首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Sea level rise leads to coastal transgression, and the survival of ecosystems depends on their ability to migrate inland faster than they erode and submerge. We compared marsh extent between nineteenth-century maps and modern aerial photographs across the Chesapeake Bay, the largest estuary in North America, and found that Chesapeake marshes have maintained their spatial extent despite relative sea level rise rates that are among the fastest in the world. In the mapped region (i.e., 25% of modern Chesapeake Bay marshland), 94 km2 of marsh was lost primarily to shoreline erosion, whereas 101 km2 of marsh was created by upland drowning. Simple projections over the entire Chesapeake region suggest that approximately 100,000 acres (400 km2) of uplands have converted to wetlands and that about a third of all present-day marsh was created by drowning of upland ecosystems since the late nineteenth century. Marsh migration rates were weakly correlated with topographic slope and the amount of development of adjacent uplands, suggesting that additional processes may also be important. Nevertheless, our results emphasize that the location of coastal ecosystems changes rapidly on century timescales and that sea level rise does not necessarily lead to overall habitat loss.  相似文献   

2.
Although seasonal hypoxia is a well-studied phenomenon in many coastal systems, most previous studies have only focused on variability and controls on low-oxygen water masses during warm months when hypoxia is most extensive. Surprisingly, little attention has been given to investigations of what controls the development of hypoxic water in the months leading up to seasonal oxygen minima in temperate ecosystems. Thus, we investigated aspects of winter–spring oxygen depletion using a 25-year time series (1985–2009) by computing rates of water column O2 depletion and the timing of hypoxia onset for bottom waters of Chesapeake Bay. On average, hypoxia (O2 <62.5 μM) initiated in the northernmost region of the deep, central channel in early May and extended southward over ensuing months; however, the range of hypoxia onset dates spanned >50 days (April 6 to May 31 in the upper Bay). O2 depletion rates were consistently highest in the upper Bay, and elevated Susquehanna River flow resulted in more rapid O2 depletion and earlier hypoxia onset. Winter–spring chlorophyll a concentration in the bottom water was highly correlated with interannual variability in hypoxia onset dates and water column O2 depletion rates in the upper and middle Bay, while stratification strength was a more significant driver in the timing of lower Bay hypoxia onset. Hypoxia started earlier in 2012 (April 6) than previously recorded, which may be related to unique climatic and biological conditions in the winter–spring of 2012, including the potential carryover of organic matter delivered to the system during a tropical storm in September 2011. In general, mid-to-late summer hypoxic volumes were not correlated to winter–spring O2 depletion rates and onset, suggesting that the maintenance of summer hypoxia is controlled more by summer algal production and physical forcing than winter-spring processes. This study provides a novel synthesis of O2 depletion rates and hypoxia onset dates for Chesapeake Bay, revealing controls on the phenology of hypoxia development in this estuary.  相似文献   

3.
The effects of low dissolved oxygen or hypoxia (<2 mg l?1) on macrobenthic infaunal community structure and composition in the lower Chesapeake Bay and its major tributaries, the Rappahannock, York, and James rivers are reported. Macrobenthic communities at hypoxia-affected stations were characterized by lower species diversity, lower biomass, a lower proportion of deep-dwelling biomass (deeper than 5 cm in the sediment), and changes in community composition. Higher dominance in density and biomass of opportunistic species (e.g., euryhaline annelids) and lower dominance of equilibrium species (e.g., long-lived bivalves and maldanid polychaetes) were observed at hypoxia-affected stations. Hypoxia-affected macrobenthic communities were found in the polyhaline deep western channel of the bay mainstem north of the Rappahannock River and in the mesohaline region of the lower Rappahannock River. No hypoxic effects on the infaunal macrobenthos were found in the York River, James River, or other deep-water channels of the lower Chesapeake Bay.  相似文献   

4.
We assessed the effects of hypoxia on macrobenthic communities in the York and Rappahannock Rivers, Chesapeake Bay, in box-core samples before and after hypoxic episodes in 2003 and 2004. Hypoxia occurred in both years and was associated with a decrease in biomass and a shift in community structure toward opportunistic species in both rivers. Long-term data indicate that the frequency of hypoxia in the York has increased over the last 22 years. In previous work from ∼20 years ago, the macrobenthic community structure did not change in response to hypoxia in the York; however, in the present study hypoxia was associated with a reduction in community biomass and a change in community structure. We conclude that currently hypoxia is a more important environmental problem in the York than in previous years. Hypoxia likely negatively affects the estuarine food web, as lower macrobenthic biomass could decrease food availability to epibenthic predators.  相似文献   

