首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 936 毫秒
1.
Shennan  Ian  Tooley  Michael  Green  Frances  Innes  Jim  Kennington  Kevin  Lloyd  Jeremy  Rutherford  Mairead 《Geologie en Mijnbouw》1998,77(3-4):247-262
Analyses of geomorphologically contrasting sites in Morar, NW Scotland, describe the forcing mechanisms of coastal change. Isolation basins (i.e. basins behind rock sills and now isolated from the sea following isostatic uplift) accumulated continuous marine and freshwater sediments from c.12 to 2 ka BP. Raised dune, marsh and wetland sites register breaching, migration and stability of dunes from c. 9 to 2 ka BP. High-resolution methods designed to address issues of macroscale and microscale sea-level changes and patterns of storminess include 1-mm sampling for pollen, dinocyst and diatom analyses, infra-red photography, X-ray photography and thin-section analysis. The data enhance the record of relative sea-level change for the area. Major phases of landward migration of the coast occurred during the period of low sea-level rise in the mid-Holocene as the rate of rise decreased from c. 3 to < 1 mm/year. Relative sea-level change controls the broad pattern of coastal evolution at each site; local site-specific factors contribute to short-term process change. There is no record of extreme events such as tsunami. Within a system of dynamic metastable equilibrium, the Holocene records show that site-specific factors determine the exact timing of system breakdown, e.g. dune breaching, superimposed on regional sea-level rise. The global average sea-level rise of 3 to 6 mm/yr by AD 2050 predicted by IPCC would only partly be offset in the Morar area by isostatic uplift of about 1 mm/yr. A change from relative sea-level fall to sea-level rise, in areas where the regional rate of uplift no longer offsets global processes, is a critical factor in the management of coastal resources.  相似文献   

2.
Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block.Geologic characters and spatial distributions of fve of these unconformities,which have resulted from different geological processes,have been studied.The unconformity beneath the Dahongyu Formation is interpreted as a breakup unconformity,representing the time of transition from continental rift to passive continental margin.The unconformities beneath the Gaoyuzhuang and the Yangzhuang formations are considered to be the consequence of regional eustatic fuctuations,leading to the exposure of highlands in passive margins during low sea-level stands and transgressive deposition on coastal regions during high sea-level stands.The unconformity atop the Tieling Formation might be caused by uplift due to contractional deformation in a back-arc setting,whereas the uplift after the deposition of the Xiamaling Formation might be attributed to a continental collision event.It is assumed that the occurrences of these unconformities in the Mesoproterozoic successions in the northern margin of the North China Block had a close bearing on the assemblage and breakup of the Columbia and Rodinia supercontinents.  相似文献   

3.
Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block.Geologic characters and spatial distributions of fve of these unconformities,which have resulted from different geological processes,have been studied.The unconformity beneath the Dahongyu Formation is interpreted as a breakup unconformity,representing the time of transition from continental rift to passive continental margin.The unconformities beneath the Gaoyuzhuang and the Yangzhuang formations are considered to be the consequence of regional eustatic fuctuations,leading to the exposure of highlands in passive margins during low sea-level stands and transgressive deposition on coastal regions during high sea-level stands.The unconformity atop the Tieling Formation might be caused by uplift due to contractional deformation in a back-arc setting,whereas the uplift after the deposition of the Xiamaling Formation might be attributed to a continental collision event.It is assumed that the occurrences of these unconformities in the Mesoproterozoic successions in the northern margin of the North China Block had a close bearing on the assemblage and breakup of the Columbia and Rodinia supercontinents.  相似文献   

