首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forecasting reservoir inflow is one of the most important components of water resources and hydroelectric systems operation management. Seasonal autoregressive integrated moving average (SARIMA) models have been frequently used for predicting river flow. SARIMA models are linear and do not consider the random component of statistical data. To overcome this shortcoming, monthly inflow is predicted in this study based on a combination of seasonal autoregressive integrated moving average (SARIMA) and gene expression programming (GEP) models, which is a new hybrid method (SARIMA–GEP). To this end, a four-step process is employed. First, the monthly inflow datasets are pre-processed. Second, the datasets are modelled linearly with SARIMA and in the third stage, the non-linearity of residual series caused by linear modelling is evaluated. After confirming the non-linearity, the residuals are modelled in the fourth step using a gene expression programming (GEP) method. The proposed hybrid model is employed to predict the monthly inflow to the Jamishan Dam in west Iran. Thirty years’ worth of site measurements of monthly reservoir dam inflow with extreme seasonal variations are used. The results of this hybrid model (SARIMA–GEP) are compared with SARIMA, GEP, artificial neural network (ANN) and SARIMA–ANN models. The results indicate that the SARIMA–GEP model (R 2=78.8, VAF =78.8, RMSE =0.89, MAPE =43.4, CRM =0.053) outperforms SARIMA and GEP and SARIMA–ANN (R 2=68.3, VAF =66.4, RMSE =1.12, MAPE =56.6, CRM =0.032) displays better performance than the SARIMA and ANN models. A comparison of the two hybrid models indicates the superiority of SARIMA–GEP over the SARIMA–ANN model.  相似文献   

2.
A reliable prediction of dispersion coefficient can provide valuable information for environmental scientists and river engineers as well. The main objective of this study is to apply intelligence techniques for predicting longitudinal dispersion coefficient in rivers. In this regard, artificial neural network (ANN) models were developed. Four different metaheuristic algorithms including genetic algorithm (GA), imperialist competitive algorithm (ICA), bee algorithm (BA) and cuckoo search (CS) algorithm were employed to train the ANN models. The results obtained through the optimization algorithms were compared with the Levenberg–Marquardt (LM) algorithm (conventional algorithm for training ANN). Overall, a relatively high correlation between measured and predicted values of dispersion coefficient was observed when the ANN models trained with the optimization algorithms. This study demonstrates that the metaheuristic algorithms can be successfully applied to make an improvement on the performance of the conventional ANN models. Also, the CS, ICA and BA algorithms remarkably outperform the GA and LM algorithms to train the ANN model. The results show superiority of the performance of the proposed model over the previous equations in terms of DR, R 2 and RMSE.  相似文献   

3.
Soil temperature has an important role in agricultural, hydrological, meteorological and climatological studies. In the present research, monthly mean soil temperature at four different depths (5, 10, 50 and 100 cm) was estimated using artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS) and gene expression programming (GEP). The monthly mean soil temperature data of 31 stations over Iran were employed. In this process, the data of 21 and 10 stations were used for training and testing stages of used models, respectively. Furthermore, the geographical information including latitude, longitude and altitude as well as periodicity component (the number of months) was considered as inputs in the mentioned intelligent models. The results demonstrated that the ANN and ANFIS models had good performance in comparison with the GEP model. Nevertheless, the ANFIS generally performed better than ANN model.  相似文献   

4.
Accurate and reliable prediction of shallow groundwater level is a critical component in water resources management. Two nonlinear models, WA–ANN method based on discrete wavelet transform (WA) and artificial neural network (ANN) and integrated time series (ITS) model, were developed to predict groundwater level fluctuations of a shallow coastal aquifer (Fujian Province, China). The two models were testified with the monitored groundwater level from 2000 to 2011. Two representative wells are selected with different locations within the study area. The error criteria were estimated using the coefficient of determination (R 2), Nash–Sutcliffe model efficiency coefficient (E), and root-mean-square error (RMSE). The best model was determined based on the RMSE of prediction using independent test data set. The WA–ANN models were found to provide more accurate monthly average groundwater level forecasts compared to the ITS models. The results of the study indicate the potential of WA–ANN models in forecasting groundwater levels. It is recommended that additional studies explore this proposed method, which can be used in turn to facilitate the development and implementation of more effective and sustainable groundwater management strategies.  相似文献   