5.
We measured dissolved and particulate organic carbon (DOC and POC) in samples collected along 13 transects of the salinity gradient of Chesapeake Bay. Riverine DOC and POC end-members averaged 232±19 μM and 151±53 μM, respectively, and coastal DOC and POC end-members averaged 172±19 μM and 43±6 μM, respectively. Within the chlorophyll maximum, POC accumulated to concentrations 50–150 μM above those expected from conservative mixing and it was significantly correlated with chlorophylla, indicating phytoplankton origin. POC accumulated primarily in bottom waters in spring, and primarily in surface waters in summer. Net DOC accumulation (60–120 μM) was observed within and downstream of the chlorophyll maximum, primarily during spring and summer in both surface and bottom waters, and it also appeared to be derived from phytoplankton. In the turbidity maximum, there were also net decreases in chlorophylla (?3 μg l?1 to ?22 μg l?1) and POC concentrations (?2 μM to ?89 μM) and transient DOC increases (9–88 μM), primarily in summer. These occurred as freshwater plankton blooms mixed with turbid, low salinity seawater, and we attribute the observed POC and DOC changes to lysis and sedimentation of freshwater plankton. DOC accumulation in both regions of Chesapeake Bay was estimated to be greater than atmospheric or terrestrial organic carbon inputs and was equivalent to ≈10% of estuarine primary production.  相似文献   

6.
Macrobenthos, sediments, and environmental conditions were sampled in the mesohaline region of western Chesapeake Bay (1971–1984) and the Potomac River (1980–1984). The survey data were used to quantify variation in macrobenthos and the physicochemical environment due to seasonal dynamics, spatial pattern (regional and local), and annual as well as long-term trends. Field experiments were conducted to test hypotheses suggested by the analysis of the survey data. Long-term and regional changes in the physiochemical environment, particularly salinity and dissolved oxygen concentration, had major influences on regional and long-term abundance patterns of macrobenthos. Two major species groups were identified along the mesohaline salinity gradient: those characteristic of high and low mesohaline salinities. Salinity increased and dissolved oxygen concentration below the pycnocline declined over the 14 yr. Estuarine endemic and euryhaline marine species concomitantly decreased in abundance. Opportunist species responded to increasing salinity and declining oxygen levels with increases in abundance. Predation on macrobenthos by fish and crabs affected the amplitude of annual recruitment pulses. Food availability apparently determined the magnitude of summer macrobenthic mortality. Spring was a critical period for the establishment of distributional patterns. The macrobenthos of the upper Chesapeake Bay was relatively stable over the study period mainly due to the stability and predictability of physicochemical processes controlling recruitment patterns.  相似文献   

7.
Measurements of primary production and respiration provide fundamental information about the trophic status of aquatic ecosystems, yet such measurements are logistically difficult and expensive to sustain as part of long-term monitoring programs. However, ecosystem metabolism parameters can be inferred from high frequency water quality data collections using autonomous logging instruments. For this study, we analyzed such time series datasets from three Gulf of Mexico estuaries: Grand Bay, MS; Weeks Bay, AL; and Apalachicola Bay, FL. Data were acquired from NOAA's National Estuarine Research Reserve System Wide Monitoring Program and used to calculate gross primary production (GPP), ecosystem respiration (ER), and net ecosystem metabolism (NEM) using Odum's open water method. The three systems represent a diversity of estuaries typical of the Gulf of Mexico region, varying by as much as two orders of magnitude in key physical characteristics, such as estuarine area, watershed area, freshwater flow, and nutrient loading. In all three systems, GPP and ER displayed strong seasonality, peaking in summer and being lowest during winter. Peak rates of GPP and ER exceeded 200 mmol O2?m?2 day?1 in all three estuaries. To our knowledge, this is the first study examining long-term trends in rates of GPP, ER, and NEM in estuaries. Variability in metabolism tended to be small among sites within each estuary. Nitrogen loading was highest in Weeks Bay, almost two times greater than that in Apalachicola Bay and 35 times greater than to Grand Bay. These differences in nitrogen loading were reflected in average annual GPP rates, which ranged from 825 g C m?2 year?1 in Weeks Bay to 401 g C m?2 year?1 for Apalachicola Bay and 377 g C m?2 year?1 in Grand Bay. Despite the strong inter-annual patterns in freshwater flow and salinity, variability in metabolic rates was low, perhaps reflecting shifts in the relative importance of benthic and phytoplankton productivity, during different flow regimes. The advantage of the open water method is that it uses readily available and cost-effective sonde monitoring technology to estimate these fundamental estuarine processes, thus providing a potential means for examining long-term trends in net carbon balance. It also provides a historical benchmark for comparison to ongoing and future monitoring focused on documenting the effect of human activities on the coastal zone.  相似文献   