4.
During the Triassic, the Thakkhola region of the Nepal Himalaya was part of the broad continental shelf of Gondwana facing a wide Eastern Tethys ocean. This margin was continuous from Arabia to Northwest Australia and spanned tropical and temperate latitudes.A compilation of Permian, Triassic and early Jurassic paleomagnetic data from the reconstructed Gondwana blocks indicates that the margin was progressively shifting northward into more tropical latitudes. The Thakkhola region was approximately 55° S during Late Permian, 40° S during Early Triassic, 30° S during Middle Triassic and 25° S during Late Triassic. This paleolatitude change produced a general increase in the relative importance of carbonate deposition through the Triassic on the Himalaya and Australian margins. Regional tectonics were important in governing local subsidence rates and influx of terrigenous clastics to these Gondwana margins; but eustatic sea-level changes provide a regional and global correlation of major marine transgressions, prograding margin deposits and shallowing-upward successions. A general mega-cycle characterizes the Triassic beginning with a major transgression at the base of the Triassic, followed by a general shallowing-upward of facies during Middle and Late Triassic, and climaxing with a regression in the latest Triassic.  相似文献   

5.
During the mid-late Holocene large sections of the Scottish coastline have been characterized by falling relative sea-levels resulting from differential glacio-isostatic uplift of this region of northern Britain. The complex interplay between crustal and sea-level movements continues to influence the morphological development of the Scottish coast. A number of geophysical models predict ongoing uplift of the Scottish landmass. However, a number of recent studies based upon the analysis of satellite altimetry data indicate a late 20th Century acceleration in the rate of eustatic sea-level rise.Detailed geochemistry, radiometric dating, and diatom analysis on selected sediment cores from four mature coastal marsh environments in Argyll, western Scotland, provides an opportunity to investigate the linkages between Twentieth century crustal movements, eustatic sea-level rise and recent rates of sedimentation recorded within marsh sediments across the proposed Scottish glacio-isostatic uplift dome.Solid-phase major and trace element geochemistry has been used to examine the extent to which post-depositional physical disturbance and/or chemical reactions may have influenced the reliability of the radiometric dating methods. Geochemical data indicate that the evolution of these marsh environments has not been significantly influenced by physical disturbance and overall the supply of minerogenic material to the marshes has been quite uniform.Vertical distributions of 210Pbexcess and 137Cs activity have been measured and used to develop models of recent marsh vertical accretion. Dating of the cores reveals subtle variations in the rates of sediment accumulation over the last c. 70 years between sites. For much of the last hundred years or so, sedimentation rates have been in good overall agreement with various estimations for sea-level rise, although at the more easterly sites these estimates are generally exceeded. However, quasi-equilibrium between marsh sedimentation and sea-level rise for much of the Twentieth Century is indicated from the Diatom analysis.Over the most recent period of marsh development (<10 years), a significant increase in the rate of surface sedimentation is recorded at all sites across the study area. Diatom analysis of these surface layers reveals an increase in the relative abundance of marine (polyhalobous) taxa in the near-surface sediments. This signifies a very recent increase in the rate of regional relative sea-level rise indicating that a regional threshold in coastal forcing has now been exceeded.These findings provide clear evidence that recent relative sea-level rise is now outpacing estimated rates of glacio-isostatic adjustment (GIA) across the proposed Scottish uplift dome.  相似文献   

6.
The Zealandia portion of the Pacific–Gondwana margin underwent widespread extension, fragmentation, separation and subsidence during the final stages in the breakup of Gondwana. Although these processes shaped the geology of New Zealand, their timing and the timing of subduction cessation in the region remain unclear. To investigate the timing of these processes, we used Lu–Hf garnet geochronology to date six samples of the Alpine Schist, which represents the metamorphic section of the former Zealandia margin. The garnet dates range from 97.3 ± 0.3 to 75.4 ± 1.3 Ma. Compositional zoning in garnet indicates that the spread in ages results from diachronous metamorphism in the upper plate at the Pacific–Gondwana margin, occurring concurrently with rifting of Zealandia from East Gondwana via opening of the Tasman Sea. Clear spatial trends in the timing of garnet growth throughout the Alpine Schist are absent, indicating that either regional age trends were offset by post‐metamorphic deformation, or that metamorphism did not result from a single regional heat source, and was instead driven by short‐duration, spatially dispersed processes such as episodic fluid‐fluxing or mechanical heating. Diachronous metamorphism of the Alpine Schist can be attributed to heat conduction from the rising upper mantle during widespread extension, progressive burial and heating of accretionary wedge sediments during ongoing horizontal shortening, or fluid‐fluxing sourced from a subducting and dehydrating Hikurangi Plateau. These results indicate that during separation of Zealandia from East Gondwana in the late Cretaceous, the crust at the Pacific–Gondwana margin remained hot, potentially facilitating the extensive thinning of the Zealandia lithosphere during this time.  相似文献   