5.
Compound broad-crested weir is a typical hydraulic structure that provides flow control and measurements at different flow depths. Compound broad-crested weir mainly consists of two sections; first, relatively small inner rectangular section for measuring low flows, and a wide rectangular section at higher flow depths. In this paper, series of laboratory experiments was performed to investigate the potential effects of length of crest in flow direction, and step height of broad-crested weir of rectangular compound cross-section on the discharge coefficient. For this purpose, 15 different physical models of broad-crested weirs with rectangular compound cross-sections were tested for a wide range of discharge values. The results of examination for computing discharge coefficient were yielded by using multiple regression equations based on the dimensional analysis. Then, the results obtained were also compared with genetic programming (GP) and artificial neural network (ANN) techniques to investigate the applicability, ability, and accuracy of these procedures. Comparison of results from the GP and ANN procedures clearly indicates that the ANN technique is less efficient in comparison with the GP algorithm, for the determination of discharge coefficient. To examine the accuracy of the results yielded from the GP and ANN procedures, two performance indicators (determination coefficient (R 2) and root mean square error (RMSE)) were used. The comparison test of results clearly shows that the implementation of GP technique sound satisfactory regarding the performance indicators (R 2?=?0.952 and RMSE?=?0.065) with less deviation from the numerical values.  相似文献   

6.
The present research was carried out by using artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), cokriging (CK) and ordinary kriging (OK) using the rainfall and streamflow data for suspended sediment load forecasting. For this reason, the time series of daily rainfall (mm), streamflow (m3/s), and suspended sediment load (tons/day) data were used from the Kojor forest watershed near the Caspian Sea between 28 October 2007 and 21 September 2010 (776 days). Root mean square error, efficiency coefficient, mean absolute error, and mean relative error statistics are used for evaluating the accuracy of the ANN, ANFIS, CK, and OK models. In the first part of the study, various combinations of current daily rainfall, streamflow and past daily rainfall, streamflow data are used as inputs to the neural network and neuro-fuzzy computing technique so as to estimate current suspended sediment. Also, the accuracy of the ANN and ANFIS models are compared together in suspended sediment load forecasting. Comparison results reveal that the ANFIS model provided better estimation than the ANN model. In the second part of the study, the ANN and ANFIS models are compared with OK and CK. The comparison results reveal that CK was a better estimation than the OK. The ANFIS and ANN models also provided better estimation than the OK and CK models.  相似文献   

7.
In this paper, liquefaction potential of soil is evaluated within a probabilistic framework based on the post-liquefaction cone penetration test (CPT) data using an evolutionary artificial intelligence technique, multi-gene genetic programming (MGGP). Based on the developed limit state function using MGGP, a relationship is given between probability of liquefaction (PL) and factor of safety against liquefaction using Bayesian theory. This Bayesian mapping function is further used to develop a PL-based design chart for evaluation of liquefaction potential of soil. Using an independent database of 200 cases, the efficacy of the present MGGP-based probabilistic method is compared with that of the available probabilistic methods based on artificial neural network (ANN) and statistical methods. The proposed method is found to be more efficient in terms of rate of successful prediction of liquefaction and non-liquefaction cases, in three different ranges of PL values compared to ANN and statistical methods.  相似文献   

8.
In this study, the zeta potential of montmorillonite in the presence of different chemical solutions was modeled by means of artificial neural networks (ANNs). Zeta potential of the montmorillonite was measured in the presence of salt cations, Na+, Li+ and Ca2+ and metals Zn2+, Pb2+, Cu2+, and Al3+ at different pH values, and observed values pointed to a different behavior for this mineral in the presence of salt and heavy metal cations. Artificial neural networks were successfully developed for the prediction of the zeta potential of montmorillonite in the presence of salt and heavy metal cations at different pH values and ionic strengths. Resulting zeta potential of montmorillonite shows different behavior in the presence of salt and heavy metal cations, and two ANN models were developed in order to be compared with experimental results. The ANNs results were found to be close to experimentally measured zeta potential values. The performance indices such as coefficient of determination, root mean square error, mean absolute error, and variance account for were used to control the performance of the prediction capacity of the models developed in this study. These indices obtained make it clear that the predictive models constructed are quite powerful. The constructed ANN models exhibited a high performance according to the performance indices. This performance has also shown that the ANNs seem to be a useful tool to minimize the uncertainties encountered during the soil engineering projects. For this reason, the use of ANNs may provide new approaches and methodologies.  相似文献   

