首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Deccan flood basalt province of west-central India has been linked to the Reunion plume, and reconstructions suggest that the Kutch region was over the plume at the time of Deccan volcanism at 65-68 Ma. Field relations and isotopic data indicate that the alkaline basalts of Kutch, which occur to the NNW of the main Deccan tholeiitic province, preceded the main flood-basalt volcanism and are related to the limited plume incubation period. Several plugs of these alkali basalts contain small spinel peridotite xenoliths of mantle origin. The minerals of the spinel peridotites have been analyzed for their major, trace, and rare-earth element (REE) concentrations using electron micro-probe and LAM-ICPMS techniques. The modes and mineral chemistry, especially of the clinopyroxenes, indicate a fertile mantle; modeling of the clinopyroxene REE data is consistent with <5 to 15% of partial melting of a primitive mantle source material in the spinel peridotite field. Subsequent cryptic metasomatism introduced LREE, U, Th, and Zr. The xenoliths may represent: (1) young lithosphere generated during the lithospheric extension that preceded the main Deccan volcanism; or (2) material from the uppermost parts of the rising plume, brought to the surface by the first stages of the volcanism. Their low equilibration temperatures (≤900°C) and their textural and chemical similarity to xenolith suites from other Phanerozoic intraplate settings favor the first alternative. However, the extensive cryptic metasomatism may reflect the influence of the rising Deccan plume.  相似文献   

2.
We report here an unusually high concentration of iridium in some alkali basalts and alkaline rocks of Deccan region having an age of about 65Ma, similar to the age of the Cretaceous-Tertiary boundary. The alkali basalts of Anjar, in the western periphery of Deccan province, have iridium concentration as high as 178pg/g whereas the alkaline rocks and basalts associated with the Amba Dongar carbonatite complex have concentrations ranging between 8 and 80 pg/g. Some of these values are more than an order of magnitude higher than the concentration in the tholeiitic basalts of Deccan, indicating the significance of alkaline magmatism in the iridium inventory at the Cretaceous-Tertiary boundary. Despite higher concentration, their contribution to the global inventory of iridium in the Cretaceous-Tertiary boundary clays remains small. The concentration of iridium in fluorites from Amba Dongar was found to be <30 pg/g indicating that iridium is not incorporated during their formation in hydrothermal activity.  相似文献   

3.
The lava sequence of the central-western Deccan Traps (from Jalgaon towards Mumbai) is formed by basalts and basaltic andesites having a significant variation in TiO2 (from 1.2 to 3.3 wt%), Zr (from 84 to 253 ppm), Nb (from 5 to 16ppm) and Ba (from 63 to 407 ppm), at MgO ranging from 10 to 4.2 wt%. Most of these basalts follow a liquid line of descent dominated by low pressure fractionation of clinopyroxene, plagioclase and olivine, starting from the most mafic compositions, in a temperature range from 1220° to 1125°C. These rocks resemble those belonging to the lower-most formations of the Deccan Traps in the Western Ghats (Jawhar, Igatpuri and Thakurvadi) as well as those of the Poladpur formation. Samples analyzed for87Sr/86Sr give a range of initial ratios from 0.70558 to 0.70621. A group of flows of the Dhule area has low TiO2 (1.2–1.5 wt%) and Zr (84–105 ppm) at moderate MgO (5.2–6.2 wt%), matching the composition of low-Ti basalts of Gujarat, low-Ti dykes of the Tapti swarm and Toranmal basalts, just north of the study area. This allows chemical correlations between the lavas of central Deccan, the Tapti dykes and the north-western outcrops. The mildly enriched high field strength element contents of the samples with TiO2 > 1.5 wt% make them products of mantle sources broadly similar to those which generated the Ambenali basalts, but their high La/Nb and Ba/Nb, negative Nb anomalies in the mantle normalized diagrams, and relatively high87Sr/86Sr, make evident a crustal input with crustally derived materials at less differentiated stages than those represented in this sample set, or even within the sub-Indian lithospheric mantle.  相似文献   