7.
During early Carboniferous times a major sea-level rise led to the development of an extensive carbonate ramp over what is now South Wales. Differential subsidence and sea-level changes resulted in distinctive facies sequences in the ramp succession and a model is offered which recognizes three distinct geomorpho-tectonic settings; inner, mid- and outer ramp. The inner ramp zone occurs in the more landward part of the province and was an area undergoing little or no subsidence. The sequence is dominated by oolitic grainstones and peritidal limestones representing shoal and back shoal environments. The peritidal units are transgressive deposits consisting of stacked asymmetrical shallowing-up cycles. The sequence contains many subaerial breaks and tectonic uplift resulted in base-level changes and fluvial incision. The mid-ramp zone sequence is intermediate in thickness between the inner and outer ramp successions and consists mainly of bioclastic limestones deposited below fairweather wave base. Sedimentation periodically exceeded sea-level rise and subsidence, and regressive (progradational) oolitic sand bodies developed, the thickest of which are stacked units with up to four individual sand bodies. Storm processes were of major importance in this setting. The outer ramp zone is represented by a thick sequence of muddy bioclastic limestones deposited below storm wave base and major Waulsortian reef-mounds also developed. None of the shallowing phases seen in the other ramp zones can be detected in this sequence. Subsidence and eustatic sea-level rise seem to have been the major controls on deposition but the recognition of eustatic sea-level falls is difficult. The detailed facies model for ramp carbonates presented here may be applicable elsewhere in the geological record.  相似文献   

8.
Even along the generally uplifting coast of the Pacific US, local geologic structures can cause subsidence. In this study, we quantify Holocene-averaged subsidence rates in four estuaries (Carpinteria Slough, Goleta Slough, Campus Lagoon, and Morro Bay) along the southern and central California coast by comparing radiocarbon-dated estuarine material to a regional sea-level curve. Holocene-averaged rates of vertical motion range from subsidence of 1.4?±?2.4, 1.2±0.4, and 0.4?±?0.3 mm/year in Morro Bay, Carpinteria Slough, and Goleta Slough, respectively, to possible uplift in Campus Lagoon (?0.1?±?0.9 mm/year). The calculated rates of subsidence are of the same magnitude as rates of relative sea-level rise experienced over the late Holocene and effectively double the ongoing rates of relative sea-level rise experienced over the last five decades on other parts of the coast. The difference in rates of vertical motion among these four estuaries is attributed to their geological settings. Estuaries developed in subsiding geological structures such as synclines and fault-bounded basins are subsiding at much higher rates than those developed within flooded river valleys incised into marine terraces. Restoration projects accounting for future sea-level rise must consider the geologic setting of the estuaries and, if applicable, include subsidence in future sea-level rise scenarios, even along the tectonically uplifting US Pacific Coast.  相似文献   