9.
In this paper, the feasibility of using evolutionary computing for solving some complex problems in geotechnical engineering is investigated. The paper presents a relatively new technique, i.e. evolutionary polynomial regression (EPR), for modelling three practical applications in geotechnical engineering including the settlement of shallow foundations on cohesionless soils, pullout capacity of small ground anchors and ultimate bearing capacity of pile foundations. The prediction results from the proposed EPR models are compared with those obtained from artificial neural network (ANN) models previously developed by the author, as well as some of the most commonly available methods. The results indicate that the proposed EPR models agree well with (or better than) the ANN models and significantly outperform the other existing methods. The advantage of EPR technique over ANNs is that EPR generates transparent and well-structured models in the form of simple and easy-to-use hand calculation formulae that can be readily used by practising engineers.  相似文献   

10.
The sign and the magnitude of the zeta potential must be known for many engineering applications. For clay soils, it is usually negative, but it is strongly dependent on the pore fluid chemistry. However, measurement of zeta potential time is time-consuming and requires special and expensive equipment. In this study, the prediction of zeta potential of kaolinite has been investigated by artificial neural networks (ANNs) and multiple regression analyses (MRAs). To achieve this, ANN and MRA models based on zeta potential measurements of kaolinite in the presence of salt and heavy metal cations at different pH values have been developed. The results of the models were compared with the experimental results. The performance indices, including coefficient of determination, root mean square error, mean absolute error, and variance, were used to assess the performance of the prediction capacity of the models developed in this study. The obtained indices make it clear that the constructed ANN models were able to predict zeta potential of kaolinite quite efficiently and outperformed the MRA models. Results showed that ANN models can be used satisfactorily to predict zeta potential of kaolinite as a rapid inexpensive substitute for laboratory techniques.  相似文献   

11.
The purpose of this paper is to provide a proper, practical and convenient drilling rate index (DRI) prediction model based on rock material properties. In order to obtain this purpose, 47 DRI tests were used. In addition, the relevant strength properties i.e. uniaxial compressive strength and Brazilian tensile strength were also used and selected as input parameters to predict DRI. Examined simple regression analysis showed that the relationships between the DRI and predictors are statistically meaningful but not good enough for DRI estimation in practice. Moreover, multiple regression, artificial neural network (ANN) and hybrid genetic algorithm (GA)-ANN models were constructed to estimate DRI. Several performance indices i.e. coefficient of determination (R2), root mean square error and variance account for were used for evaluation of performance prediction the proposed methods. Based on these results and the use of simple ranking procedure, the best models were chosen. It was found that the hybrid GA-ANN technique can performed better in predicting DRI compared to other developed models. This is because of the fact that the proposed hybrid model can update the biases and weights of the network connection to train by ANN.  相似文献   

12.
Net present value (NPV) is the most popular economic indicator in evaluation of the investment projects. For the mining projects, this criterion is calculated under uncertainty associated with the relevant parameters of say commodity price, discount rate, etc. Accurate prediction of the NPV is a quite difficult process. This paper mainly deals with the development of a new model to predict NPV using artificial neural network (ANN) in the Zarshuran gold mine, Iran. Gold price (as the main product), silver price (as the byproduct), and discount rate were considered as input parameters for the ANN model. To reach an optimum architecture, different types of networks were examined on the basis of a trial and error mechanism. A neural network with architecture 3-15-10-1 and root mean square error of 0.092 is found to be optimum. Prediction capability of the proposed model was examined through computing determination coefficient (R 2?=?0.987) between predicted and real NPVs. Absolute error of US$0.1 million and relative error of 1.4 % also confirmed powerfulness of the developed ANN model. According to sensitivity analysis, it was observed that the gold price is the most effective and discount rate is the least effective parameter on the NPV.  相似文献   