4.
Many tholeiitic dyke-sill intrusions of the Late Cretaceous Deccan Traps continental flood basalt province are exposed in the Satpura Gondwana Basin around Pachmarhi, central India. We present field, petrographic, major and trace element, and Sr–Nd–Pb isotope data on these intrusions and identify individual dykes and sills that chemically closely match several stratigraphically defined formations in the southwestern Deccan (Western Ghats). Some of these formations have also been identified more recently in the northern and northeastern Deccan. However, the Pachmarhi intrusions are significantly more evolved (lower Mg numbers and higher TiO2 contents) than many Deccan basalts, with isotopic signatures generally different from those of the chemically similar lava formations, indicating that most are not feeders to previously characterized flows. They appear to be products of mixing between Deccan basalt magmas and partial melts of Precambrian Indian amphibolites, as proposed previously for several Deccan basalt lavas of the lower Western Ghats stratigraphy. Broad chemical and isotopic similarities of several Pachmarhi intrusions to the northern and northeastern Deccan lavas indicate petrogenetic relationships. Distances these lava flows would have had to cover, if they originated in the Pachmarhi area, range from 150 to 350 km. The Pachmarhi data enlarge the hitherto known chemical and isotopic range of the Deccan flood basalt magmas. This study highlights the problems and ambiguities in dyke-sill-flow correlations even with extensive geochemical fingerprinting.  相似文献   

5.
The paper describes the variation pattern of magnetic susceptibility of Lameta sediments and isotopic variation of organic13C from Chui Hill, Bergi, Kholdoda, Pisdura and Girad. The susceptibility pattern and a negative carbon isotopic anomaly allows fixation of the K/T boundary at these localities and they differ in these aspects from the inter-trappean sediments at Anjar. Paleomagnetic measurements of the Anjar sediment and the overlying basalt flow demonstrate reversed polarity. The Lameta sediments with dinosaur nests at Kheda and the overlying intertrappean sediments are of normal polarity. The clay layers at Anjar, associated closely with Ir-enrichments, are strongly leached, rhyolitic bentonites containing low-quartz paramorphs after high-quartz with glass inclusions. It is concluded, that the inter-trappean lake deposits at Anjar were deposited in the early part of magnetochron 29R and are unrelated to the K/T boundary.  相似文献   

6.
Leone Melluso  John J. Mahoney  Luigi Dallai   《Lithos》2006,89(3-4):259-274
Near-primitive picritic basalts in the northwestern Deccan Traps have MgO > 10 wt.% and consist of two groups (low-Ti and high-Ti) with markedly different incompatible element and Nd–Sr–Pb isotope characteristics. Many elemental characteristics of the low-Ti picritic basalts are similar to those of transitional or normal ocean ridge basalts. However, values of ratios like Ba/Nb (13–30) and Ce/Pb (4–11), and isotopic ratios (e.g., εNd(t) + 0.3 to − 6.3, (207Pb/204Pb)t 15.63–15.75 at (206Pb/204Pb)t 18.19–18.84, δ18Oolivine as high as + 6.2‰) are far-removed from ocean-ridge-type values, indicating a significant contribution from continental crust. The crustal signature could represent crustal contamination of ascending magmas; alternatively, it could represent a minor component within the Indian lithospheric mantle of anciently subducted sedimentary material or fluids derived from subducted material. In contrast, the high-Ti picritic basalts are chemically and isotopically rather similar to recent shield lavas of the Réunion hotspot (e.g., εNd(t) + 2 to + 4) and to volcanic rocks along the postulated pre-Deccan track of this hotspot in Pakistan. Neither type of picritic basalt is parental to the voluminous flows comprising the bulk of the Deccan Traps. However, many of the Deccan primary magmas could have been derived from mixtures of a high-Ti-type, Réunion-like source component and a component more similar to, or even more incompatible-element-depleted than, average ocean-ridge mantle.  相似文献   

