabed.Seismic investigations have not previously been used to identify recent sedimentation areas and the most vulnerable areas in respect to possible escape of methane and toxic hydrogen-sulphide. The results of the present survey show that future monitoring must be focused in shallow gas areas in the eastern-most part of Århus Bay.  相似文献   

10.
The biogeochemistry of methane in the sediments of Lake Caviahue was examined by geochemical analysis, microbial activity assays and isotopic analysis. The pH in the water column was 2.6 and increased up to a pH of 6 in the deeper sediment pore waters. The carbon isotope composition of CH4 was between − 65 and − 70‰ which is indicative for the biological origin of the methane. The enrichment factor ε increased from − 46‰ in the upper sediment column to more than − 80 in the deeper sediment section suggesting a transition from acetoclastic methanogenesis to CO2 reduction with depth. In the most acidic surface layer of the sediment (pH < 4) methanogenesis is inhibited as suggested by a linear CH4 concentration profile, activity assays and MPN analysis. The CH4 activity assays and the CH4 profile indicate that methanogenesis in the sediment of Lake Caviahue was active below 40 cm depth. At that depth the pH was above 4 and sulfate reduction was sulfate limited. Methane was diffusing with a flux of 0.9 mmol m− 2 d− 1 to the sediment surface where it was probably oxidized. Methanogenesis contributed little to the sediments carbon budget and had no significant impact on lake water quality. The high biomass content of the sediment, which was probably caused by the last eruption of Copahue Volcano, supported high rates of sulfate reduction which probably raised the pH and created favorable conditions for methanogens in deeper sediment layers.  相似文献   

11.
本研究在太湖梅梁湾采集沉积柱,采用一种自制的毫米级柱状沉积物自动垂向分层切割装置对表层50 mm沉积物进行垂向切割(间隔2 mm),结合高通量测序技术分析沉积物中细菌群落的毫米级垂向分布;同时采用毫米级高分辨透析技术和薄膜扩散梯度技术(DGT)分析溶解态和DGT可获取态铵态氮(NH4+-N)、硝态氮(NO3--N)、Fe、P的垂向分布特征。结果显示,沉积物中细菌群落与溶解态和DGT可获取态氮铁磷浓度在垂向上呈现显著的异质性。细菌硝酸盐还原主要发生在-16~0 mm沉积物深度,这可能导致了溶解态和DGT可获取态NO3--N含量在该沉积物深度的明显减少。细菌铁还原主要分布在-32~-18 mm沉积物深度,细菌硫酸盐还原主要分布在-50~-34 mm的沉积物深度;细菌硫酸盐还原是导致沉积物溶解态和DGT可获取态铁磷浓度从-32 mm随沉积物的深度增加而显著增加的主要原因。本研究加深了对富营养化湖泊沉积物中细菌影响氮磷在垂向上迁移转化的认识。  相似文献   

12.
Sedimentation and sediment metabolism was measured at eight active milkfish fish pens and at one abandoned site in the Bolinao area, Philippines in order to examine the interactions between sediment and water in this shallow coastal zone. The rates of sedimentation were high in the area due to siltation, but the activities in the fish pens also contributed to enhanced sedimentation as indicated by the difference between the abandoned and active sites. The sediment metabolism appeared to decrease with increasing rates of sedimentation indicating that the microbial activity reached a saturation level in the fish pen sediments. Anaerobic processes dominated the organic matter decomposition, and sulfate reduction rates are among the highest measured in fish farm sediments. The rates decreased with increasing organic loading despite high concentrations of sulfate (>10 mM) at all sites. Presence of methane bubbles in the sediments suggests that sulfate reduction and methanogenesis were coexisting. The sediment metabolism was significantly reduced at the abandoned site indicating that the stimulation of microbial activities is due to active fish production. The anaerobic activity remained high at the abandoned site indicating that the sediment biogeochemical conditions remain affected long time after fish production has ceased.  相似文献   

13.
太湖沉积物理化性质及营养盐的时空变化   总被引:10,自引:3,他引:7  
在不同季节,采集太湖梅梁湾和贡湖湾沉积物柱状样,研究沉积物Eh、pH、总氮、总磷以及有机质四季垂向剖面分布变化特征.研究结果表明,在表层下(0-3 cm),Eh随沉积物深度的增加迅速下降,很快进入还原状态.沉积物剖面上pH变化幅度不大,在6.4-7.8之间,冬季沉积物pH均有所降低.太湖沉积物中含有丰富的营养盐,总氮和总磷最高浓度分别为2.68和0.864 mg/g,其剖面分布特征表明,沉积物表层总氮和总磷含量远高于底层,其含量随深度增加而降低,但四季变化趋势不明显.沉积物中有机质含量在10 cm以上变化幅度较大,随着沉积物深度的增加,有机质含量明显减少,季节变化幅度不大.比较不同采样点发现,位于梅梁湾生态系统试验区内的S1位点沉积物氮磷内源负荷最大.  相似文献   