9.
The Lower Paleozoic rock-units in the Eastern Mediterranean can be separated into two distinct zones: the Northern Zone (Carpathian-Balkan, Istanbul, Zonguldak and Main Range terranes) and the Southern Zone (Tauride-Anatolide, SE Anatolian-Arabian, and Central Iranian terranes). A Gondwanan /Perigondwanan origin can only be properly indicated for the Southern Zone, whereas the Early Paleozoic paleogeographic positions of smaller terranes (e.g. Istanbul Terrane) of the Northern Zone remains questionable.During the Infracambrian-Early Cambrian time in the Southern Zone, the Pan-African consolidated NW Gondwanan pericratonic margin was rifted by back-arc extension or transtension, which is represented by the deposition of fault-controlled continental sediments.The late Early Cambrian-Late Cambrian period in the Southern Zone is designated by a regional transgression from northeast suggesting a rapid subsidence in the area to the northwest of Arabian-Tauride platform and hence opening of a relatively deep basin to the north.The Lower Ordovician in the Southern Zone comprising the Tremadoc and Arenig Series is characterized by a monotonous siliciclastic deposition. Towards the end of Early Ordovician shallowing upward sequences and formation of NW-SE trending highs were noticed. The stratigraphic hiatuses, unconformities and irregular distribution of the Caradoc-Ashgill deposits in the Southern Zone has been ascribed to glacio-eustatic sea-level changes.The Early Silurian (Aeronian-Telychian) deepening and deposition of black shales that follows the regression around the Ordovician-Silurian boundary in the Southern Zone is also very probably related to the relatively rapid global sea-level rise. To the north of the Tauride-Anatolide Platform, Wenlock and Late Silurian are represented by deep marine (basinal) sediments with oceanic basalts.The generation of an accretionary complex in the northern margin of the Taurides together with the regional regression in the southern Taurides and SE Anatolia at the uppermost Silurian-Lower Devonian boundary and the regional unconformity at Lower Devonian (Middle Lochkovian) is very probably related to the closure of a “Paleotethyan” oceanic basin to the north of the Perigondwanan terranes.  相似文献   

10.
《Sedimentary Geology》2006,183(1-2):125-144
In the Mejillones Formation, a shallow-marine Pleistocene succession of northern Chile, the cyclic stratigraphic record is the result of the complex interaction of regional uplift, glacio-eustasy, local tectonics, sediment supply, and sedimentary processes. Stratal geometries, characteristics of sedimentary facies, and nature of sequence-bounding unconformities have been investigated to evaluate the influence of: (i) intrabasinal, short-term normal faulting on both along-strike variations in sequence architecture and genetic complexity of key stratal surfaces; and (ii) long-term regional uplift on sequence stacking pattern. The stratigraphic succession, dissected by small-displacement (few meters) normal faults striking obliquely with respect to the palaeo-shoreline trends, displays systematic variations in sequence architecture and the nature of bounding surfaces across them. Indeed, depending on position with respect to the fault plane, two basic types of internal organisation can be recognised in the examined shallow-marine, almost clastic-starved sequence. Within grabens it consists of a siliciclastic-rich transgressive systems tract (TST), which is bounded beneath by a transgressively modified, Glossifungites-demarcated sequence boundary (SB/RS), overlain by a mollusc-bearing falling-stage systems tract (FSST). The erosional downlap surface that separates the TST from the FSST is the regressive surface of marine erosion (RSME). On the footwall crests the combination of marine regressive erosion, during falls in relative sea-level, and uplift has resulted in complete removal of the sediments of the TST from these sites, leading to the formation of a tectonically enhanced basal unconformity composed of the RSME superimposed onto the previous SB/RS (SB/RS/RSME). The prominent lateral change in component units (systems tracts) and nature of bounding surfaces within the studied sequence is directly related to the presence of normal faults and indicates that fault activity had a major impact on the sequence stratigraphic evolution of the Mejillones Formation, enhancing subsidence within the grabens and promoting unconformities in the horsts.Overall, the Mejillones Formation records a long-term sea-level fall driven by the contemporaneous regional uplift, punctuated by repeated, high-frequency eustatic sea-level changes. The effect of this superimposition was that glacio-eustatic sequences were displaced progressively downward and basinward and stacked in a distinct downstepping, tectonically enhanced falling-stage sequence set, which reflects basin-wide loss in accommodation space. The sequence set is underlain by a composite RSME that becomes progressively younger basinward and is made up by the lateral and down-dip connection of a series of lower-rank sequence boundaries including hanging-wall SB/RSs and footwall SB/RS/RSMEs of successive sequences.  相似文献   