7.
The Cretaceous–Paleogene boundary (KPgB) was dated by the 40Ar/39Ar method herein from the western interior of North America at 65.48 ± 0.12 Ma (1σ), in good agreement with other recent published estimates. For the Deccan Traps, India, new argon ages as well as others available in the literature, are assessed for reliability based on (a) statistical reliability of plateau/isochron sections and (b) freshness of material dated utilizing the alteration index method. From tholeiitic lavas from the Composite Western Ghats Section (CWGS), only six ages are found to be reliable estimates of the time of crystallization. These ages along with the magnetic polarity of the lavas agree with the geomagnetic polarity time scale (GPTS) at ∼67–64 Ma. Alkaline rocks from the Anjar area of Kutch, provide three reliable ages that suggest a hiatus in lava extrusion around KPgB. For the Rajahmundry basalts, the upper flow’s age defines its formation during chron 29n; a single age from the lower reversed polarity flow appears somewhat dichotomous when plotted against the GPTS. The reliable lava ages indicate the most voluminous (reversed polarity) sections of the CWGS were extruded at a time statistically indistinguishable from that of the KPgB. The Deccan Trap – KPgB faunal extinction hypothesis remains plausible, but must compete with the latest report, favoring a very close temporal connection (∼0.03 m.y.) between the Chixculub (Impact) Crater and the KPgB.  相似文献   

8.
峨眉山溢流玄武岩省高钛玄武岩的两种不同地幔源特征   总被引:1,自引:0,他引:1  
为探讨和揭示峨眉山高钛玄武岩的幔源特征,以二滩高钛玄武岩为研究对象进行了主要元素、微量元素和Sr-Nd-Pb同位素的系统研究。研究表明:二滩高钛玄武岩可分为A和B两组玄武岩;两组岩石间的微量元素(Rb﹑K﹑Ba﹑Th﹑Nb和Ta)富集程度和微量元素比值(Ba/Nb﹑Ba/Th﹑Zr/Nb﹑Th/La、Zr/Hf)以及同位素比值(87Sr/86Sr、208Pb*/206Pb*)均存在较为明显的差异。造成这种差异的原因不是岩浆过程(结晶分异、地壳混染、部分熔融)的不同,而是A组和B组具有不同的地幔源。A组具有EM II特征,可能为富含辉石岩的交代地幔部分熔融所形成;B组则具有EM I和C组分的混合特征,可能为交代谱系较宽的地幔物质熔融所形成。  相似文献   

9.
《Gondwana Research》2002,5(3):649-665
The Mandla lobe in the eastern part of the Deccan volcanic province represents an isolated lava pile having a thickness of ∼900 m. The large thickness of this lava pile and its spatial detachment from the western Deccan outcrop points to a plausible second source. The stratigraphic configuration of the central and eastern Deccan lava sequences and their possible stratigraphic correlation are primarily based on geology and chemical signatures of the lava flows. Based on variations in the incompatible element ratios, the lava sequences of Chindwara, Jabalpur-Seoni and Jabalpur-Piparia sections were classified into four informal formations showing similarity with the southwestern formations. Major and trace element abundances in fifteen lava flows of Jabalpur area are similar to that of the southwestern Deccan lava flows. It has been found that the Ambenali Fm. and a few Khandala and Bushe Fm. flows are present in the northeastern Deccan. The regional mapping and detailed petrographic studies coupled with the lateral tracing have enabled the recognition of thirty-seven physically distinct lava flows and is justified by their major-elemental chemistry. The ‘intraflow variations’ studied in some of the flows is very low for most of the major oxides. These thirty-seven lava flows are grouped into eight chemical types. The order of superposition in this sequence reflects that the older flows occur in the west of the outlier at the Seoni-Jabalpur-Sahapura sector whereas, the younger flows are confined to the Dindori-Amarkantak sector in the east. The spatial disposition of the lava flows suggests that the structural complexity in the lava flow sequence in the Mandla lobe lies between Jabalpur and Dindori. The juxtaposition of distinct groups of lava flows are observed near Deori (flows 1 to 4 abeted aginst flows 5 to 14) and Dindori areas. At Dindori and towards its south the distinct lava packages (flows 15 to 27 and flows 28 to 37) are juxtaposed along the course of Narmada river. The possible explanation for this could be the presence of four post-Deccan faults at Nagapahar, Kundam, Deori and Dindori areas. The vertical shift of chemically distinct lava packages at different sectors in the outlier contravenes the idea of small regional dip and favours the presence of four NE-SW trending post-Deccan faults. Major geochemical breaks, when traced out from section to section, exhibit shifting in heights by approximately 150 m near Nagapahar and 300 m near Deori and Dindori areas. The field, petrographic and major-oxide data sets considered in conjuction with the magnetic chron reversal heights, support the inference that four faults trending NE-SW are present in the Mandla lobe.A commonality in the mineralo-chemical attributes of the infra (Lametas)-/inter-trappean as well as weathered Deccan basalt further favours their derivation from Deccan basalt, implying the availability of Deccan basalt during the Maastrichtian Lameta sedimentation. This observation does not match with the models suggesting an extremely short duration of Deccan volcanism (<0.5 Ma) at the KTB, but is congruent with the models advocating a more prolonged Deccan volcanism.  相似文献   

