首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The geological evolution of Merapi volcano, Central Java, Indonesia   总被引:1,自引:0,他引:1  
Merapi is an almost persistently active basalt to basaltic andesite volcanic complex in Central Java (Indonesia) and often referred to as the type volcano for small-volume pyroclastic flows generated by gravitational lava dome failures (Merapi-type nuées ardentes). Stratigraphic field data, published and new radiocarbon ages in conjunction with a new set of 40K–40Ar and 40Ar–39Ar ages, and whole-rock geochemical data allow a reassessment of the geological and geochemical evolution of the volcanic complex. An adapted version of the published geological map of Merapi [(Wirakusumah et al. 1989), Peta Geologi Gunungapi Merapi, Jawa Tengah (Geologic map of Merapi volcano, Central Java), 1:50,000] is presented, in which eight main volcano stratigraphic units are distinguished, linked to three main evolutionary stages of the volcanic complex—Proto-Merapi, Old Merapi and New Merapi. Construction of the Merapi volcanic complex began after 170?ka. The two earliest (Proto-Merapi) volcanic edifices, Gunung Bibi (109?±?60?ka), a small basaltic andesite volcanic structure on Merapi’s north-east flank, and Gunung Turgo and Gunung Plawangan (138?±?3?ka; 135?±?3?ka), two basaltic hills in the southern sector of the volcano, predate the Merapi cone sensu stricto. Old Merapi started to grow at ~30?ka, building a stratovolcano of basaltic andesite lavas and intercalated pyroclastic rocks. This older Merapi edifice was destroyed by one or, possibly, several flank failures, the latest of which occurred after 4.8?±?1.5?ka and marks the end of the Old Merapi stage. The construction of the recent Merapi cone (New Merapi) began afterwards. Mostly basaltic andesite pyroclastic and epiclastic deposits of both Old and New Merapi (<11,792?±?90 14C years BP) cover the lower flanks of the edifice. A shift from medium-K to high-K character of the eruptive products occurred at ~1,900 14C years BP, with all younger products having high-K affinity. The radiocarbon record points towards an almost continuous activity of Merapi since this time, with periods of high eruption frequency interrupted by shorter intervals of apparently lower eruption rates, which is reflected in the geochemical composition of the eruptive products. The Holocene stratigraphic record reveals that fountain collapse pyroclastic flows are a common phenomenon at Merapi. The distribution and run-out distances of these flows have frequently exceeded those of the classic Merapi-type nuées ardentes of the recent activity. Widespread pumiceous fallout deposits testify the occurrence of moderate to large (subplinian) eruptions (VEI 3–4) during the mid to late Holocene. VEI 4 eruptions, as identified in the stratigraphic record, are an order of magnitude larger than any recorded historical eruption of Merapi, except for the 1872?AD and, possibly, the October–November 2010 events. Both types of eruptive and volcanic phenomena require careful consideration in long-term hazard assessment at Merapi.  相似文献   

