首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
台风过境会引起所经海域海洋环境要素场剧烈响应。本文通过分析南海东北部上层海域各要素对2015年第10号台风"莲花"的响应过程,发现以下规律:台风过境期间,海表温度(SST)影响台风的移动路径和强度,两次显著的台风移动方向偏转均发生在台风下垫面温度发生显著改变的条件下。台风吸收海表热量引起SST降低0~1.5℃,而这种热量(以短波辐射和潜热通量为主的海表净热通量)吸收引起的海表失热每秒可达60 W/m2,对台风移动过程产生影响。同时,台风过境时(7月6—9日)的SST降低与失热变化都存在一定的"左偏性"。台风引起的Ekman抽吸速率最高可达1.6×10-3m/s,引起台风过后(7月9日之后) SST的降低。通过对海面10 m风场、海表温度、降雨量进行EOF分析发现:风场在南海东北部海域呈东西反位相分布,风场增强持续时间约5天,具有显著"右偏性"且近岸的局部风场特征明显;降雨量在台风期间呈全域一致性的增加,持续时长约4天,具有显著"左偏性"且在吕宋岛北部局部降雨特征明显;SST在南海东北部绝大部分海域呈降温态势,时长超过8天,降温时间滞后风场约2~3天。整个降温过程(7月5—15日)受Ekman抽吸作用较海表失热作用更大,表现为在台风右侧降温更为显著。同时,台风移动速度越慢,降温效果越明显。台风过境时,粤东离岸流显著增强,上升流区的垂直温度降幅可达2.5℃且滞后流场响应约1~2天;垂直盐度降幅可达1.3 psu且滞后流场响应约2~3天。总体上看,温度在台风响应过程中起着重要的联结作用。  相似文献   

2.
本研究通过对东山岛外海浮标观测的表层水温(SST)数据进行分析,发现2016、2017年夏季东山岛外海表层水温均存在周期为5~8 d的亚潮频波动信号,最大振幅分别为3.1 ℃和2.1 ℃。结合卫星遥感SST数据以及风场数据,采用小波分析、交叉小波分析等方法对该现象进行研究分析,结果表明:2016年夏季表层水温中出现的亚潮频波动信号源自短波辐射,表层水温变化滞后短波辐射1天左右;2017年夏季的亚潮频波动源自沿岸风应力,表层水温变化滞后沿岸风应力2天左右。2016年和2017年表层水温出现的亚潮频波动均与台风有关,但信号的来源出现差异是因为2017年台风过境引起了较强的沿岸风松弛现象,在沿岸风中出现了亚潮频波动信号,沿岸风影响上升流变化,进而引起表层水温的变化;2016年由于台风过境引起的沿岸风松弛现象较弱,沿岸风中并未出现亚潮频波动信号,而表层水温中的亚潮频波动信号源自短波辐射,这可能与台风引起局地天气系统的变化有关。  相似文献   

3.
利用Argo浮标和多源卫星遥感获取的温度、盐度剖面数据和海表面温度(sea surface temperature,SST)、海表面风场等数据,结合美国国家环境预报中心(National Centers for Environmental PredictionⅡ,NCEPⅡ)再分析资料,研究了南海东北部混合层深度(mixed layer depth,MLD)对2014年9月中下旬相继过境的热带气旋"海鸥"(台风)和"凤凰"(热带风暴)的响应。结果表明,受"海鸥"和"凤凰"过境时的"风泵"作用,海-气界面向上进入大气的最大净热通量由170W·m~(–2)升高至400W·m~(–2),引起SST最大降温达到3.02℃。在时间尺度上,后续的"凤凰"使"海鸥"引发的"冷迹"持续超过10天,出现SST降温的"叠加效应"。"海鸥"过境1天后,其"冷迹"MLD从23m加深至50m;而"凤凰"过境8h后,风应力驱动的离岸埃克曼输送引发了沿岸上升流,导致台湾西南部近岸海域MLD从31m加深至91m。热带气旋过境后,在混合层内,剖面盐度迟于剖面温度达到充分均匀,且盐度恢复快于温度,揭示混合层响应的"时滞效应"。在空间分布上,MLD与SST在两个热带气旋路径右侧(沿其移动方向)的变化幅度均大于左侧,而"冷迹"内MLD的不均匀加深,甚至变浅,可能揭示了下层冷水因埃克曼抽吸在上升流与下降流之间转换而被抬升到不同高度。  相似文献   

