首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Submerged aquatic vegetation (SAV) is an ecologically and economically valuable component of coastal estuaries that acts as an early indicator of both degrading and improving water quality. This study aimed to determine if shoreline hardening, which is associated with increased population pressure and climate change, acts to degrade SAV habitat quality at the local scale. In situ comparisons of SAV beds adjacent to both natural and hardened shorelines in 24 subestuaries throughout the Chesapeake and Mid-Atlantic Coastal Bays indicated that shoreline hardening does impact adjacent SAV beds. Species diversity, evenness, and percent cover were significantly reduced in the presence of riprap revetment. A post hoc analysis also confirmed that SAV is locally affected by watershed land use associated with increased population pressure, though to a lesser degree than impacts observed from shoreline armoring. When observed over time, SAV recovery at the local level took approximately 3 to 4 years following storm impacts, and SAV adjacent to natural shorelines showed more resilience to storms than SAV adjacent to armored shorelines. The negative impacts of shoreline hardening and watershed development on SAV shown here will inform coastal zone management decisions as increasing coastal populations and sea level rise drive these practices.  相似文献   

2.
Human alteration of land cover (e.g., urban and agricultural land use) and shoreline hardening (e.g., bulkheading and rip rap revetment) are intensifying due to increasing human populations and sea level rise. Fishes and crustaceans that are ecologically and economically valuable to coastal systems may be affected by these changes, but direct links between these stressors and faunal populations have been elusive at large spatial scales. We examined nearshore abundance patterns of 15 common taxa across gradients of urban and agricultural land cover as well as wetland and hardened shoreline in tributary subestuaries of the Chesapeake Bay and Delaware Coastal Bays. We used a comprehensive landscape-scale study design that included 587 sites in 39 subestuaries. Our analyses indicate shoreline hardening has predominantly negative effects on estuarine fauna in water directly adjacent to the hardened shoreline and at the larger system-scale as cumulative hardened shoreline increased in the subestuary. In contrast, abundances of 12 of 15 species increased with the proportion of shoreline comprised of wetlands. Abundances of several species were also significantly related to watershed cropland cover, submerged aquatic vegetation, and total nitrogen, suggesting land-use-mediated effects on prey and refuge habitat. Specifically, abundances of four bottom-oriented species were negatively related to cropland cover, which is correlated with elevated nitrogen and reduced submerged and wetland vegetation in the receiving subestuary. These empirical relationships raise important considerations for conservation and management strategies in coastal environments.  相似文献   

3.
Macrobenthic community indices were examined for their ability to characterize the influence of shoreline alteration and watershed land use in nearshore estuarine environments of the Chesapeake Bay, U.S.A. Twenty-three watersheds were surveyed in 2002 and 2003 for nearshore macrobenthic assemblages, environmental parameters (i.e., dissolved oxygen, pH, total suspended solids, salinity, and sediment composition), shoreline condition, and land use. Two indices of macrobenthic biological integrity, benthic index of biological integrity in the nearshore (B-IBIN) and abundance biomass comparison (W-value), were evaluated for associations with environmental and shoreline condition, and riparian and watershed land use. Comparisons between nearshore measures of the B-IBI with offshore values (>2 m; Chesapeake Bay benthic index of biological integrity [B-IBICB]) were conducted to assess the ability of the index to reflect land use patterns at near and far proximities to shore. Nearshore macrobenthic communities were represented by a total of 94 species (mean number of species =9.2 ± 0.4 sample−1), and were dominated by the phyla Arthropoda, Annelida, and Mollusca. Temporal variability in environmental conditions and macrobenthic abundance and biomass may be attributable to the notable increase in precipitation in 2003 that led to nutrient influxes and algal blooms. For the biotic indices applied in the nearshore, the highest scores were associated with forested watersheds (W-value, B-IBIN). Ecological thresholds were identified with nonparametric change-point analysis, which indicated a significant reduction in B-IBIN and W-value scores when the amount of developed shoreline exceeded 10% and developed watershed exceeded 12%, respectively.  相似文献   