2.
After a 26 years long quiescence El Reventador, an active volcano of the rear-arc zone of Ecuador, entered a new eruptive cycle which lasted from 3 November to mid December 2002. The initial sub-Plinian activity (VEI 4 with andesite pyroclastic falls and flows) shifted on 6 and 21 November to an effusive stage characterized by the emission of two lava flows (andesite to low-silica andesite Lava-1 and basaltic andesite Lava-2) containing abundant gabbro cumulates. The erupted products are medium to high-K calc-alkaline and were investigated with respect to major element oxides, mineral chemistry, texture and thermobarometry. Inferred pre-eruptive magmatic processes are dominated by the intrusion of a high-T mafic magma (possibly up to 1165 ± 15 °C) into an andesite reservoir, acting as magma mixing and trigger for the eruption. Before this refilling, the andesite magma chamber was characterized by water content of 5.3 ± 1.0%, high oxygen fugacity (> NNO + 2) and temperatures, in the upper and lower part of the reservoir, of 850 and 952 ± 65 °C respectively. Accurate amphibole-based barometry constrains the magma chamber depth between 8.2 and 11.3 km (± 2.2 km). The 6 October 2002 seismic swarm (hypocenters from 10 to 11 km) preceding El Reventador eruption, supports the intrusion of magmas at these depths. The widespread occurrence of disequilibrium features in most of the andesites (e.g. complex mineral zoning and phase overgrowths) indicates that convective self-mixing have been operating together with fractional crystallization (inferred from the cognate gabbro cumulates) before the injection of the basic magma which then gave rise to basaltic andesite and low-silica andesite hybrid layers. Magma mixing in the shallow chamber is inferred from the anomalous SiO2–Al2O3 whole-rock pattern and strong olivine disequilibria. Both lavas show three types of amphibole breakdown rims mainly due to heating (mixing processes) and/or relatively slow syn-eruptive ascent rate (decompression) of the magmas. The lack of any disequilibrium textures in the pumices of the 3 November fall deposit suggest that pre-eruptive mixing did not occur in the roof zone of the chamber. A model of the subvolcanic feeding system of El Reventador, consistent with the intrusion of a low-Al2O3 crystal-rich basic magma into an already self-mixed andesite shallow reservoir, is here proposed. It is also inferred that before entering the shallow chamber the “basaltic” magma underwent a polybaric crystallization at deeper crustal levels.  相似文献   

3.
Pyroclastic deposits from the 1982–1983 eruption of Galunggung volcano (Java, Indonesia) reflect preeruptive magmatic evolution which is of interest because of: (1) its duration of nine months, compared to a few hours or days for most historical eruptions; (2) the diversity of eruptive styles, from ash and scoria flows to phreatomagmatic explosions, and to the strombolian activity that marked the end of the eruption; and (3) the progressive variation in chemical composition with time, from andesite (58 wt.% SiO2) to high-Mg basalt (47 wt.% SiO2). The 1982–1983 Galunggung basalts are rather primitive: 10 to 12 wt% MgO, 180 to 200 ppm Ni and 550 to 700 ppm Cr. Despite the presence of about 40% phenocrysts, they may represent the most primitive basalts recognized in western Java. Basalts contain phenocrysts of olivine (Fo90-80), diopside-salite, and plagioclase (An95-75). Andesites contain plagioclase (An80–60), augite, hypersthene (En67-64), and titanomagnetite. The distribution of mineral compositions in each petrographic type is nearly unimodal, although scarce plagioclase and olivine xenocrysts have been observed. Abundance of gabbroic cumulates associated with the pyroclastic flows and evolution of mineral compositions from high-Mg basalts to andesites support crystal fractionation as the main differentiation mechanism, although magma mixing of basaltic andesite and andesite cannot be excluded. Major and trace element trends, which display rough decreases of MgO, CaO, Ni, Cr with increasing degree of differentiation and also linear positive correlations of hygromagmaphile elements, are compatible with both processes. However, some discrepancies are observed between major and trace element modelling, which may be explained to some extent by the influence of in situ crystallization and/or magma mixing. The constancy of 143Nd/144Nd (0.51286±3), 230Th/232Th (0.65±0.02), Th/U (4.08±0.07) ratios, and to a lesser extent 18O values (+5.8 to +6.4 % SMOW) and 87Sr/86Sr ratios (0.70440 to 0.70468) is compatible with a magmatic evolution through fractional crystallization without significant crustal contamination. Nevertheless low-18O and high 87Sr/86Sr values in basaltic andesites may be due to the introduction of meteoric fluids into the Galunggung magma.  相似文献   