4.
根据ECMWF和CFSV2的数据,本文选择了3个影响我国南海的典型台风过程,分析了海表温度SST在台风期间的变化。结果表明,台风期间SST下降,台风路径右侧的降温幅度明显高于左侧。在过境2d左右,SST下降幅度最为明显,其中201509号台风威马逊降温中心右侧最大异常值可达-2.5762℃,左侧为-1.441℃,降温中心呈明显的右偏性。在此基础上,对SST异常与有效波高,热通量以及风速的相关性进行研究。统计表明,台风期间的SST异常与有效波高和风速的相关性较高,相关系数高达0.6-0.7;与热通量相关性最低,相关系数为0.2-0.4,且台风的最大风速越大,相关系数就越高。通过计算台风期间风向海表波浪输入动能发现,风应力越大,风向波浪输入的动能以及动能下传的深度也越大。海洋内部的混合就越剧烈,故而由混合引起的海表降温幅度较大。可见SST异常与风速以及波浪要素确实有很高的相关性。  相似文献   

5.
台风"苏力"是2013年最强的台风之一。本文利用再分析资料、卫星遥感资料及ARGO浮标数据等分析了台风过境所引起的海表面温度(SST)、海表面高度异常(SLA)以及海洋次表层温、盐的变化规律,给出了上层海洋对台风响应的基本特征。台风所经过的海域都存在着明显的降温,在冷涡区域引起了6~7℃的海表温度的冷却,降温区域集中在路径的右侧。台风造成SLA降低,最大为20cm左右。海表温度的变化滞后于海面高度的变化。ARGO浮标数据显示,台风引起了海面的显著降温,最大降温幅度为5℃,位于冷涡内,且位于路径的右侧。路径左侧的SST的降低相对较小,为1.5~2.5℃。台风的扰动导致次表层水涌升到表层,改变了表层的盐度和密度,引起混合层加深。  相似文献   

6.
利用POM及其与WRF的耦合模式对"格美"台风影响下的该海区进行了5组数值模拟试验,在对结果分析的基础上,得到了西北太平洋西边界流系源区对此次台风过程的响应。研究表明:在台风影响下,最大风速区及热通量输送决定了海表温度(SST)降温中心范围,热通量的输送对SST的降低贡献超过16.7%;受此次台风影响的混合层(OML)加深、维持的时间为42 h,热通量对OML的加深有正作用,但不如风应力的贡献明显。台风移动方向右侧,OML加深范围更大,且SST最大降低区并不是OML最大加深区。此次台风过程对黑潮南向流的影响较弱,主要增加了海洋混合层的北向流流量。利用耦合模式,考虑了海气间的相互作用,在台风中心附近模拟出由于低压引起的海面升高现象。  相似文献   

7.
连续台风对海表温度和海表高度的影响   总被引:1,自引:0,他引:1  
利用多卫星观测资料,分析了2008年9月3个连续台风前后的海表温度(SST)和海表高度距平(SSHA)的时空变化特征,并探讨了影响其变化的主要因子。结果表明:(1)3个台风引起了强烈的上升流(1×10-5~150×10-5 m/s),海表显著降温(1~6 ℃),海表高度也有不同程度降低(10~50 cm);(2)台风引起的SST最大降温中心与SSHA负值或中尺度冷涡的区域中心十分吻合,同时台风使得先前存在的海洋中尺度冷涡得到加强;(3)同一区域台风对SST影响程度大小受台风的强度、移动速度以及台风对海面强迫时间等因素控制;(4)在原先SSHA为正值的海域,3个台风连续强迫下使得局地洋面形成一个SSHA为负值的中尺度涡,这与单一"打转"台风强迫海洋生成中尺度涡的现象不同。因此,对于西北太平洋海域而言,频发的台风在中尺度涡生消演变过程中的影响应不容忽视。  相似文献   