4.
In coastal environments, the supratidal zone bridges marine and terrestrial ecosystems and is important for energy exchange. However, it is also subject to extensive anthropogenic disturbance, such as armoring of shorelines. Shoreline armoring is extensive along many coasts, but the impacts on biota are comparatively unknown. Between 2000 and 2002, paired and synoptic sampling regimes were employed to assess armoring effects on insects and benthic macroinvertebrates in the supratidal zone of Puget Sound beaches. Paired sampling showed natural beach sites had significantly more deposited wrack. Infauna was dominated by oligochaetes and nematodes; talitrid amphipods, insects, and collembolans were significantly more numerous at natural beaches, and crustaceans were more abundant at altered beaches. Insect assemblages were diverse, with taxon richness higher at natural beach sites. In the synoptic sampling, where sites with higher elevation modifications were used, there were fewer differences in invertebrate assemblages between armored and nonarmored sites. The results show that, where shoreline armoring lowers the land–sea interface, benthic infauna and insect assemblages are disrupted. Widespread shoreline modifications may decrease the availability of prey resources for fish and wildlife and decrease the contribution of organic material entering the nearshore ecosystem.  相似文献   

5.
Submerged aquatic vegetation (SAV) provides many important ecosystem functions, but SAV has been significantly reduced in many estuaries. We used spatial–statistical models to identify estuarine shoreline characteristics that explain variations in SAV abundance among subestuaries of the Chesapeake Bay and mid-Atlantic Coastal Bays. We summarized digital spatial data on shoreline construction, shoreline land use, physical characteristics, watershed land cover, and salinity for each subestuary. We related SAV abundance to shoreline characteristics and other stressors using univariate regression and multivariate models. The strongest univariate predictors of SAV abundance were percent shoreline forest, percent shoreline marsh, the percentage of shoreline that is 5–10 m tall, percent riprap, the percentage of subestuary area <2 m deep, percent herbaceous wetland, and percent shrubland. Shoreline marsh, bulkhead, and shoreline forest had different effects on SAV in different salinity zones. Percent riprap shoreline was the most important variable in a regression tree analysis of all the subestuaries, and percent deciduous forest in the watershed was the most important variable in a separate regression tree analysis on the mesohaline subestuaries. Subestuaries with <5.4 % riprap followed a significantly different temporal trajectory than those with >5.4 % riprap. SAV abundance has increased steadily since 1984 in subestuaries with <5.4 % riprap, but has not increased since 1996–1997 in subestuaries with >5.4 % riprap. Some shoreline characteristics interact with larger-scale factors like land cover and salinity zone to affect the distribution of SAV, while the effects of other shoreline characteristics are consistent among subestuaries with different salinities or local watershed land covers. Many shoreline characteristics can be controlled by management decisions, and our results help identify factors that managers should consider in efforts to increase SAV abundance.  相似文献   

6.
Spatial patterns of estuarine biota suggest that some nearshore ecosystems are functionally linked to interacting processes of the ocean, watershed, and coastal geomorphology. The classification of estuaries can therefore provide important information for distribution studies of nearshore biodiversity. However, many existing classifications are too coarse-scaled to resolve subtle environmental differences that may significantly alter biological structure. We developed an objective three-tier spatially nested classification, then conducted a case study in the Alexander Archipelago of Southeast Alaska, USA, and tested the statistical association of observed biota to changes in estuarine classes. At level 1, the coarsest scale (100–1000’s km2), we used patterns of sea surface temperature and salinity to identify marine domains. At level 2, within each marine domain, fjordal land masses were subdivided into coastal watersheds (10–100’s km2), and 17 estuary classes were identified based on similar marine exposure, river discharge, glacier volume, and snow accumulation. At level 3, the finest scale (1–10’s km2), homogeneous nearshore (depths <10 m) segments were characterized by one of 35 benthic habitat types of the ShoreZone mapping system. The aerial ShoreZone surveys and imagery also provided spatially comprehensive inventories of 19 benthic taxa. These were combined with six anadromous species for a relative measure of estuarine biodiversity. Results suggest that (1) estuaries with similar environmental attributes have similar biological communities, and (2) relative biodiversity increases predictably with increasing habitat complexity, marine exposure, and decreasing freshwater. These results have important implications for the management of ecologically sensitive estuaries.  相似文献   