11.
The Tertiary covers of the Peloritani Mountain Belt (NE Sicily) provide a complete stratigraphical record of tectonic events related to collision in the Central Mediterranean region. The tectonosedimentary evolution is inferred from interpretation of new field data and indicates various stages of polyphase deformation. The Peloritani Mountain Belt is composed mostly of crystalline units representing the active margin of the European Plate that was thrust over the descending African Plate during the Tertiary. Late Eocene-early Oligocene syn-orogenic deposition took place within a fore-arc basin located along the leading edge of the Peloritani Mountain Belt. From the late Oligocene to late Langhian, terrigenous deposition occurred throughout the mountain belt and extended into perched basins, located in southern areas. The basin was fed from the north, from source areas located in the hinterland of the orogenic belt. Deposition was controlled by a combination of active thrusting, regional subsidence and sea-level change. During the early Serravallian sudden tectonic inversion took place, associated with collapse of hinterland areas and uplift of former low-lying southern areas of the mountain belt. These processes were related to onset of opening of the Tyrrhenian Sea that was completed during the Serravallian-Tortonian, and resulted in the deposition of a northwestward prograding clastic fan, fed by source areas located in the southern area of the mountain belt. This setting characterized Messinian and Plio-Pleistocene deposition, and was controlled by both active tectonics and eustasy. The Recent evolution of the Peloritani Mountain Belt is characterized by major progressive uplift of the southern margins of the Tyrrhenian Basin, and local active subsidence related to downfaulting. Such processes resulted in the uplift of mid-Pleistocene fan-delta deposits and late Pleistocene marine terraces deposits to various altitudes above present sea-level.  相似文献   

12.
 Basins within the African sector of Gondwana contain a Late Palaeozoic to Early Mesozoic Gondwana sequence unconformably overlying Precambrian basement in the interior and mid-Palaeozoic strata along the palaeo-Pacific margin. Small sea-board Pacific basins form an exception in having a Carboniferous to Early Permian fill overlying Devonian metasediments and intrusives. The Late Palaeozoic geographic and tectonic changes in the region followed four well-defined consecutive events which can also be traced outside the study area. During the Late Devonian to Early Carboniferous period (up to 330 Ma) accretion of microplates along the Patagonian margin of Gondwana resulted in the evolution of the Pacific basins. Thermal uplift of the Gondwana crust and extensive erosion causing a break in the stratigraphic record characterised the period between 300 and 330 Ma. At the end of this period the Gondwana Ice Sheet was well established over the uplands. The period 260–300 Ma evidenced the release of the Gondwana heat and thermal subsidence caused widespread basin formation. Late Carboniferous transpressive strike-slip basins (e.g. Sierra Australes/Colorado, Karoo-Falklands, Ellsworth-Central Transantarctic Mountains) in which thick glacial deposits accumulated, formed inboard of the palaeo-Pacific margin. In the continental interior the formation of Zambesi-type rift and extensional strike-slip basins were controlled by large mega-shear systems, whereas rare intracratonic thermal subsidence basins formed locally. In the Late Permian the tectonic regime changed to compressional largely due to northwest-directed subduction along the palaeo-Pacific margin. The orogenic cycle between 240 and 260 Ma resulted in the formation of the Gondwana fold belt and overall north–south crustal shortening with strike-slip motions and regional uplift within the interior. The Gondwana fold belt developed along a probable weak crustal zone wedged in between the cratons and an overthickened marginal crustal belt subject to dextral transpressive motions. Associated with the orogenic cycle was the formation of mega-shear systems one of which (Falklands-East Africa-Tethys shear) split the supercontinent in the Permo-Triassic into a West and an East Gondwana. By a slight clockwise rotation of East Gondwana a supradetachment basin formed along the Tethyan margin and northward displacement of Madagascar, West Falkland and the Gondwana fold belt occurred relative to a southward motion of Africa. Received: 2 October 1995 / Accepted: 28 May 1996  相似文献   