13.
The determination of the compaction parameters such as optimum water content (wopt) and maximum dry unit weight (γdmax) requires great efforts by applying the compaction testing procedure which is also time consuming and needs significant amount of work. Therefore, it seems more reasonable to use the indirect methods for estimating the compaction parameters. In recent years, the artificial neural network (ANN) modelling has gained an increasing interest and is also acquiring more popularity in geotechnical engineering applications. This study deals with the estimation of the compaction parameters for fine‐grained soils based on compaction energy using ANN with the feed‐forward back‐propagation algorithm. In this study, the data including the results of the consistency tests, standard and modified Proctor tests, are collected from the literature and used in the analyses. The optimum structure of a network is determined for each ANN models. The analyses showed that the ANN models give quite reliable estimations in comparison with regression methods, thus they can be used as a reliable tool for the prediction of wopt and γdmax. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Burden prediction is a vital task in the production blasting. Both the excessive and insufficient burden can significantly affect the result of blasting operation. The burden which is determined by empirical models is often inaccurate and needs to be adjusted experimentally. In this paper, an attempt was made to develop an artificial neural network (ANN) in order to predict burden in the blasting operation of the Mouteh gold mine, using considering geomechanical properties of rocks as input parameters. As such here, network inputs consist of blastability index (BI), rock quality designation (RQD), unconfined compressive strength (UCS), density, and cohesive strength. To make a database (including 95 datasets), rock samples are used from Iran’s Mouteh goldmine. Trying various types of the networks, a neural network, with architecture 5-15-10-1, was found to be optimum. Superiority of ANN over regression model is proved by calculating. To compare the performance of the ANN modeling with that of multivariable regression analysis (MVRA), mean absolute error (E a), mean relative error (E r), and determination coefficient (R 2) between predicted and real values were calculated for both the models. It was observed that the ANN prediction capability is better than that of MVRA. The absolute and relative errors for the ANN model were calculated 0.05 m and 3.85%, respectively, whereas for the regression analysis, these errors were computed 0.11 m and 5.63%, respectively. Moreover, determination coefficient of the ANN model and MVRA were determined 0.987 and 0.924, respectively. Further, a sensitivity analysis shows that while BI and RQD were recognized as the most sensitive and effective parameters, cohesive strength is considered as the least sensitive input parameters on the ANN model output effective on the proposed (burden).  相似文献   

15.
Coal, as an initial source of energy, requires a detailed investigation in terms of ultimate analysis, proximate analysis, and its biological constituents (macerals). The rank and calorific value of each type of coal are managed by the mentioned properties. In contrast to ultimate and proximate analyses, determining the macerals in coal requires sophisticated microscopic instrumentation and expertise. This study emphasizes the estimation of the concentration of macerals of Indian coals based on a hybrid imperialism competitive algorithm (ICA)–artificial neural network (ANN). Here, ICA is utilized to adjust the weight and bias of ANNs for enhancing their performance capacity. For comparison purposes, a pre-developed ANN model is also proposed. Checking the performance prediction of the developed models is performed through several performance indices, i.e., coefficient of determination (R 2), root mean square error and variance account for. The obtained results revealed higher accuracy of the proposed hybrid ICA-ANN model in estimating macerals contents of Indian coals compared to the pre-developed ANN technique. Results of the developed ANN model based on R 2 values of training datasets were obtained as 0.961, 0.955, and 0.961 for predicting vitrinite, liptinite, and inertinite, respectively, whereas these values were achieved as 0.948, 0.947, and 0.957, respectively, for testing datasets. Similarly, R 2 values of 0.988, 0.983, and 0.991 for training datasets and 0.989, 0.982, and 0.985 for testing datasets were obtained from developed ICA-ANN model.  相似文献   

16.
Understanding rock material characterizations and solving relevant problems are quite difficult tasks because of their complex behavior, which sometimes cannot be identified without intelligent, numerical, and analytical approaches. Because of that, some prediction techniques, like artificial neural networks (ANN) and nonlinear regression techniques, can be utilized to solve those problems. The purpose of this study is to examine the effects of the cycling integer of slake durability index test on intact rock behavior and estimate some rock properties, such as uniaxial compressive strength (UCS) and modulus of elasticity (E) from known rock index parameters using ANN and various regression techniques. Further, new performance index (PI) and degree of consistency (Cd) are introduced to examine the accuracy of generated models. For these purposes, intact rock dataset is established by performing rock tests including uniaxial compressive strength, modulus of elasticity, Schmidt hammer, effective porosity, dry unit weight, p‐wave velocity, and slake durability index tests on selected carbonate rocks. Afterward, the models are developed using ANN and nonlinear regression techniques. The concluding remark given is that four‐cycle slake durability index (Id4) provides more accurate results to evaluate material characterization of carbonate rocks, and it is one of the reliable input variables to estimate UCS and E of carbonate rocks; introduced performance indices, both PI and Cd, may be accepted as good indicators to assess the accuracy of the complex models, and further, the ANN models have more prediction capability than the regression techniques to estimate relevant rock properties. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Flow estimations for the Sohu Stream using artificial neural networks   总被引:3,自引:2,他引:1  
In this study, daily rainfall–runoff relationships for Sohu Stream were modelled using an artificial neural network (ANN) method by including the feed-forward back-propagation method. The ANN part was divided into two stages. During the first stage, current flows were estimated by using previously measured flow data. The best network architecture was found to utilise two neurons in the input layer (the delayed flows from the first and second days), two hidden layers, and one output layer (the current flow). The coefficient of determination (R 2) in this architecture was 81.4%. During the second stage, the current flows were estimated by using a combination of previously measured values for precipitation, temperature, and flows. The best architecture consisted of an input layer of 2 days of delayed precipitation, 3 days of delayed flows, and temperature of the current. The R 2 in this architecture was calculated to be 85.5%. The results of the second stage best reflected the real-world situation because they accounted for more input variables. In all models, the variables with the highest R 2 ranked as the previous flow (81.4%), previous precipitation (21.7%), and temperature.  相似文献   