7.
Nutrient inputs have degraded estuaries worldwide. We investigated the sources and effects of nutrient inputs by comparing water quality at shallow (< 2m deep) nearshore (within 200 m) locations in a total of 49 Chesapeake subestuaries and Mid-Atlantic coastal bays with differing local watershed land use. During July–October, concentrations of total nitrogen (TN), dissolved ammonium, dissolved inorganic N (DIN), and chlorophyll a were positively correlated with the percentages of cropland and developed land in the local watersheds. TN, DIN, and nitrate were positively correlated with the ratio of watershed area to subestuary area. Total phosphorus (TP) and dissolved phosphate increased with cropland but were not affected by developed land. The relationships among N, P, chlorophyll a, and land use suggest N limitation of chlorophyll a production from July–October. We compared our measurements inside the subestuaries to measurements by the Chesapeake Bay Program in adjacent estuarine waters outside the subestuaries. TP and dissolved inorganic P concentrations inside the subestuaries correlated with concentrations outside the subestuaries. However, water quality inside the subestuaries generally differed from that in adjacent estuarine waters. The concentration of nitrate was lower inside the subestuaries, while the concentrations of other forms of N, TP, and chlorophyll a were higher. This suggests that shallow nearshore waters inside the subestuaries import nitrate while exporting other forms of N as well as TP and chlorophyll a. The importance of local land use and the distinct biogeochemistry of shallow waters should be considered in managing coastal systems.  相似文献   

8.
In many coastal regions throughout the world, there is increasing pressure to harden shorelines to protect human infrastructures against sea level rise, storm surge, and erosion. This study examines waterbird community integrity in relation to shoreline hardening and land use characteristics at three geospatial scales: (1) the shoreline scale characterized by seven shoreline types: bulkhead, riprap, developed, natural marsh, Phragmites-dominated marsh, sandy beach, and forest; (2) the local subestuary landscape scale including land up to 500 m inland of the shoreline; and (3) the watershed scale >500 m from the shoreline. From 2010 to 2014, we conducted waterbird surveys along the shoreline and open water within 21 subestuaries throughout the Chesapeake Bay during two seasons to encompass post-breeding shorebirds and colonial waterbirds in late summer and migrating and wintering waterfowl in late fall. We employed an Index of Waterbird Community Integrity (IWCI) derived from mean abundance of individual waterbird species and scores of six key species attributes describing each species’ sensitivity to human disturbance, and then used this index to characterize communities in each subestuary and season. IWCI scores ranged from 14.3 to 19.7. Multivariate regression model selection showed that the local shoreline scale had the strongest influence on IWCI scores. At this scale, percent coverage of bulkhead and Phragmites along shorelines were the strongest predictors of IWCI, both with negative relationships. Recursive partitioning revealed that when subestuary shoreline coverage exceeded thresholds of approximately 5% Phragmites or 8% bulkhead, IWCI scores decreased. Our results indicate that development at the shoreline scale has an important effect on waterbird community integrity, and that shoreline hardening and invasive Phragmites each have a negative effect on waterbirds using subestuarine systems.  相似文献   

9.
Estuaries are productive and ecologically important ecosystems, incorporating environmental drivers from watersheds, rivers, and the coastal ocean. Climate change has potential to modify the physical properties of estuaries, with impacts on resident organisms. However, projections from general circulation models (GCMs) are generally too coarse to resolve important estuarine processes. Here, we statistically downscaled near-surface air temperature and precipitation projections to the scale of the Chesapeake Bay watershed and estuary. These variables were linked to Susquehanna River streamflow using a water balance model and finally to spatially resolved Chesapeake Bay surface temperature and salinity using statistical model trees. The low computational cost of this approach allowed rapid assessment of projected changes from four GCMs spanning a range of potential futures under a high CO2 emission scenario, for four different downscaling methods. Choice of GCM contributed strongly to the spread in projections, but choice of downscaling method was also influential in the warmest models. Models projected a ~2–5.5 °C increase in surface water temperatures in the Chesapeake Bay by the end of the century. Projections of salinity were more uncertain and spatially complex. Models showing increases in winter-spring streamflow generated freshening in the Upper Bay and tributaries, while models with decreased streamflow produced salinity increases. Changes to the Chesapeake Bay environment have implications for fish and invertebrate habitats, as well as migration, spawning phenology, recruitment, and occurrence of pathogens. Our results underline a potentially expanded role of statistical downscaling to complement dynamical approaches in assessing climate change impacts in dynamically challenging estuaries.  相似文献   