10.
甘肃省夏河县腾布—日周一带发育早白垩世多禾茂组(K1d)火山岩地层,该套地层属于典型的陆内裂谷沉积组合。岩石组成主要为玄武岩,底部偶见复成分砾岩。岩相学及岩石地球化学特征表明腾布—日周玄武岩为钠质碱性橄榄玄武岩,富集LREE及Nb、Ta、La、Zr等,亏损Rb和K等,稀土元素球粒陨石标准化配分曲线及微量元素原始地幔标准化蛛网图,均与世界典型的OIB型玄武岩相似。但是Th/Nb=0.055~0.060,平均为0.057(OIB为0.08),Zr/Nb=6.9~8,平均为7.25(OIB为5.83),Th/La=0.07(OIB为0.11),又与之不同,表明玄武岩岩浆来自软流圈地幔,同时受到地壳物质混染。LA-ICP-MS锆石U-Pb同位素年龄为(106.27±1.3) Ma,另外麦秀山一带多禾茂组中产以Classopollis-Osmundacidites为主的孢粉组合。认为该玄武岩是西秦岭晚中生代大陆裂谷岩浆作用的产物,但是未发育典型的双峰式火山岩,多禾茂组有陆相红层建造,上部万秀组发育类磨拉石建造。因此裂谷作用很可能夭折于岩石圈拉张的早期阶段,并未发展到陆间裂谷阶段。  相似文献   

11.
A comparison of geochemical and Sr–Nd–Pb isotopic compositions for Deccan Continental Flood Basalts (CFBs) and Central Indian Ridge (CIR) Basalts is presented: these data permit assessment of possible parental linkages between the two regions, and comparison of their respective magmatic evolutionary trends in relation to rift-related tectonic events during Gondwana break-up. The present study reveals that Mid-Ocean Ridge Basalt (MORB) from the northern CIR and basalts of Deccan CFB are geochemically dissimilar because of: (1) the Deccan CFB basalts typically show a greater iron-enrichment as compared to the northern CIR MORB, (2) a multi-element spiderdiagram reveals that the Deccan CFBs reveal a more fractionated slope (Ba/YbN > 1), as compared to relatively flat northern CIR MORB (Ba/YbN < 1), (3) there is greater REE fractionation for Deccan CFB than for the northern CIR MORB (i.e., La/YbN  2.3 and 1 respectively) and (4) substantial variation of compatible–incompatible trace elements and their ratios among the two basalt groups suggests that partial melting is a dominant process for northern CIR MORB, while fractional crystallization was a more important control to the geochemical variation for Deccan CFB. Further, incompatible trace element ratios (Nb/U and Nb/Pb) and radiogenic isotopic data (Sr–Pb–Nd) indicate that the northern CIR MORBs are similar to depleted mantle [and/or normal (N)-MORB], and often lie on a mixing line between depleted mantle and upper continental crust. By contrast, Deccan CFB compositions lie between the lower continental crust and Ocean island basalt. Accordingly, we conclude that the basaltic suites of the northern CIR MORB and Deccan CFB do not share common parentage, and are therefore genetically unrelated to each other. Instead, we infer that the northern CIR MORB were derived from a depleted mantle source contaminated by upper continental crust, probably during the break up of Gondwanaland; the Deccan CFB are more similar to Ocean island basalt (Reunion-like) composition, and perhaps contaminated by lower continental crust during their evolution.  相似文献   