8.
Ages were estimated for 115 of 899 cownose rays,Rhinoptera bonasus, collected primarily from commercial fishing gear, in lower Chesapeake Bay and vicinity from May through October, 1976–78. Age determinations were made using sectioned vertebral centra and estimates of von Bertalanffy parameters were for males DW=119.2, K=0.126, and t0=?3.699, and for females DW=125.0, K=0.119, and t0=?3.764. Females attained a larger adult size and the oldest specimen aged was a female 13 years old and 107 cm disc width. Both sexes mature after reaching about 70% of their maximum size and ages at maturity were estimated at 5 to 6 years for males and 7 to 8 years for females. In spring migrating rays schooled by size; they arrived along the North Carolina coast by April and entered Chesapeake Bay by early May. Rays were abundant in the major Virginia tributaries of Chesapeake Bay throughout summer and occurred in salinities as low as 8‰ and at water temperatures between 15–29 °C. Size segregation continued during summer and adults schooled by sex. Most rays left Chesapeake Bay by early October.  相似文献   

9.
A previously observed shift in the relationship between Chesapeake Bay hypoxia and nitrogen loading has pressing implications on the efficacy of nutrient management. Detailed temporal analyses of long-term hypoxia, nitrogen loads, and stratification were conducted to reveal different within-summer trends and understand more clearly the relative role of physical conditions. Evaluation of a 60-year record of hypoxic volumes demonstrated significant increases in early summer hypoxia, but a slight decrease in late summer hypoxia. The early summer hypoxia trend is related to an increase in Bay stratification strength during June from 1985 to 2009, while the late summer hypoxia trend matches the recently decreasing nitrogen loads. Additional results show how the duration of summertime hypoxia is significantly related to nitrogen loading, and how large-scale climatic forces may be responsible for the early summer increases. Thus, despite intra-summer differences in primary controls on hypoxia, continuing nutrient reduction remains critically important for achieving improvements in Bay water quality.  相似文献   

10.
Macrobenthic community indices were examined for their ability to characterize the influence of shoreline alteration and watershed land use in nearshore estuarine environments of the Chesapeake Bay, U.S.A. Twenty-three watersheds were surveyed in 2002 and 2003 for nearshore macrobenthic assemblages, environmental parameters (i.e., dissolved oxygen, pH, total suspended solids, salinity, and sediment composition), shoreline condition, and land use. Two indices of macrobenthic biological integrity, benthic index of biological integrity in the nearshore (B-IBIN) and abundance biomass comparison (W-value), were evaluated for associations with environmental and shoreline condition, and riparian and watershed land use. Comparisons between nearshore measures of the B-IBI with offshore values (>2 m; Chesapeake Bay benthic index of biological integrity [B-IBICB]) were conducted to assess the ability of the index to reflect land use patterns at near and far proximities to shore. Nearshore macrobenthic communities were represented by a total of 94 species (mean number of species =9.2 ± 0.4 sample−1), and were dominated by the phyla Arthropoda, Annelida, and Mollusca. Temporal variability in environmental conditions and macrobenthic abundance and biomass may be attributable to the notable increase in precipitation in 2003 that led to nutrient influxes and algal blooms. For the biotic indices applied in the nearshore, the highest scores were associated with forested watersheds (W-value, B-IBIN). Ecological thresholds were identified with nonparametric change-point analysis, which indicated a significant reduction in B-IBIN and W-value scores when the amount of developed shoreline exceeded 10% and developed watershed exceeded 12%, respectively.  相似文献   