10.
Human population growth and sea-level rise are increasing the demand for protection of coastal property against shoreline erosion. Living shorelines are designed to provide shoreline protection and are constructed or reinforced using natural elements. While living shorelines are gaining popularity with homeowners, their ability to provide ecological services (e.g., habitat provision and trophic transfer) is not well understood, and information is needed to improve coastal and resource management decision-making. We examined benthic community responses to living shorelines in two case-study subestuaries of Chesapeake Bay using a before-after control-impact study design. At Windy Hill, a bulkhead was removed and replaced by three tombolos, sand fill, and native marsh vegetation. At Lynnhaven, 25 m of eroding marsh shoreline was stabilized with coir logs, sand fill, and native marsh vegetation. Communities of large (>?3 mm) infauna adjacent to living shorelines at both locations tended to increase in biomass by the end of the study period. Community compositions changed significantly following living shoreline construction at Windy Hill, reflecting a trend toward higher density and biomass of large bivalves at living shorelines compared to pre-construction. Increasing trends in density and biomass of clams and simultaneously decreasing density and decreasing trends in biomass of polychaetes suggest a transition toward stable infaunal communities at living shorelines over time, though longer-term studies are warranted.  相似文献   

11.
Three quarters of the global human population will live in coastal areas in the coming decades and will continue to develop these areas as population density increases. Anthropogenic stressors from this coastal development may lead to fragmented habitats, altered food webs, changes in sediment characteristics, and loss of near-shore vegetated habitats. Seagrass systems are important vegetated estuarine habitats that are vulnerable to anthropogenic stressors, but provide valuable ecosystem functions. Key to maintaining these habitats that filter water, stabilize sediments, and provide refuge to juvenile animals is an understanding of the impacts of local coastal development. To assess development impacts in seagrass communities, we surveyed 20 seagrass beds in lower Chesapeake Bay, VA. We sampled primary producers, consumers, water quality, and sediment characteristics in seagrass beds, and characterized development along the adjacent shoreline using land cover data. Overall, we could not detect effects of local coastal development on these seagrass communities. Seagrass biomass varied only between sites, and was positively correlated with sediment organic matter. Epiphytic algal biomass and epibiont (epifauna and epiphyte) community composition varied between western and eastern regions of the bay. But, neither eelgrass (Zostera marina) leaf nitrogen (a proxy for integrated nitrogen loading), crustacean grazer biomass, epifaunal predator abundance, nor fish and crab abundance differed significantly among sites or regions. Overall, factors operating on different scales appear to drive primary producers, seagrass-associated faunal communities, and sediment properties in these important submerged vegetated habitats in lower Chesapeake Bay.  相似文献   

12.
Estuarine and coastal ecosystems respond strongly to proximate climate forcing. In this study, we present a regional, synoptic climatology as an approach to classify weather patterns that generate interannual variability in coastal and estuarine ecosystems. Synoptic climatology is a method that classifies sea level pressure data into distinct patterns representing common weather features for a specified region. A synoptic climatology was developed for the eastern United States and used to quantify surface conditions affecting Chesapeake Bay during wet and dry years. In a synthesis analysis, several mechanisms were identified that explained the link between weather patterns and ecosystem structure, principal among them is the delivery of freshwater to the Bay during spring. Wet and dry years were characterized by shifts in biogeography of the Chesapeake Bay. The shifts resulted from habitat changes and trophic interactions and included the timing and magnitude of the spring phytoplankton bloom, the distribution/abundance of mesozooplankton and gelatinous zooplankton, and juvenile indices of fish. Synoptic climatology resolved regional weather variability at a spatial scale not strongly controlled by larger-scale climate indices and explained ecosystem responses in Chesapeake Bay.  相似文献   