8.
文章选取2011-2012年出现在西北太平洋地区的3个不同类型的台风,利用中国台风网"CMA-STI热带气旋最佳路径资料数据"和多卫星遥感观测资料,分析了台风对大洋以及中国近海海表温度的影响。分析结果表明,台风对SST的影响程度与台风自身强度和台风的移速密切相关。SST降低区域一般位于台风路径的右侧,台风在大洋右转向时可形成显著降温区。最大SST降低一般滞后台风中心2d或1d,在台风过境后,该海域降低的SST恢复时间也较长。  相似文献   

9.
上层海洋对台风"凯萨娜"(2009)的响应特征   总被引:1,自引:1,他引:0  
本文利用多源卫星遥感数据和Argo浮标数据对2009年台风"凯萨娜"过后,南海上层海洋的物理和生态响应特征进行了分析。结果表明,"凯萨娜"引起的上升流流速最大可以达到1.6×10~(–3)m/s,台风过后,海表面温度(SST)下降显著,最大降温幅度可以达到6℃,海表面高度降低,先前存在的中尺度冷涡进一步加强。台风过后,沿着台风路径,叶绿素浓度升高,最大值可以达到2 mg/m~3以上,初级生产力升高到台风过境前的5倍。SST的最大降温中心与海面高度下降区域以及叶绿素浓度升高的区域一致。Argo数据表明台风诱发了强烈的垂向混合和艾克曼泵吸,不同位置处,垂向混合和艾克曼泵吸的强度不一样。通过混合和泵吸过程,台风可以把海洋内部的营养盐输送到海洋表层,对整个南海的物理和生态过程有重要影响。  相似文献   

10.
通过分析1951—2010年海表面温度(SST)数据发现,南海SST在1980年前后发生了显著的气候变异:与1980年以前相比,南海SST在1980年后平均升高0.44℃,升温幅度明显强于西北太平洋。利用同一时期风应力数据分析探讨了南海SST气候变异与南海风应力变化的关系,发现1980年后南海风应力平均较1980年前减弱了1.04×10-2 N/m2,风应力的显著减弱是导致SST跃升的主要原因。进一步通过数据分析,研究了SST气候变异对南海大尺度环流和南海局地台风活动的影响。结果表明,受SST显著增暖的影响,1980年后南海台风多发季节大气环流发生北风和西风异常,台风高频区东退,强度显著增强,登陆中国华南地区前的气压平均较1980年前下降约8.4hPa,对华南地区的影响加剧。  相似文献   

11.
本文利用海气耦合模式COAWST模拟了2015年的1521号超强台风"杜鹃",并结合再分析资料综合分析了台风过境期间西太平洋上层温度的变化规律。研究结果表明台风过境会使海区内上层温度降低,最大降温可达5-6℃,降温范围直径可达上百千米,台风路径右侧温度降低幅度大于左侧,具有明显的右偏性,路径两侧降温最大差异可达4-5℃。台风过境的引起了海水的垂直混合,"冷抽吸"作用将下层温度低的海水混合到海洋上层,影响深度可达200m。海洋上层温度对台风的响应速度与深度密切相关,深度越小,响应速度越快。台风经过后造成的降温区,约在7-15d内恢复到台风经过前的温度。  相似文献   

12.
以往对上升流的研究更多的是关注其年际或季节变化, 高时间分辨率遥感产品的出现使得研究上升流的高频特征成为可能。本文基于融合的逐日海表温度数据, 结合多尺度分割方法, 提出了一种探测上升流冷信号异质性的新算法, 通过上升流面积和强度指数展示了一个完整的琼东上升流过程。分析SST(Sea Surface Temperature)图像的结果表明, 夏季琼东涌升到海面的上升流存在间断期, 平均间隔为6d。每年夏季(6—9月)平均有98d在海表面识别到上升流, 其平均面积为7698km2, 平均强度为1.0℃, 两者存在较高的相关性。琼东上升流发生频率与离岸距离成反比, 琼东北海域为高发区。不同上升流的影响因子可能不同, 离岸风、风应力旋度、热带气旋均与上升流短期变化密切相关。  相似文献   