11.
A 52-yr record of dissolved oxygen in Chesapeake Bay (1950–2001) and a record of nitrate (NO3 ) loading by the Susquehanna River spanning a longer period (1903, 1945–2001) were assembled to describe the long-term pattern of hypoxia and anoxia in Chesapeake Bay and its relationship to NO3 loading. The effect of freshwater inflow on NO3 loading and hypoxia was also examined to characterize its effect at internannual and longer time scales. Year to year variability in river flow accounted for some of the observed changes in hypoxic volume, but the long-term increase was not due to increased river flow. From 1950–2001, the volume of hypoxic water in mid summer increased substantially and at an accelerating rate. Predicted anoxic volume (DO<0.2 mg I−1) at average river flow increased from zero in 1950 to 3.6×109 m3 in 2001. Severe hypoxia (DO<1.0 mg I−1) increased from 1.6×109 to 6.5×109 m3 over the same period, while mild hypoxia (DO<2.0 mg I−1) increased from 3.4×109 to 9.2×109 m3. NO3 concentrations in the Susquehanna River at Harrisburg, Pennsylvania, increased up to 3-fold from 1945 to a 1989 maximum and declined through 2001. On a decadal average basis, the superposition of changes in river flow on the long-term increase in NO3 resulted in a 2-fold increase in NO3 loading from the Susquehanna River during the 1960s to 1970s. Decadal average loads were subsequently stable through the 1990s. Hypoxia was positively correlated with NO3 loading, but more extensive hypoxia was observed in recent years than would be expected from the observed relationship. The results suggested that the Bay may have become more susceptible to NO3 loading. To eliminate or greatly reduce anoxia will require reducing average annual total nitrogen loading to the Maryland mainstem Bay to 50×106 kg yr−1, a reduction of 40% from recent levels.  相似文献   

12.
The benthic amphipod Ampelisca abdita dominates mudbottom benthic communities in Jamaica Bay (New York). In this study, we investigated the trophic role of Ampelisca in relation to winter flounder (Pleuronectes americanus) populations—the most frequently trawled fish species in Jamaica Bay. Flounders collected by trawl during summer 1989 were primarily juveniles. Stomach analyses indicated that amphipod crustaceans contributed >99% of prey individuals, with A. abdita making up 88%. Density and size frequency analyses of Ampelisca at three sites indicated two overlapping cohorts: a spring cohort released in June and a summer cohort released in late summer. Most overwintering survivors come from the summer cohort. Secondary production of Ampelisca was estimated at three sites using the cohort summation of biomass method. Estimates of annual production ranged from 25 g DW to 47 g DW m?2 (mortality + residual biomass); production due to growth ranged from 20 g DW to 26 g DW. Simulations of spring cohort production using a range of plausible growth and mortality schedules suggested that P∶B may be more sensitive to variability in survivorship than growth. Ampelisca secondary production in Jamaica Bay is compared with other amphipod species and with macrobenthic production in other coastal and estuarine systems. We conclude that observed amphipod production is probably more than sufficient to support local winter flounder populations in Jamaica Bay, and we speculate that high nutrient loadings may indirectly stimulate amphipod production. *** DIRECT SUPPORT *** A01BY058 00010  相似文献   

13.
We examined the processes influencing summer hypoxia in the mainstem portion of Chesapeake Bay. The analysis was based on the Chesapeake Bay Monitoring Program data collected between 1985 and 2007. Self-organizing map (SOM) analysis indicates that bottom water dissolved oxygen (DO) starts to be depleted in the upper mesohaline area during late spring, and hypoxia expands down-estuary by early summer. The seasonal hypoxia in the bay appears to be related to multiple variables, (e.g., river discharge, nutrient loading, stratification, phytoplankton biomass, and wind condition), but most of them are intercorrelated. The winter–spring Susquehanna River flow contributes to not only spring–summer buoyancy effects on estuarine circulation dynamics but also nutrient loading from the land-promoting phytoplankton growth. In addition, we found that summer hypoxia is significantly correlated with the late winter–spring (February–April) northeasterly–southwesterly (NE–SW) wind. Based on winter–spring (January–May) conditions, a predictive tool was developed to forecast summer (June–August) hypoxia using river discharge and NE–SW wind. We hypothesized that the late winter–spring wind pattern may affect the transport of spring bloom biomass to the western shoal or the deep channel of the bay that either alleviates or increases the summer hypoxic volume in the midbay region, respectively. To examine this hypothesis, residual flow fields were analyzed using a hydrodynamic ocean model (Regional Ocean Modeling System; ROMS) between 2000 and 2003, two hydrologically similar years but years with different wind conditions during the spring bloom period. Simulation model results suggest that relatively larger amounts of organic matter could be transported into the deep channel in 2003 (severe hypoxia; frequent northeasterly wind) than 2000 (moderate hypoxia; frequent southwesterly wind).  相似文献   