4.
The 18th historic eruption of Hekla started on 26 February, 2000. It was a short-lived but intense event, emitting basaltic andesitic (55.5 wt% SiO2) pyroclastic fragments and lava. During the course of the eruption, monitoring was done by both instruments and direct observations, together providing unique insight into the current activity of Hekla. During the 12-day eruption, a total of 0.189 km3 DRE of magma was emitted. The eruptive fissure split into five segments. The segments at the highest altitude were active during the first hours, while the segments at lower altitude continued throughout the eruption. The eruption started in a highly explosive manner giving rise to a Subplinian eruptive column and consequent basaltic pyroclastic flows fed by column collapses. After the explosive phase reached its maximum, the eruption went through three more phases, namely fire-fountaining, Strombolian bursts and lava effusion. In this paper, we describe the course of events of the eruption of Hekla and the origin of its magma, and then show that the discharge rate can be linked to different style of eruptive activity, which are controlled by fissure geometry. We also show that the eruption phases observed at Hekla can be linked with inferred magma chamber overpressure prior to the eruption.  相似文献   

5.
Chemical and petrographic analyses of 51 sequential lava flows from the central vent of Mayon volcano show cyclical variation. In the two most recent cycles, from 1800 to 1876 and from 1881 to the present, one to three basaltic flows are followed by six to ten andesitic flows. Modal and whole-rock chemical parameters show the most regular cyclical variation; calculated groundmass chemical parameters vary less regularly. There is also a long-term trend, over approximately 1700 years of exposed section, toward more basic compositions.The cyclical variation in modes and the chemical composition of the lavas apparently results from periodic influxes of basaltic magma from depth into a shallow magma system. Fractional crystallization of olivine, augite, hypersthene, calcic plagioclase, magnetite and pargasitic hornblende produces successively more andesitic lavas until the next influx of basaltic magma. Differentiation in a deep zone of magma generation is not excluded by the data, but is more likely responsible for the overall change toward more basic compositions than for the cyclical variation.Three points in a cycle — the beginning of basaltic lavas, the beginning of andesitic lavas and a leveling-off of SiO2, K2 O and K2O/Na2O values — correspond roughly to the beginning of frequent effusive eruptions (with or without an early Plinian eruption), frequent weak to moderately explosive (Strombolian) eruptions, and less frequent explosive (Vulcanian) eruptions, respectively. Recognition of the current stage in a cycle can give a qualitative indication of the nature of forthcoming eruptions. Changes in several specific parameters may precede basaltic lavas and allow early detection of basaltic influxes. These include minima in the glass inclusion/plagioclase phenocryst and phenocryst/groundmass ratios, vesicularity and groundmass TiO2, a decrease in hypersthene phenocrysts, and constant values for the whole-rock K2O/Na2O ratio. The Mayon area is densely populated, making prediction of eruption type important for safety and land-use planning.  相似文献   

6.
Sr and Nd isotope and geochemical investigations were performed on a remarkably homogeneous, high-silica rhyolite magma reservoir of the Aira pyroclastic eruption (22,000 years ago), southern Kyushu, Japan. The Aira caldera was formed by this eruption with four flow units (Osumi pumice fall, Tsumaya pryoclastic flow, Kamewarizaka breccia and Ito pyroclastic flow). Quite narrow chemical compositions (e.g., 74.0–76.5 wt% of SiO2) and Sr and Nd isotopic values (87Sr/86Sr=0.70584–0.70599 and Nd=−5.62 to −4.10) were detected for silicic pumices from the four units, with the exception of minor amounts of dark pumices in the units. The high Sr isotope ratios (0.7065–0.7076) for the dark pumices clearly suggest a different origin from the silicic pumices. Andesite to basalt lavas in pre-caldera (0.37–0.93 Ma) and post-caldera (historical) eruptions show lower 87Sr/86Sr (0.70465–0.70540) and higher Nd (−1.03 to +0.96) values than those of the Aira silicic and dark pumices. Both andesites of pre- and post-caldera stages are very similar in major- and trace-element characteristics and isotope ratios, suggesting that the both andesites had a same source and experienced the same process of magma generation (magma mixing between basaltic and dacitic magmas). Elemental and isotopic signatures deny direct genetic relationships between the Aira pumices and pre- and post-caldera lavas. Relatively upper levels of crust (middle–upper crust) are assumed to have been involved for magma generation for the Aira silicic and dark pumices. The Aira silicic magma was derived by partial melting of a separate crust which had homogeneous chemistry and limited isotope compositions, while the magma for the Aira dark pumice was generated by AFC mixing process between the basement sedimentary rocks and basaltic parental magma, or by partial melting of crustal materials which underlay the basement sediments. The silicic magma did not occupy an upper part of a large magma body with strong compositional zonation, but formed an independent magma body within the crust. The input and mixing of the magma for dark pumices to the base of the Aira silicic magma reservoir might trigger the eruptions in the upper part of the magma body and could produce a slight Sr isotope gradient in the reservoir. An extremely high thermal structure within the crust, which was caused by the uprise and accumulation of the basaltic magma, is presumed to have formed the large volume of silicic magma of the Aira stage.  相似文献   