12.
New major and trace element data for the Permo–Triassic basalts from the West Siberian Basin (WSB) indicate that they are strikingly similar to the Nadezhdinsky suite of the Siberian Trap basalts. The WSB basalts exhibit low Ti/Zr (50) and low high-field-strength element abundances combined with other elemental characteristics (e.g., low Mg#, and negative Nb and Ti anomalies on mantle-normalised plots) typical of fractionated, crustally contaminated continental flood basalts (CFBs). The major and trace element data are consistent with a process of fractional crystallisation coupled with assimilation of incompatible-element-enriched lower crust. Relatively low rates of assimilation to fractional crystallisation (0.2) are required to generate the elemental distribution observed in the WSB basalts. The magmas parental to the basalts may have been derived from source regions similar to primitive mantle (OIB source) or to the Ontong Java Plateau source. Trace element modelling suggests that the majority of the analysed WSB basalts were derived by large degrees of partial melting at pressures less than 3 GPa, and therefore within the garnet-spinel transition zone or the spinel stability field.

It seems unlikely that large-scale melting in the WSB was induced through lithospheric extension alone, and additional heating, probably from a mantle plume, would have been required. We argue that the WSB basalts are chemically and therefore genetically related to the Siberian Traps basalts, especially the Nadezhdinsky suite found at Noril'sk. This suite immediately preceded the main pulse of volcanism that extruded lava over large areas of the Siberian Craton. Magma volume and timing constraints strongly suggest that a mantle plume was involved in the formation of the Earth's largest continental flood basalt province.  相似文献   


13.
特提斯喜马拉雅地层中广泛分布早白垩世火山碎屑岩,但对这套火山碎屑岩的源区缺乏有力的约束。在特提斯喜马拉雅中西段仲巴地区白垩系日朗组地层中发现一套玄武岩夹层,该玄武岩为碱性玄武岩,表现为LREE富集的分布型式,与典型的OIB和区域上的板内玄武岩类似。玄武岩Nb含量介于下地壳与上地壳之间,Th含量略低于下地壳,具有较高的Th/Nb比值和较低的Ce/Pb,指示岩浆在演化过程中遭受了一定程度的地壳混染,与雅鲁藏布蛇绿岩混杂岩带中的海山明显不同。构造环境判别图解显示玄武岩形成于大陆板内裂谷环境,结合日朗组地层沉积环境的分析,该玄武岩可能为日朗组火山碎屑岩提供物源。  相似文献   

14.
富铌玄武岩:板片熔体交代的地幔楔橄榄岩部分熔融产物   总被引:4,自引:0,他引:4  
富铌玄武岩是一类具有特殊地球化学特征的岛弧玄武岩。与正常岛弧玄武岩相比,它具有硅饱和并富钠的特征;同时具有相对高的Nb(一般>7×10-6)、TiO2(1%~2%)和P含量,以及低的LILE/HFSE和HREE/HFSE比值,并富集高场强元素;它的原始地幔标准化微量元素图显示了弱的Nb、Ta负异常(有时出现弱的正异常),原始地幔标准化La/Nb比值小于2(但很少小于0.7),它是由受埃达克质熔体交代过的地幔橄榄岩部分熔融形成的。由于富铌玄武岩与埃达克岩是大洋板片俯冲作用的直接产物,因此,通过对该岩石组合及与俯冲作用有关的流体和熔体的研究,不仅可以查明洋壳俯冲作用过程中的岩浆活动特征,还可以阐明洋壳俯冲及壳幔相互作用,具十分重要的地质意义。  相似文献   