13.
A long-term (1948–2010) shoreward energy history of upper tidal shorelines in lower Chesapeake Bay was developed using a simple calculation of kinetic energy from corresponding wind and tide data. These data were primarily used to determine the likelihood of shoreline energy increases coincident with local sea level rise. Total annual shoreward energy ranged from 620 kJ/m of shoreline in 1950 to 17,785 kJ/m of shoreline in 2009. No clear linear trends are apparent, but mean annual energy shows an increase from 2,732 kJ/m before 1982 to 6,414 kJ/m since then. This increase in mean energy was accompanied by more numerous spikes of comparatively higher annual energy. Shoreward energy delivered to lower Chesapeake Bay’s upper tidal shorelines was enabled by an increasing amount of time per year that tidal height exceeds mean high water, accompanied by increasing heights of tidal anomalies. An index termed the Hydrologic Burden was developed that incorporates the combination of time and tidal height that demonstrates this increasing trend. Although opportunities for greater shoreward energy increased as the Hydrologic Burden increased, and even though there is evidence that greater energy was delivered to the shorelines during the latter time series, energy per hour delivery was shown not to have increased, and may have decreased, due to a steady reduction in average wind speed in lower Chesapeake Bay since the mid-1980s. Energy delivery in lower Chesapeake Bay was primarily from the northeast, and energy delivery over the time series is shown to organize symmetrically around a point between the northeast and north–northeast directions. This is evidence of a self-organizational phenomenon that transcends changes in local wind and tide dynamics.  相似文献   

14.
We investigated spatial correlations between wave forcing, sea level fluctuations, and shoreline erosion in the Maryland Chesapeake Bay (CB), in an attempt to identify the most important relationships and their spatial patterns. We implemented the Simulating WAves Nearshore (SWAN) model and a parametric wave model from the USEPA Chesapeake Bay Program (CBP) to simulate wave climate in CB from 1985 to 2005. Calibrated sea level simulations from the CBP hydrodynamic model over the same time period were also acquired. The separate and joint statistics of waves and sea level were investigated for the entire CB. Spatial patterns of sea level during the high wave events most important for erosion were dominated by local north-south winds in the upper Bay and by remote coastal forcing in the lower Bay. We combined wave and sea level data sets with estimates of historical shoreline erosion rates and shoreline characteristics compiled by the State of Maryland at two different spatial resolutions to explore the factors affecting erosion. The results show that wave power is the most significant influence on erosion in the Maryland CB, but that many other local factors are also implicated. Marshy shorelines show a more homogeneous, approximately linear relationship between wave power and erosion rates, whereas bank shorelines are more complex. Marshy shorelines appear to erode faster than bank shorelines, for the same wave power and bank height. A new expression for the rate of shoreline erosion is proposed, building on previous work. The proposed new relationship expresses the mass rate of shoreline erosion as a locally linear function of the difference between applied wave power and a threshold wave power, multiplied by a structure function that depends on the ratio of water depth to bank height.  相似文献   

15.
Sea level rise leads to coastal transgression, and the survival of ecosystems depends on their ability to migrate inland faster than they erode and submerge. We compared marsh extent between nineteenth-century maps and modern aerial photographs across the Chesapeake Bay, the largest estuary in North America, and found that Chesapeake marshes have maintained their spatial extent despite relative sea level rise rates that are among the fastest in the world. In the mapped region (i.e., 25% of modern Chesapeake Bay marshland), 94 km2 of marsh was lost primarily to shoreline erosion, whereas 101 km2 of marsh was created by upland drowning. Simple projections over the entire Chesapeake region suggest that approximately 100,000 acres (400 km2) of uplands have converted to wetlands and that about a third of all present-day marsh was created by drowning of upland ecosystems since the late nineteenth century. Marsh migration rates were weakly correlated with topographic slope and the amount of development of adjacent uplands, suggesting that additional processes may also be important. Nevertheless, our results emphasize that the location of coastal ecosystems changes rapidly on century timescales and that sea level rise does not necessarily lead to overall habitat loss.  相似文献   