13.
During the Early Paleozoic, transgressions and the distribution of sedimentary facies on the northern Gondwana margin were controlled by a regional NNW-SSE to almost north-south striking structural relief. In Early Silurian times, a eustatic highstand enabled the sea to reach its maximum southward extent.The counterclockwise rotation of Gondwana during the Cambrian and Early Ordovician caused the northern Gondwana margin to shift from intertropical to southern polar latitudes in Ordovician times. Glacial and periglacial deposits are reported from many localities in Morocco, Algeria, Niger, Libya, Chad, Sudan, Jordan and Saudi Arabia. The Late Ordovician glaciation phase was followed by a period of a major glacioeustatic sea-level rise in the Early Silurian due to the retreat of the ice-cap. As a consequence of the decreasing water circulation in the basin centers (Central Arabia, Murzuk- and Ghadames basins), highly bituminous euxinic shales were deposited. These shales are considered to be the main source rock of Paleozoic oil and gas deposits in parts of Saudi Arabia, Libya and Algeria.The following regression in the southern parts of the Early Silurian sea was probably caused by a second glacial advance, which was mainly restricted to areas in Chad, Sudan and Niger. Evidence for glacial activity and fluvioglacial sedimentation is available from rocks overlying the basal Silurian shale in north-east Chad and north-west Sudan. The Early Silurian ice advance is considered to be responsible for the termination of euxinic shale deposition in the basin centers.  相似文献   

14.
The Lower Permian sedimentary succession of the Paraná Basin in southernmost Brazil has an overall transgressive sedimentation regime, recorded by a clear retrogradation of the facies belt. However, important depositional strike-orientated variations and regional inversions occur in the sedimentation regime along the paleo-shoreline (i.e., along-strike) of the basin. At the regional scale, a huge source area was uplifted by the end of the Artinskian in the north and caused regression; the southern part of the study area increasingly was transgressed by the epicontinental sea (= regional inversion). This important tectonic overprint on the stratigraphic signature of the basin’s infill has a tectonic origin. The variable sedimentation regime along the paleo-shoreline is controlled by the structural framework of the basement, which is formed by several crustal blocks with different responses to tectonic strain induced by terrain accretion on the occidental margin of Gondwana during the Permian. Stratigraphic data indicate that during the Early Permian, there were at least two differential subsidence and uplift events, one by the end of the Sakmarian–Artinskian and another during the Late Artinskian–Kungurian.  相似文献   

15.
Stratigraphic, micropalaeontologic and radiocarbon data show that since c. 6500 BP the Fenland has been influenced by 7 periods of positive sea-level tendencies and by 6 periods of negative sea-level tendencies. Despite the numerous problems associated with the reconstruction of past altitudes of sea level the periods of positive sea-level tendencies were clearly characterised by a rise in sea level, the development of transgressive overlaps and a landward movement of the coastline. The periods of negative sea-level tendencies were characterised by the development of regressive overlaps, a seaward movement of the coastline and a reduced or negative rate of sea-level rise. The various altitudinal errors do not permit the incontrovertible distinction of periods of falling sea levels. All changes within the Fenland were not synchronous and local factors influenced the exact nature of each sea-level indicator. Dominant regional and local factors have been identified for different areas and different time periods. The chronological and spatial characteristics of the sequences within the Fenland are best explained by a palaeocoastline without supratidal barriers controlling sedimentation. The data indicate an average crustal subsidence in the Fenland of 0.9m/1000 years since c. 6500 BP and the pattern of positive and negative tendencies of sea-level movement is also seen in the chronologies for north west England and north east Scotland.  相似文献   