15.
The concentration of dissolved Ba in a number of rivers having their drainage almost entirely in Deccan Trap basalts has been measured. These results along with available data on the abundances of major elements in these waters, and on Ba and major elements in bed sediments of these rivers provide a measure of (i) the relative mobility of Ba during chemical weathering and erosion of basalts, particularly with respect to alkaline earths, Mg, Ca and Sr, and (ii) the flux of Ba out of the Deccan and its global significance. The concentration of dissolved Ba ranges from 8 to 105 nM. The average Ba/Mg*, Ba/Ca* and Ba/Sr (* is concentration corrected for atmospheric contribution) in waters is lower than the corresponding mean ratios in Deccan basalts, though they overlap within errors. Majority of the water samples, however, have ratios less than that in basalts. These findings can be interpreted as a cumulative effect of limited release/mobility of Ba during chemical weathering and erosion of basalts and its reactive behaviour in waters which promote its association with clays and oxy-hydroxides of Fe. These results also indicate that during chemical erosion of Deccan basalts, Ba is the least mobile among the alkaline earth elements. The abundance of Ba in sediments and their Ba/Al ratios relative to basalts are consistent with the above conclusion. Ba/Mg and Ba/Ca ratios in water and in sediments from the same location are strongly correlated; however, the mean ratios in waters are far less than those in sediments. This is a result of limited Ba mobility, effectively 5–6 times lower than that of Mg. The annual flux of dissolved Ba out of the Deccan Traps is ~1 × 107 moles, ~ 0.2% of its global riverine transport to oceans. The contribution of dissolved Ba from Deccan Traps, seem lower than its aerial coverage, ~ 0.5% of the global drainage area; the potential causes for this could be the lower abundance of Ba in basalts relative to “average continental crust”, and its behaviour during chemical weathering and erosion.  相似文献   

16.
Geochemical and geochronological data for rocks from the Rajahmundry Traps, are evaluated for possible correlation with the main Deccan province. Lava flows are found on both banks of the Godavari River and contain an intertrappean sedimentary layer. Based on40Ar/39 Ar age data, rocks on the east bank are post K-T boundary, show normal magnetic polarity, and belong to chron 29N. Their chemistry is identical to lavas in the Mahabaleshwar Formation in the Western Ghats, ∼1000km away. It was suggested earlier that the genetic link between these geographically widely separated rocks resulted from lava flowing down freshly incised river canyons at ∼ 64 Ma. For the west bank rocks, recent paleomagnetic work indicates lava flows below and above the intertrappean (sedimentary) layer show reversed and normal magnetic polarity, respectively. The chemical composition of the west bank flow above the intertrappean layer is identical to rocks on the east bank. The west bank lava lying below the sedimentary layer, shows chemistry similar to Ambenali Formation lava flows in the western Deccan.40Ar/39 Ar dating and complete chemical characterization of this flow is required to elucidate its petrogenesis with respect to the main Deccan Province.  相似文献   

17.
Mafic volcanic rocks of the Mesozoic Kutch basin represent the earliest phase of Deccan volcanic activity. An olivine-clinopyroxene-plagioclase-phyric undersaturated basalt occurs as a sill near Sadara in the Pachham upland, Northern Kutch. The Sadara sill is deformed and emplaced along faults. The sill is alkaline in character and is transitional between basalt and basanite. Compared to primitive mantle, the Sadara sill is enriched in Sr, Ba, Pb and LREE but depleted in Nb, Cr, Y, Cs and Lu. Fractional crystallization of olivine and clinopyroxene from an alkaline mafic melt generated by low degree partial melting of mantle peridotite can explain the observed chemical variation in the sill.IRM and L-F test experiments and mineral analyses show titano-magnetite as the major remanence carrying magnetic mineral. AF and thermal demagnetizations of the Sadara sill yielded a mean ChRM direction as D=315.6°, I=−43.0° (α95=9.78; k=25.38) and the corresponding VGP at 25°S; 114.6°E (dp/dm=6.58°/11.6°). The Sadara sill pole is significantly different from those of the Deccan (65 Ma) and the Rajmahal Traps (118 Ma) but is close to the Cretaceous poles of 85–91 Ma rock units from southern India. This suggests a pre-Deccan age for the sill.  相似文献   