14.
A long-term (1948–2010) shoreward energy history of upper tidal shorelines in lower Chesapeake Bay was developed using a simple calculation of kinetic energy from corresponding wind and tide data. These data were primarily used to determine the likelihood of shoreline energy increases coincident with local sea level rise. Total annual shoreward energy ranged from 620 kJ/m of shoreline in 1950 to 17,785 kJ/m of shoreline in 2009. No clear linear trends are apparent, but mean annual energy shows an increase from 2,732 kJ/m before 1982 to 6,414 kJ/m since then. This increase in mean energy was accompanied by more numerous spikes of comparatively higher annual energy. Shoreward energy delivered to lower Chesapeake Bay’s upper tidal shorelines was enabled by an increasing amount of time per year that tidal height exceeds mean high water, accompanied by increasing heights of tidal anomalies. An index termed the Hydrologic Burden was developed that incorporates the combination of time and tidal height that demonstrates this increasing trend. Although opportunities for greater shoreward energy increased as the Hydrologic Burden increased, and even though there is evidence that greater energy was delivered to the shorelines during the latter time series, energy per hour delivery was shown not to have increased, and may have decreased, due to a steady reduction in average wind speed in lower Chesapeake Bay since the mid-1980s. Energy delivery in lower Chesapeake Bay was primarily from the northeast, and energy delivery over the time series is shown to organize symmetrically around a point between the northeast and north–northeast directions. This is evidence of a self-organizational phenomenon that transcends changes in local wind and tide dynamics.  相似文献   

15.
Otter trawl collections of eelgrass habitats in the lower Chesapeake Bay during 1976–1977 produced 14 species of decapod crustaceans. These collections were dominated by palaemonid shrimp (Palaemonetes spp.), blue crabs (Callinectes sapidus), and sand shrimp (Crangon septemspinosa), each of which exhibited unimodal seasonal abundance curves with large summer peaks. Decapod abundance was positively correlated with plant biomass throughout the year. Decapod densities on vegetated bottoms were greater than on unvegetated bottoms, and nighttime abundance on each bottom type was greater than corresponding daytime abundance. Total decapod abundances in Chesapeake Bay eelgrass meadows appear to be much greater than those reported in North Carolina eelgrass or Gulf of Mexico turtlegrass habitats.  相似文献   

16.
The distribution ofVibrio parahaemolyticus in Chesapeake Bay during the warmer weather of the summer months was examined. This species was found throughout the Chesapeake Bay and its tributaries, even in areas of very low salinity. Counts of this species ranged from 0.04 per 100 ml to 46 per 100 ml in the water column and 2.03 to ≥2.4×103 per 100 cc of sediment. A variety of physical, chemical and bacteriological properties associated with the incidence and distribution ofV. parahaemolyticus were examined and salinity was found to be the major influence among the factors examined. Correlation and regression analysis showed that the population size of this species increased with increasing salinity in the estuary.  相似文献   

17.
Seagrasses provide a number of critical ecosystem services, including habitat for numerous species, sediment stabilization, and shoreline protection. Ariel photography is a useful tool to estimate the areal extent of seagrasses, but recent innovations in radiometrically calibrated sensors and algorithm development have allowed identification of benthic types and retrieval of absolute density. This study demonstrates the quantitative ability of a high spatial resolution (1 m) airborne hyperspectral sensor (3.2 nm bandwidth) in the complex coastal waters of Saint Joseph’s Bay (SJB). Several benthic types were distinguished, including submerged and floating aquatic vegetation, benthic red algae, bare sand, and optically deep water. A total of 23.6 km2 of benthic vegetation was detected, indicating no dramatic change in vegetation area over the past 30 years. SJB supported high seagrass density at depths shallower than 2 m with an average leaf area index of 2.0?±?0.6 m2 m?2. Annual seagrass production in the bay was 13,570 t C year?1 and represented 41 % of total marine primary production. The effects of coarser spatial resolution were investigated and found to reduce biomass retrievals, underestimate productivity, and alter patch size statistics. Although data requirements for this approach are considerable, water column optical modeling may reduce the in situ requirements and facilitate the transition of this technique to routine monitoring efforts. The ability to quantify not just areal extent but also productivity of a seagrass meadow in optically complex coastal waters can provide information on the capacity of these environments to support marine food webs.  相似文献   