16.
Application of dendrochronology and geomorphology to a recently emerged coastal area near Juneau, Alaska, has documented a Little Ice Age (LIA) sea-level transgression to 6.2 m above current sea level. The rise in relative sea level is attributed to regional subsidence and appears to have stabilized by the mid 16th century, based on a sea-cliff eroded into late-Pleistocene glaciomarine sediments. Land began emerging between A.D. 1770 and 1790, coincident with retreat of regional glaciers from their LIA maximums. This emergence has continued since then, paralleling regional glacier retreat. Total Juneau uplift since the late 18th century is estimated to be 3.2 m. The rate of downward colonization of newly emergent coastline by Sitka spruce during the 20th century closely parallels the rate of sea-level fall documented by analysis of local tide-gauge records (1.3 cm/yr). Regional and Glacier Bay LIA loading and unloading are inferred to be the primary mechanisms driving subsidence and uplift in the Juneau area. Climate change rather then regional tectonics has forced relative sea-level change over the last several hundred years.  相似文献   

17.
The Cutro Terrace is a mixed marine to continental terrace, where deposits up to 15 m thick discontinuously crop out in an area extending for ca 360 km2 near Crotone (southern Italy). The terrace represents the oldest and highest terrace of the Crotone area, and it has been ascribed to marine isotope stage 7 (ca 200 kyr bp ). Detailed facies and sequence‐stratigraphic analyses of the terrace deposits allow the recognition of a suite of depositional environments ranging from middle shelf to fluvial, and of two stacked transgressive–regressive cycles (Cutro 1 and Cutro 2) bounded by ravinement surfaces and by surfaces of sub‐aerial exposure. In particular, carbonate sedimentation, consisting of algal build‐ups and biocalcarenites, characterizes the Cutro 1 cycle in the southern sector of the terrace, and passes into shoreface and foreshore sandstones and calcarenites towards the north‐west. The Cutro 2 cycle is mostly siliciclastic and consists of shoreface, lagoon‐estuarine, fluvial channel fill, floodplain and lacustrine deposits. The Cutro 1 cycle is characterized by very thin transgressive marine strata, represented by lags and shell beds upon a ravinement surface, and thicker regressive deposits. Moreover, the cycle appears foreshortened basinwards, which suggests that the accumulation of its distal and upper part occurred during forced regressive conditions. The Cutro 2 cycle displays a marked aggradational component of transgressive to highstand paralic and continental deposits, in places strongly influenced by local physiography, whereas forced regressive sediments are absent and probably accumulated further basinwards. The maximum flooding shoreline of the second cycle is translated ca 15 km basinward with respect to that of the first cycle, and this reflects a long‐term regressive trend mostly driven by regional uplift. The stratigraphic architecture of the Cutro Terrace deposits is the result of the interplay between regional uplift and high amplitude, Late Quaternary glacio‐eustatic changes. In particular, rapid transgressions, linked to glacio‐eustatic rises that outpaced regional uplift, favoured the accumulation of thin transgressive marine strata at the base of the two cycles. In contrast, the combined effect of glacio‐eustatic falls and regional uplift led to high‐magnitude forced regressions. The superposition of the two cycles was favoured by a relatively flat topography, which allowed relatively complete preservation of stratal geometries that record large shoreline displacements during transgression and regression. The absence of a palaeo‐coastal cliff at the inner margin of the terrace supports this interpretation. The Cutro Terrace provides a case study of sequence architecture developed in uplifting settings and controlled by high‐amplitude glacio‐eustatic changes. This case study also demonstrates how the interplay of relative sea‐level change, sediment supply and physiography may determine either the superposition of cycles forming a single terrace or the formation of a staircase of terraces each recording an individual eustatic pulse.  相似文献   

18.
The Carnian Raibl group of the Eastern Alps consists of three 50–100 m thick, alternating carbonate and clastic third-order cycles, each of which can be traced for hundreds of kilometers. Tectono-eustatic sea-level fluctuations of a few tens of metres, spanning a few millions of years, are the driving mechanism of this cyclicity. The carbonate intervals represent restricted marginal marine, tidal and evaporitic environments. The clastic intervals represent inner and outer shelf facies, and are related to the fluviatile “Schilfsandstein” of the Germanic facies belt. In the Raibl group, contrary to other carbonate/clastic depositional settings, relative sea-level lowstands are dominated by carbonate production, and highstands are dominated by clastic deposition.