13.
海洋对台风的响应对台风预报具有重要意义,但是由于动力结构比较复杂,近岸水体对台风的响应仍然不明确。基于珠江口海洋生态环境教育部野外科学观测研究站的1号浮标观测资料(2021年7~8月),分析了珠江口鸡啼门海域在台风“查帕卡”和“卢碧”期间海洋动力学和热力学响应特征。台风过境引起水体的纬向流速显著增强,“查帕卡”激发了强烈的顺时针近惯性振荡,“卢碧”则激发了接近惯性频率的逆时针海水运动。受当地浅水深的影响,近惯性能量在一个惯性周期(32 h)后快速耗散。两个台风引起的海表温度(sea surface temperature,SST)降温幅度均大于2.2℃,这种降温受潜热通量影响较大;同时,台风过后晚上的SST均大于白天的SST,这也是受到潜热通量的影响。  相似文献   

14.
基于水下滑翔机观测资料,分析了2021年10月南海北部上层海洋细结构强度及类型对台风“圆规”的响应特征。在细结构强度响应方面,台风“圆规”影响后,次表层温度降低,盐度升高,最大降温幅度可达3 ℃,温跃层中上部细结构显著增强。“圆规”影响期间温度、盐度细结构强度最大值深度均约为50 dbar,温度、盐度细结构强度最大值在台风过境后分别移至温跃层上部和中部。结果表明,“圆规”通过加强海洋上层混合促进了“共变型”细结构的生成。台风中心过境时,Ekman抽吸引起的上升流对温跃层起到了水团入侵的效果,从而引起了“侵入型”细结构瞬时增多;台风过境后,“侵入型”细结构强度迅速衰减,“共变型”细结构在温跃层内减弱,而在200-400 dbar深度范围内继续加强,表示该层海水混合继续加强。由此表明,南海北部上层细结构的强度和类型变化对台风“圆规”响应显著。  相似文献   

15.
海洋对台风的响应通常表现为海表温度的降低,然而,出现在2012年8月的台风“布拉万”在经过黄海时却引起朝鲜半岛木浦沿岸海域海表的增温(而非降温),且增温幅度达4.2°C。本研究详细分析了此次异常事件的时空特征,并探讨了其可能的成因。结果发现,此次事件的产生和黄海表层冷水斑块(Surface Cold Patch,SCP)存在密切关系,并恰好出现在木浦SCP所在位置。上升流和潮混合是木浦SCP的两大形成机制,此次增温事件主要是台风“布拉万”通过抑制其生成机制之一的上升流而导致降温不足之故。具体而言,台风“布拉万”过境时位于木浦SCP的左侧,其上的北向风应力带来向岸的Ekman输运,造成外围暖水在木浦SCP地区堆积,从而抑制了该地区原本的上升流(甚至变为下降流)。  相似文献   

16.
本文依据第5次耦合模式比较计划(CMIP5)中的8个模式历史模拟与典型浓度(RCP4.5)试验的结果,探讨了1980—1999年东海海表温度(SST)持续增加的原因,预估了未来东海SST对温室气体持续增加的响应。研究表明:这8个模式都能模拟东海在1980—1999年有显著的SST持续增暖现象,集合平均后这20年增暖的速率为2.25℃/100a。而在RCP4.5试验中,8个模式集合平均后在2006—2055年这50年期间东海SST增暖的速率为2.32℃/100a。在历史模拟中,在1980—1999年期间东海SST持续增长的主要原因是海洋平流热输送加强,而大气调整导致的海面热通量影响比海洋平流热输送的影响小一个量级。在单纯温室气体增加的RCP4.5试验中,除了海洋平流热输送外,由于大气调整导致海面潜热、感热释放减少也是SST持续升温的主要原因之一,其贡献可以与海洋平流热输送加强同量级。对比分析模式对过去的模拟和未来单一强迫的情景试验结果,可以初步确定,在1980—1999年期间由于太平洋年代际变化导致的东海黑潮平流热输送增加是该阶段东海SST持续增加的主要机制。  相似文献   