18.
Chesapeake Bay is the largest estuary in the USA and comprises vast areas of polyhaline to freshwater, tidal fish habitat. The Bay experiences large temperature differences between winter and summer, which in combination with the variety of salinities enables approximately 240 species of fish to be temporary inhabitants. This dynamic environment leads to an ever-changing prey field for predators. The goal of this study was to characterize the diet of one of the few resident, euryhaline predators within the tidal rivers in Virginia, Lepisosteus osseus (longnose gar). The top five prey species were Morone americana, Brevoortia tyrannus, Fundulus spp., Micropogonias undulatus, and Leiostomous xanthurus. The diet composition varied with the seasonal fish assemblages, length of L. osseus, water temperature, and salinity. L. osseus consumed a greater amount of marine and anadromous fishes (%W?=?59.4 % and %N?=?56.5 %) than resident fishes (%W?=?40.6 % and %N?=?43.5 %). The seasonal influx of anadromous or coastal spawning fishes appears to be an important prey source for L. osseus and most likely other piscivores in the tributaries of Chesapeake Bay.  相似文献   

19.
The nearshore land-water interface is an important ecological zone that faces anthropogenic pressure from development in coastal regions throughout the world. Coastal waters and estuaries like Chesapeake Bay receive and process land discharges loaded with anthropogenic nutrients and other pollutants that cause eutrophication, hypoxia, and other damage to shallow-water ecosystems. In addition, shorelines are increasingly armored with bulkhead (seawall), riprap, and other structures to protect human infrastructure against the threats of sea-level rise, storm surge, and erosion. Armoring can further influence estuarine and nearshore marine ecosystem functions by degrading water quality, spreading invasive species, and destroying ecologically valuable habitat. These detrimental effects on ecosystem function have ramifications for ecologically and economically important flora and fauna. This special issue of Estuaries and Coasts explores the interacting effects of coastal land use and shoreline armoring on estuarine and coastal marine ecosystems. The majority of papers focus on the Chesapeake Bay region, USA, where 50 major tributaries and an extensive watershed (~ 167,000 km2), provide an ideal model to examine the impacts of human activities at scales ranging from the local shoreline to the entire watershed. The papers consider the influence of watershed land use and natural versus armored shorelines on ecosystem properties and processes as well as on key natural resources.  相似文献   

20.
The introduction of a non-native freshwater fish, blue catfish Ictalurus furcatus, in tributaries of Chesapeake Bay resulted in the establishment of fisheries and in the expansion of the population into brackish habitats. Blue catfish are an invasive species in the Chesapeake Bay region, and efforts are underway to limit their impacts on native communities. Key characteristics of the population (population size, survival rates) are unknown, but such knowledge is useful in understanding the impact of blue catfish in estuarine systems. We estimated population size and survival rates of blue catfish in tidal habitats of the James River subestuary. We tagged 34,252 blue catfish during July–August 2012 and 2013; information from live recaptures (n = 1177) and dead recoveries (n = 279) were used to estimate annual survival rates and population size using Barker’s Model in a Robust Design and allowing for heterogeneity in detection probabilities. The blue catfish population in the 12-km study area was estimated to be 1.6 million fish in 2013 (95% confidence interval [CI] adjusted for overdispersion: 926,307–2,914,208 fish). Annual apparent survival rate estimates were low: 0.16 (95% CI 0.10–0.24) in 2012–2013 and 0.44 (95% CI 0.31–0.58) in 2013–2014 and represent losses from the population through mortality, permanent emigration, or both. The tagged fish included individuals that were large enough to exhibit piscivory and represented size classes that are likely to colonize estuarine habitats. The large population size that we estimated was unexpected for a freshwater fish in tidal habitats and highlights the need to effectively manage such species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号