16.
Ocean acidification due to anthropogenic CO2 emissions is a dominant driver of long-term changes in pH in the open ocean, raising concern for the future of calcifying organisms, many of which are present in coastal habitats. However, changes in pH in coastal ecosystems result from a multitude of drivers, including impacts from watershed processes, nutrient inputs, and changes in ecosystem structure and metabolism. Interaction between ocean acidification due to anthropogenic CO2 emissions and the dynamic regional to local drivers of coastal ecosystems have resulted in complex regulation of pH in coastal waters. Changes in the watershed can, for example, lead to changes in alkalinity and CO2 fluxes that, together with metabolic processes and oceanic dynamics, yield high-magnitude decadal changes of up to 0.5 units in coastal pH. Metabolism results in strong diel to seasonal fluctuations in pH, with characteristic ranges of 0.3 pH units, with metabolically intense habitats exceeding this range on a daily basis. The intense variability and multiple, complex controls on pH implies that the concept of ocean acidification due to anthropogenic CO2 emissions cannot be transposed to coastal ecosystems directly. Furthermore, in coastal ecosystems, the detection of trends towards acidification is not trivial and the attribution of these changes to anthropogenic CO2 emissions is even more problematic. Coastal ecosystems may show acidification or basification, depending on the balance between the invasion of coastal waters by anthropogenic CO2, watershed export of alkalinity, organic matter and CO2, and changes in the balance between primary production, respiration and calcification rates in response to changes in nutrient inputs and losses of ecosystem components. Hence, we contend that ocean acidification from anthropogenic CO2 is largely an open-ocean syndrome and that a concept of anthropogenic impacts on marine pH, which is applicable across the entire ocean, from coastal to open-ocean environments, provides a superior framework to consider the multiple components of the anthropogenic perturbation of marine pH trajectories. The concept of anthropogenic impacts on seawater pH acknowledges that a regional focus is necessary to predict future trajectories in the pH of coastal waters and points at opportunities to manage these trajectories locally to conserve coastal organisms vulnerable to ocean acidification.  相似文献   

17.
The invasion of North American tidal marshes byPhragmites australis, or common reed, is a large-scale ecological problem that has been primarily studied at small spatial scales. Previous local-scale studies have provided evidence that the expansion ofPhragmites is facilitated by disturbance and increased nitrogen (N) associated with agricultural and urban-suburban (developed) land uses along wetland-upland borders. We tested the generality of previous findings across a larger spatial scale and wider range of environmental conditions in Chesapeake Bay, the largest estuarine ecosystem in the USA. We sampled 90 tidal wetlands nested within 30 distinct subestuarine watersheds and examined the relationship between land use andPhragmites abundance and foliar N, an indicator of nitrogen availability. We estimated land use adjacent to wetland borders and within subestuary watersheds and explored the importance of spatial proximity by weighting land use by its distance from the wetland border or subestuary shoreline, respectively. Regression tree and changepoint analyses revealed thatPhragmites abundance sharply increased in almost every wetland where development adjacent to borders exceeded 15%. Where development was <15% but natural land cover at the near the subestuary shoreline was low (<∼35%),Phragmites was abundant, suggesting that wetlands in highly modified watersheds also were susceptible to invasion, regardless of land use adjacent to wetlands.Phragmites foliar N was markedly elevated in watersheds with >14–22% shoreline development, the same level of development that corresponded to high levels of invasion. Our results suggest that development near wetlands is at least partially responsible for patterns of invasion across Chesapeake Bay. Larger-scale phenomena, such as nitrogen pollution at the watershed-subestuary scale, also may be facilitating invasion. Urbanization near coastlines appears to play an important role in the invasion success ofPhragmites in coastal wetlands of Chesapeake Bay and probably much of eastern North America.  相似文献   

18.
Many shoreline studies rely on historical change rates determined from aerial imagery decades to over 50 years apart to predict shoreline position and determine setback distances for coastal structures. These studies may not illustrate the coastal impacts of short-duration but potentially high-impact storm events. In this study, shoreline change rates (SCRs) are quantified at five different sites ranging from marsh to sediment bank shorelines around the Albemarle-Pamlico estuarine system (APES) for a series of historical (decadal to 50-year) and short-term (bimonthly) time periods as well as for individual storm events. Long-term (historical) SCRs of approximately ?0.5 ± 0.07 m year?1 are observed, consistent with previous work along estuarine shorelines in North Carolina. Short-term SCRs are highly variable, both spatially and temporally, and ranged from 15.8 ± 7.5 to ?19.3 ± 11.5 m year?1 at one of the study sites. The influence of wave climate on the spatial and temporal variability of short-term erosion rates is investigated using meteorological observations and coupled hydrodynamic (Delft3D) and wave (SWAN) models. The models are applied to simulate hourly variability in the surface waves and water levels. The results indicate that in the fetch-limited APES, wind direction strongly influences the wave climate at the study sites. The wave height also has an influence on short-term SCRs as determined from the wave simulations for individual meteorological events, but no statistical correlation is found for wave height and SCRs over the long term. Despite the significantly higher rates of shoreline erosion over short time periods and from individual events like hurricanes, the cumulative impact over long time periods is low. Therefore, while the short-term response of these shorelines to episodic forcing should be taken into account in management plans, the long-term trends commonly used in ocean shoreline management can also be used to determine erosion setbacks on estuarine shorelines.  相似文献   