7.
The Mascota volcanic field is located in the Jalisco Block of western Mexico, where the Rivera Plate subducts beneath the North American Plate. It spans an area of ∼ 2000 km2 and contains ∼ 87 small cones and lava flows of minette, absarokite, basic hornblende lamprophyre, basaltic andesite, and andesite. There are no contemporary dacite or rhyolite lavas. New 40Ar/39Ar ages are presented for 35 samples, which are combined with nine dates from the literature to document the eruptive history of this volcanic field. The oldest lavas (2.4 to 0.5 Ma) are found in the southern part of the field area, whereas the youngest lavas (predominantly < 0.5 Ma) are found in the northern portion. On the basis of these ages, field mapping, and the use of ortho aerial photographs and digital elevation models, it is estimated that a combined volume of 6.8 ± 3.1 km3 erupted in the last 2.4 Myr, which leads to an average eruption rate of ∼ 0.003 km3/kyr, and an average volume per eruptive unit of < 0.1 km3. The dominant lava type is andesite (2.1 ± 0.9 km3), followed by absarokite (1.6 ± 0.8 km3), basaltic andesite (1.2 ± 0.5 km3), basic hornblende lamprophyre (1.0 ± 0.4 km3), and minette (0.9 ± 0.5 km3). Thus, the medium-K andesite and basaltic andesite comprise approximately half (49%) of the erupted magma, with twice as much andesite as basaltic andesite, and they occur in close spatial and temporal association with the highly potassic, lamprophyric lavas. There is no time progression to the type of magma erupted. A wide variety of evidence indicate that the high-MgO (8–9 wt.% ) basaltic andesites (52–53% wt.% SiO2) were formed by H2O flux melting of the asthenopheric arc mantle wedge, whereas the mafic minettes and absarokites were formed by partial melting (induced by thermal erosion) of depleted lithospheric mantle containing phlogopite-bearing veins. There is only limited differentiation of the potassic magmas, with none more evolved than 55.4 wt.% SiO2 and 4.4 wt.% MgO. This may be attributable to rapid crystallization of the mantle-derived melts in the deep crust, owing to their low volumes. Thus, the andesites (58–63 wt.% SiO2) are notable for being both the most voluminous and the most evolved of all lava types in the Mascota volcanic field, which is not consistent with their extraction from extensively crystallized (60–70%), low-volume intrusions. Instead, the evidence supports the origin of the andesites by partial melting of amphibolitized, mafic lower crust, driven by the emplacement of the minettes, absarokites, and the high-Mg basaltic andesites.  相似文献   