Each of the three Raibl cycles corresponds to a type-2 sequence, containing shelf margin, transgressive and highstand systems tracts. During sea-level lowstands, deltaic point sources were near the shelf margin, allowing clastics to bypass the carbonate platform. This setting corresponds to a shelf margin systems tract. Transgressive and highstand systems tracts developed during the subsequent sea-level rise, as deltaic clastics were reworked and redistributed over the carbonate platform, and the deltas retrograded to the inner shelf. The highstand systems tracts are capped by a type 2 sequence boundary, which is conformable in the study area. The systems tracts can be further subdivided into shallowing upward subcycles, caused by fourth-order sea-level fluctuations, believed to represent Milankovitch rhythms.

The middle Raibl cycle is consistently thinner, and may represent a shorter termed, third-order sea-level fluctuation. Our data also corroborate a second-order transgressive trend for the Carnian.  相似文献   


19.
We present a synopsis of detrital zircon U–Pb ages of sandstones from North Africa and neighboring Israel and Jordan, which allows us to identify zones with characteristic sediment provenance along the northern Gondwana margin (in present-day coordinates) in Cambrian–Ordovician times, and helps us to unravel the peri-Gondwana jigsaw puzzle. A special feature of the early Paleozoic cover sequence of North Africa is the eastward increase of 1.1–0.95 Ga detrital zircons, which become ubiquitous in the early Paleozoic sandstones of the Saharan Metacraton. Detrital zircons aged about 2.7–2.5, 2.15–1.75 and 0.75–0.53 Ga are also present. Early Paleozoic sandstones with similar provenance are known from peri-Gondwana terranes in the Eastern and Western Mediterranean and from NW Iberia. These terranes need not be transported from western Gondwana (Amazonia) as suggested previously. They were likely located to the north of the Saharan Metacraton during the early Paleozoic before they rifted off from Gondwana. Furthermore, we recognize an increase, as stratigraphic ages get younger, of ca. 1.0 Ga detrital zircons at some point between the Late Cambrian and late Middle Ordovician. We speculate that this might be linked to far-field tectonics and regional uplift in central Gondwana related to plate-tectonic reorganization along the Gondwana margin, leading to erosion of ca. 1.0 Ga basement and country rocks of the Transgondwanan supermountain and fluvial dispersal of detritus toward the Gondwana margin.  相似文献   

20.
Diatom, pollen, foraminifera and thecamoebian assemblages from an outcrop of peat and silt at Girdwood Flats, in the upper Turnagain Arm of the Cook Inlet, Alaska, record four phases of relative land and sea-level changes. The first phase is the development of freshwater swamp above high marsh sediments during relative land uplift, caused by strain accumulation along the locked portion of the Alaska-Aleutian subduction zone. In second phase, the top 2 cm of the peat, all microfossil groups record pre-seismic relative sea-level rise (relative land subsidence). The third phase is rapid land subsidence, 1.7 m, during the earthquake of March 1964 that initiated intertidal silt accumulation above the peat. The final phase is the colonisation of mudflat by salt marsh communities during post-seismic land uplift. The microfossil data compare favourably with sequences from Washington, Oregon and British Columbia that record late Holocene submergence events caused by earthquakes. The comparable changes in microfossil assemblages record the different phases of relative land and sea-level changes and the magnitude of land subsidence caused by each earthquake (expressed relative to the tidal range at the site). These results raise the question whether preseismic sea-level rise represents any kind of warning of large earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号