18.
Blasting operations usually produce significant environmental problems which may cause severe damage to the nearby areas. Air-overpressure (AOp) is one of the most important environmental impacts of blasting operations which needs to be predicted and subsequently controlled to minimize the potential risk of damage. In order to solve AOp problem in Hulu Langat granite quarry site, Malaysia, three non-linear methods namely empirical, artificial neural network (ANN) and a hybrid model of genetic algorithm (GA)–ANN were developed in this study. To do this, 76 blasting operations were investigated and relevant blasting parameters were measured in the site. The most influential parameters on AOp namely maximum charge per delay and the distance from the blast-face were considered as model inputs or predictors. Using the five randomly selected datasets and considering the modeling procedure of each method, 15 models were constructed for all predictive techniques. Several performance indices including coefficient of determination (R 2), root mean square error and variance account for were utilized to check the performance capacity of the predictive methods. Considering these performance indices and using simple ranking method, the best models for AOp prediction were selected. It was found that the GA–ANN technique can provide higher performance capacity in predicting AOp compared to other predictive methods. This is due to the fact that the GA–ANN model can optimize the weights and biases of the network connection for training by ANN. In this study, GA–ANN is introduced as superior model for solving AOp problem in Hulu Langat site.  相似文献   

19.
This paper aims to provide a spatial and temporal analysis to prediction of monthly precipitation data which are measured at irregularly spaced synoptic stations at discrete time points. In the present study, the rainfall data were used which were observed at four stations over the Qara-Qum catchment, located in the northeast of Iran. Several models can be used to spatially and temporally predict the precipitation data. For temporal analysis, the wavelet transform with artificial neural network (WTANN) framework combines with the wavelet transform, and an artificial neural network (ANN) is used to analyze the nonstationary precipitation time-series. The time series of dew point, temperature, and wind speed are also considered as ancillary variables in temporal prediction. Furthermore, an artificial neural network model was used for comparing the results of the WTANN model. Therefore, four models were developed, including WTANN and ANN with and without ancillary data. Several statistical methods were used for comparing the results of the temporal analysis. It was evident that at three of the four stations, the WTANN models were more effective than the ANN models, and only at one station, the ANN model with ancillary data had better performance than the WTANN model without ancillary data. The values of correlation coefficient and RMSE for WTANN model with ancillary data for the validation period at Mashhad station which showed the best results were equal to 0.787 and 13.525 mm, respectively. Finally, an artificial neural network model was used as an alternative interpolating technique for spatial analysis.  相似文献   

20.
An artificial neural networks (ANN) model is developed to study the observed pattern of local scour at bridge piers using an FHWA (Federal Highway Administration) data set composed of 380 measurements at 56 bridges in 13 states. Various ANN estimates of observed pier scour depth on different choices of input variables are examined. Reducing the number of variables from 14 to 9 has negligible effect on the coefficient of determination, R2, (0.73 vs. 0.72). Further sensitivity analysis indicates that pier scour depth can be estimated using only four variables: pier shape and skew, flow depth and velocity with a coefficient of determination of 0.81, suggesting that inclusion of some variables actually diminishes the quality of ANN predictions of short term observed pattern of scour. The ANN estimates indicate that flow depth and flow velocity make up 66% of the coefficient of determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号