18.
The Central Indian Ocean Basin (CIOB) basalts are plagioclase-rich, while olivine and pyroxene are very few. The analyses of 41 samples reveal high FeOT (~10–18 wt%) and TiO2 (~1.4–2.7 wt%) indicating a ferrobasaltic composition. The basalts have high incompatible elements (Zr 63–228 ppm; Nb ~1–5 ppm; Ba ~15–78 ppm; La ~3–16 ppm), a similar U/Pb (0.02–0.4) ratio as the normal mid-oceanic basalt (0.16±0.07) but the Ba/Nb (12.5–53) ratio is much larger than that of the normal mid-oceanic ridge basalt (~5.7) and Primitive Mantle (9.56). Interestingly almost all of the basalts have a significant negative Eu anomaly (Eu/Eu*=0.78–1.00) that may have been a result of the removal of feldspar and pyroxene during crystal fractionation. These compositional variations suggest that the basalts were derived through fractional crystallization together with low partial melting of a shallow seated magma.  相似文献   

19.
Geochemical characteristics of Desur-type basalt flows in the southern and southwestern part of Belgaum in Karnataka, India have been investigated to understand their petrogenesis. The basalts are compact, hard, massive, and show characteristic microporphyritic textures with abundant well-twinned and un-twinned plagioclase phenocrysts and minor clinopyroxene set in a fine-grained groundmass consisting of plagioclase, clinopyroxene, glass and Fe-Ti oxides. Thin sections show sub-ophitic, intergranular and intersertal textures. The basalts are Fe-rich tholeiites (13.4–13.8 wt %), characterized by high TiO2 (3.64 to 3.94 wt %); moderate MgO contents (4.79 to 5.41 wt %), low K2O contents (<0.58 wt %) and low Mg# (42.4–45.9). They are enriched in large ion lithophile elements, moderately enriched in the light rare earths (chondrite-normalized LaN/YbN 3.37–4.24), and exhibit nearly flat heavy rare-earth patterns that lack significant Eu anomalies (Eu/Eu* 0.86–1.10). Primitive-mantle-normalized element patterns for these rocks show characteristic troughs at K and Sr, absence of a Nb anomaly, and a low Zr/Nb ratio (<15), which suggest insignificant contamination by many types of continental crust, whereas, enrichments in the large ion lithophiles, La, P and Th could suggest enriched source characteristics. Based on the geochemical characteristics of the basalts, it is inferred that the Desur basalts representing the youngest flows of the Deccan Basalt Group are derived by partial melting of a peridotite source, and subsequent fractionation gave rise to the compositions of the basalts that are found in the Belgaum region.  相似文献   

20.
Flood and Shield Basalts from Ethiopia: Magmas from the African Superswell   总被引:24,自引:1,他引:24  
The Ethiopian plateau is made up of several distinct volcaniccentres of different ages and magmatic affinities. In the NE,a thick sequence of 30 Ma flood basalts is overlain by the 30Ma Simien shield volcano. The flood basalts and most of thisshield volcano, except for a thin veneer of alkali basalt, aretholeiitic. In the centre of the province, a far thinner sequenceof flood basalt is overlain by the 22 Ma Choke and Guguftu shieldvolcanoes. Like the underlying flood basalts, these shieldsare composed of alkaline lavas. A third type of magma, whichalso erupted at 30 Ma, is more magnesian, alkaline and stronglyenriched in incompatible trace elements. Eruption of this magmawas confined to the NE of the province, a region where the lavaflows are steeply tilted as a result of deformation contemporaneouswith their emplacement. Younger shields (e.g. Mt Guna, 10·7Ma) are composed of Si-undersaturated lavas. The three maintypes of magma have very different major and trace element characteristicsranging from compositions low in incompatible elements in thetholeiites [e.g. 10 ppm La at 7 wt % MgO (=La7), La/Yb = 4·2],moderate in the alkali basalts (La7 = 24, La/Yb = 9·2),and very high in the magnesian alkaline magmas (La7 = 43, La/Yb= 17). Although their Nd and Sr isotope compositions are similar,Pb isotopic compositions vary considerably; 206Pb/204Pb variesin the range of  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号