17.
台风引起南海海表面降温的位置变化特征   总被引:5,自引:1,他引:4       下载免费PDF全文
台风过后通常会在上层海洋引起冷迹,即路径附近的海表而温度(sea surface temperature,SST)降低.本文利用多种卫星数据分析了12年(1998-2009)内经过中国南海的92个台风所引起的海表降温位置的分布特征.通过分析逐日微波遥感SST数据发现,64个台风(69.6%)引起了明显降温(降温≥2℃).其中,43个台风(46.7%)引起的最大降温位于台风路径右侧;13个台风(14.1%)引起的降温出现在路径附近;同时还有8个台风(8.7%)引起的最大降温明显位于路径左侧.台风引起的最大降温出现的位置主要集中在路径左右两侧100km范围内.统计分析表明台风之前存在于上层海洋环境的冷涡,特别是强冷涡,在台风引起的海表面降温和位置分布中可能起着重要的作用.  相似文献   

18.
1990~1999渤海SSTa年际变化的特征   总被引:8,自引:2,他引:6  
基于 1990~ 1999年逐周的 (18× 18)km分辨率的海表温度 (SST)资料 ,将其与历史资料 (195 9~ 1982 )对比 ,发现近 10年渤海SST较历史SST要高 ,但整体结构特征变化不大。进一步采用EOF方法对渤海SST异常 (SSTa)进行分析 ,得到 3个主要的模态。第一模态对总方差的贡献为 82 .4% ,表现为整个海区SSTa同步升温或降温的特征 ,结合渤海沿岸 2个测站的气温资料的分析 ,认为渤海SSTa第一模态的变化与渤海气温异常变化相互依存 ,另外 ,北黄海SSTa的变化可能是造成渤海SSTa第一模态在海峡口附近变化幅度大的主要因素。第二模态对总方差的贡献为 9.4% ,在空间上其对整个海区SSTa起东升温(东降温 )则西降温 (东升温 )作用 ,可能是ENSO现象影响渤海海温变化最直接的表现。第三模态对总方差的贡献为 5 .0 % ,在空间上其对SSTa起北升温 (北降温 )则南降温 (南升温 )的作用 ,认为其可能与山东陆域气温和黄海流域气温变化有关。  相似文献   

19.
1945~2006年东中国海海表温度的长期变化趋势   总被引:8,自引:0,他引:8  
通过对HadISST1资料1945~2006年海表温度(SST)的分析,发现在东中国海SST具有明显的长期升高的线性变化趋势,平均每年升高0.015℃,在这62 a共升高了0.9℃.其中,东海的升温现象最为突出,从福建和浙江两省沿岸向东北方向扩展的大片海域,是整个东中国海SST变化最大的所在.由于台湾海峡常年向北的流动和台湾岛东北侧向北的黑潮水入侵在1945~2006之间得到了相当程度的加强,它们对热量平流输运的增加有利于东中国海SST长期升高.同样起到促进作用的还有海面风场所控制的垂向卷夹过程.海面净热通量的变化抑制了东中国海SST的长期升高趋势.研究结果显示,东中国海SST的长期变化趋势极有可能是受到太平洋长期变化的影响.  相似文献   

20.
海面温度变化影响台风"海棠"强度的数值研究   总被引:1,自引:0,他引:1  
通过对台风"海棠"5 d的数值模拟,研究海表温度(SST)变化对台风强度的影响。与NCEP月平均海表温度相对比,在中尺度大气模式中引入热带测雨卫星(TRMM)微波成像仪(TMI)/先进微波扫描辐射计(AMSR-E)来考察SST对台风"海棠"路径和强度的影响。研究结果表明,每天变化SST的试验模拟的台风强度和路径整体效果不错;模拟的台风路径不敏感于SST的变化,而台风强度的变化不仅取决于由于台风移动引发的SST冷却的幅度大小,而且取决于SST冷却区域的相对位置。在台风"海棠"强烈发展过程中,台风中心右侧冷却区对台风中心气压影响很小;台风强烈发展过后,SST冷却区开始影响台风强度,但造成台风中心气压下降幅度不大,6 h内台风中心气压减弱约3.9 hPa。海面热量通量和海面风速与SST的分布都有良好的相关性:在SST变化为正值的暖水区,感热通量和潜热通量都是一个正的通量分布的极值区,并有风速极大值区域存在;在台风右侧相应的冷却区,则存在着负的通量异常和风速极小值区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号