19.
Anthropogenic modifications of estuarine environments, including shoreline hardening and corresponding alteration of water quality, are accelerating worldwide as human population increases in coastal regions. Estuarine fish species inhabiting temperate ecosystems are adapted to extreme variations in environmental conditions including water temperature, salinity, and dissolved oxygen across seasonal, daily, and hourly time scales. The present research utilized quantitative sampling to examine the spatiotemporal distribution of shore-zone estuarine fish species in association with four unique shoreline types across a range of water temperature and dissolved oxygen conditions. Fish were collected from the intertidal and shallow subtidal region of four shoreline types, Spartina alterniflora marsh, Phragmites australis marsh, riprap, and bulkhead, in the summer and fall of 2009 and 2010. Analyses were performed to (1) compare mean fish density among shoreline types across all water conditions and (2) explore relationships of the complete fish assemblage, three functional species groupings, and two fish species (Fundulus heteroclitus and Menidia menidia) to unique shoreline/water conditions. Significantly greater mean fish densities were found along S. alterniflora shorelines than armored shorelines. Several metrics including fish density, species richness, and occurrence rates suggest S. alterniflora shorelines may serve as a form of refuge habitat during periods of low dissolved oxygen and high temperatures for various species, particularly littoral-demersal species including F. heteroclitus. Potential mechanisms that could contribute to a habitat providing refuge during adverse water quality conditions include tempering of the adverse condition (decreased temperatures, increased dissolved oxygen), predation protection, and increased foraging opportunities.  相似文献   

20.
Climate effects on hydrology impart high variability to water-quality properties, including nutrient loadings, concentrations, and phytoplankton biomass as chlorophyll-a (chl-a), in estuarine and coastal ecosystems. Resolving long-term trends of these properties requires that we distinguish climate effects from secular changes reflecting anthropogenic eutrophication. Here, we test the hypothesis that strong climatic contrasts leading to irregular dry and wet periods contribute significantly to interannual variability of mean annual values of water-quality properties using in situ data for Chesapeake Bay. Climate effects are quantified using annual freshwater discharge from the Susquehanna River together with a synoptic climatology for the Chesapeake Bay region based on predominant sea-level pressure patterns. Time series of water-quality properties are analyzed using historical (1945–1983) and recent (1984–2012) data for the bay adjusted for climate effects on hydrology. Contemporary monitoring by the Chesapeake Bay Program (CBP) provides data for a period since mid-1984 that is significantly impacted by anthropogenic eutrophication, while historical data back to 1945 serve as historical context for a period prior to severe impairments. The generalized additive model (GAM) and the generalized additive mixed model (GAMM) are developed for nutrient loadings and concentrations (total nitrogen—TN, nitrate?+?nitrate—NO2?+?NO3) at the Susquehanna River and water-quality properties in the bay proper, including dissolved nutrients (NO2?+?NO3, orthophosphate—PO4), chl-a, diffuse light attenuation coefficient (K D (PAR)), and chl-a/TN. Each statistical model consists of a sum of nonlinear functions to generate flow-adjusted time series and compute long-term trends accounting for climate effects on hydrology. We present results identifying successive periods of (1) eutrophication ca. 1945–1980 characterized by approximately doubled TN and NO2?+?NO3 loadings, leading to increased chl-a and associated ecosystem impairments, and (2) modest decreases of TN and NO2?+?NO3 loadings from 1981 to 2012, signaling a partial reversal of nutrient over-enrichment. Comparison of our findings with long-term trends of water-quality properties for a variety of estuarine and coastal ecosystems around the world reveals that trends for Chesapeake Bay are weaker than for other systems subject to strenuous management efforts, suggesting that more aggressive actions than those undertaken to date will be required to counter anthropogenic eutrophication of this valuable resource.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号