14.
苏正  陈多福 《地球物理学报》2007,50(5):1518-1526
除合适的温度和压力条件外,甲烷水合物的形成还需要有充足的甲烷供给,沉积物孔隙水中的甲烷浓度必须大于甲烷水合物的溶解度.本文建立了水合物-水-游离气三相体系、水合物-水二相体系、气-水二相体系的甲烷溶解度计算优选方法,计算确定了水合物系统的甲烷溶解度-深度相图,依此划分出游离气、溶解气、水-水合物、水-水合物-游离气四个甲烷不同相态分布区.对水合物脊ODP1249和1250钻位、布莱克海台ODP997钻位稳定带甲烷水合物含量和稳定带之下游离气含量进行了计算.ODP1249浅部13.5~72.4 mbsf(mbsf表示海底以下深度)的甲烷水合物是沉积物孔隙体积的10%~61%,ODP1250钻位35~1065 mbsf的甲烷水合物约为孔隙体积的0.7%~1.9%,水合物层之下游离气层厚约22 m,游离气含量约占孔隙的4%.布莱克海台ODP997钻位的浅部146.9 mbsf处无水合物发育,202.4~433.3 mbsf之间水合物占孔隙体积的约5%~7%,水合物层之下游离气层厚约80 m,游离甲烷含量为孔隙的0.2%~28%.  相似文献   

15.
Anaerobic oxidation of methane and sulfate reduction was studied in the pore waters of four cores at two stations of the middle Okinawa Trough. Pore water vertical distributions of sulfate, methane, sulfide, total alkalinity, ammonium, and phosphate were determined in this study. Our results show strong linear sulfate concentration gradients of 6.83 mmol/L m?1 in Core A and 5.96 mmol/L m?1 in Core C, which were collected from two stations. Concurrent variations of methane, total alkalinity and hydrogen sulfide all exhibit steep increases with depth at both cores, which indicate active methane seep activities around two stations. Pore water ammonium and phosphate concentrations reveal minor influences of organic matter degradation on sulfate reduction at two stations. Sulfate methane interface(SMI) was extrapolated from linear sulfate profiles in methane seep cores. Shallower SMI depths(A: 4.9 mbsf; C: 5.4 mbsf) indicate strong methane fluxes and active anaerobic oxidation of methane in the underlying sediments.  相似文献   

16.
Tokyo Bay is one of the estuaries in Japan with a high population of almost 26 million people in the basin area. One of the major concerns for the environment in this water area is the decreasing ecosystem functions including the deterioration of water and sediment qualities caused by various anthropogenic activities. Since the bottom sediments around almost the entire area of the inner bay consist of fine materials with a high organic content, which cause the deterioration of water quality through processes such as hypoxia, an understanding of the fine sediment dynamics in the Bay is crucial for an environmental assessment of the water area. This paper proposes a model for the key processes of fine sediment dynamics, which reflects field data about muddy bed structures and their dynamics obtained during the monitoring campaign in 2007. One of the specific features of the sediment in the Bay at present is the persistent existence of fluid mud layers (water content over 300?%) with a thickness of around a few decimeters, which might be caused by deposition of abundant organic particles due to eutrophication. The present study shows that diffusion flux model delivers quite reliable results for estimating erosion flux from the top of fluid mud layers after calibrating the model parameter against the time series data of vertical flux measured by an acoustic Doppler velocimeter system. This study also derives analytical solutions, based on the Bingham fluid concept, of advection flux in the fluid mud layer on which external shear stress force is applied.  相似文献   

17.
Sediment cores retrieved in the Benguela coastal upwelling system off Namibia show very distinct enrichments of solid phase barium at the sulfate/methane transition (SMT). These barium peaks represent diagenetic barite (BaSO4) fronts which form by the reaction of upwardly diffusing barium with interstitial sulfate. Calculated times needed to produce these barium enrichments indicate a formation time of about 14,000 yr. Barium spikes a few meters below the SMT were observed at one of the investigated sites (GeoB 8455). Although this sulfate-depleted zone is undersaturated with respect to barite, the dominant mineral phase of these buried barium enrichments was identified as barite by scanning electron microscopy (SEM). This is the first study which reports the occurrence/preservation of pronounced barite enrichments in sulfate-depleted sediments buried a few meters below the SMT. At site GeoB 8455 high concentrations of dissolved barium in pore water as well as barium in the solid phase were observed. Modeling the measured barium concentrations at site GeoB 8455 applying the numerical model CoTReM reveals that the dissolution rate of barite directly below the SMT is about one order of magnitude higher than at the barium enrichments deeper in the sediment core. This indicates that the dissolution of barite at these deeper buried fronts must be retarded. Thus, the occurrence of the enrichments in solid phase barium at site GeoB 8455 could be explained by decreased dissolution rates of barite due to the changes in the concentration of barite in the sediment, as well as changes in the saturation state of fluids. Furthermore, the alteration of barite into witherite (BaCO3) via the transient phase barium sulfide could lead to the preservation of a former barite front as BaCO3. The calculations and modeling indicate that a relocation of the barite front to a shallower depth occurred between the last glacial maxium (LGM) and the Pleistocene/Holocene transition. We suggest that an upward shift of the SMT occurred at that time, most likely as a result of an increase in the methanogenesis rates due to the burial of high amounts of organic matter below the SMT.  相似文献   

18.
Nakagawa  Yasuyuki  Nadaoka  Kazuo  Yagi  Hiroshi  Ariji  Ryuichi  Yoneyama  Haruo  Shirai  Kazuhiro 《Ocean Dynamics》2012,62(10):1535-1544

Tokyo Bay is one of the estuaries in Japan with a high population of almost 26 million people in the basin area. One of the major concerns for the environment in this water area is the decreasing ecosystem functions including the deterioration of water and sediment qualities caused by various anthropogenic activities. Since the bottom sediments around almost the entire area of the inner bay consist of fine materials with a high organic content, which cause the deterioration of water quality through processes such as hypoxia, an understanding of the fine sediment dynamics in the Bay is crucial for an environmental assessment of the water area. This paper proposes a model for the key processes of fine sediment dynamics, which reflects field data about muddy bed structures and their dynamics obtained during the monitoring campaign in 2007. One of the specific features of the sediment in the Bay at present is the persistent existence of fluid mud layers (water content over 300 %) with a thickness of around a few decimeters, which might be caused by deposition of abundant organic particles due to eutrophication. The present study shows that diffusion flux model delivers quite reliable results for estimating erosion flux from the top of fluid mud layers after calibrating the model parameter against the time series data of vertical flux measured by an acoustic Doppler velocimeter system. This study also derives analytical solutions, based on the Bingham fluid concept, of advection flux in the fluid mud layer on which external shear stress force is applied.

  相似文献   

19.
The vertical sediment profiles (10 cm) of the margins of three shallow subtropical lakes (Rio Grande, Brazil) with different trophic states and surrounding areas were evaluated to identify the effects of the allochthonous input on the methane concentration in the sediment. Sediment cores were collected to quantify the organic matter content (OM) and total carbon (TC), total nitrogen (TN), total phosphorous (TP) and methane (CH4) concentrations.The three lakes were distinguished according to the trophic status and classified as oligotrophic, dystrophic and eutrophic. The natural characteristics of the dystrophic and eutrophic lakes have been changed due to the allochthonous input of leaves and twigs (Eucalyptus sp.) and the excreta of birds, respectively. In the eutrophic lake, the allochthonous input contributed to high autochthonous production. The highest values of OM, TC, TN and TP were found in the superficial sediments of the dystrophic and eutrophic lakes. The accumulation of allochthonous organic matter in the littoral zone promoted changes in the vertical sediment profiles and contributed to increases in the CH4 concentrations in the sediment.  相似文献   

20.
Most sulphur diagenesis models predict that SO42- concentrations decrease exponentially with increasing sediment depth and are lower than that of the overlying water throughout the sediments. Low SO42- concentrations (less than 0.2 mM) are common in the sediments of Lake Anna that receive acid mine drainage; however, sediment with as much as 20 mM SO42- at about 20cm below the sediment surface is also seen in this section of the lake. A decision tree was proposed to investigate the cause of the high SO42- concentrations at depth (HSD) in the sediment. The first possibility proposed was that an increase in the quantity of groundwater flowing through Lake Anna sediments may increase groundwater advection of SO42- or oxygen which would induce sulphide oxidation. This hypothesis was tested by measuring groundwater flow. HSD profiles were found in a discrete region of the lake; however, stations having these profiles did not have higher groundwater flow than other sites sampled. Alternate explanations for the HSD profiles were that the region in which they occurred had: (1) unusual sediment chemical compositions; (2) a different source of regional groundwater, or (3) a lateral intrusion of high SO42- groundwater. There were no differences in sulphide and organic matter concentrations between the two regions. The area which has HSD in the sediment covers a large area in the middle of the lake, so it is unlikely that it has a unique source of regional groundwater. The third alternative was supported by the fact that in all three sample years, HSD stations were located in the preimpoundment stream channel, which is a likely lateral flow path for groundwater containing high SO42- concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号