8.
Llaima is one of the most active volcanoes of the Chilean volcanic front with recent explosive eruptions in 2008 and 2009. Understanding how the volcano evolved to its present state is essential for predictions of its future behavior. The post-glacial succession of explosive volcanic eruptions of Llaima stratovolcano started with two caldera-forming eruptions at ~16 and ~15 ka, that emplaced two large-volume basaltic-andesitic ignimbrites (unit I). These are overlain by a series of fall deposits (unit II) changing from basaltic-andesitic to dacitic compositions with time. The prominent compositionally zoned, dacitic to andesitic Llaima pumice (unit III) was formed by a large Plinian eruption at ~10 ka that produced andesitic surge deposits (unit IV) in its terminal phase. The following unit V represents a time interval of ~8,000 years during which at least 30 basaltic to andesitic ash and lapilli fall deposits with intercalated volcaniclastic sediments and paleosols were emplaced. Bulk rock, mineral, and glass chemical data constrain stratigraphic changes in magma compositions and pre-eruptive conditions that we interpret in terms of four distinct evolutionary phases. Phase 1 (=unit I) magmas have lower large ion lithophile (LIL)/high field strength (HFS) element ratios compared to younger magmas and thus originated from a mantle source less affected by slab-derived fluids. They differentiated in a reservoir at mid-crustal level. During the post-caldera phase 2 (=units II–IV), relatively long residence times between eruptions allowed for increasingly differentiated magmas to form in a reservoir in the middle crust. Fractional crystallization led to volatile enrichment and oversaturation and is the driving force for the large Plinian eruption of the most evolved (unit III) dacite at Llaima, although replenishment by hot andesite probably triggered the eruption. During the subsequent phase 3 (=unit V >3 ka), frequent mafic replenishments at mid-crustal storage levels favored shorter residence times limiting erupted magma compositions to water-undersaturated basaltic andesites and andesites. At around 3 ka, the magma storage level for phase 4 (=unit V <3 ka to present) shifted to the uppermost crust where the hot magmas partly assimilated the granitic country rock. Although water contents of these basaltic andesites were low, the low-pressure storage facilitated water saturation before eruption. The change in magma storage level at 3 ka was responsible for the dramatic increase in eruption frequency compared to the older Llaima history. We suggest that the change from middle to upper crust magma storage is caused by a change in the stress regime below Llaima from transpression to tension.  相似文献   

9.
The Kos Plateau Tuff (KPT) eruption of 161 ka was the largest explosive Quaternary eruption in the eastern Mediterranean. We have discovered an uplifted beach deposit of abraded pumice cobbles, directly overlain by the KPT. The pumice cobbles resemble pumice from the KPT in petrography and composition and differ from Plio-Pleistocene rhyolites on the nearby Kefalos Peninsula. The pumice contains enclaves of basaltic andesite showing chilled lobate margins, suggesting co-existence of two magmas. The deposit provides evidence that the precursory phase of the KPT eruption produced pumice rafts, and defines the paleoshoreline for the KPT, which elsewhere was deposited on land. The beach deposit has been uplifted about 120 m since the KPT eruption, whereas the present marine area south of Kos has subsided several hundred metres, as a result of regional neotectonics. The basaltic andesite is more primitive than other mafic rocks known from the Kos–Nisyros volcanic centre and contains phenocrysts of Fo89 olivine, bytownite, enstatite and diopside. Groundmass amphibole suggests availability of water in the final stages of magma evolution. Geochemical and mineralogical variation in the mafic products of the KPT eruption indicate that fractionation of basaltic magma in a base-of-crust magma chamber was followed by mixing with rhyolitic magma during eruption. Low eruption rates during the precursory activity may have minimised the extent of mixing and preserved the end-member magma types.  相似文献   

10.
Compositional heterogeneity (56–64 wt% SiO2 whole-rock) in samples of tephra and lava from the 1986 eruption of Augustine Volcano, Alaska, raises questions about the physical nature of magma storage and interaction beneath this young and frequently active volcano. To determine conditions of magma storage and evolutionary histories of compositionally distinct magmas, we investigate physical and chemical characteristics of andesitic and dacitic magmas feeding the 1986 eruption. We calculate equilibrium temperatures and oxygen fugacities from Fe-Ti oxide compositions and find a continuous range in temperature from 877 to 947°C and high oxygen fugacities (ΔNNO=1–2) for all magmas. Melt inclusions in pyroxene phenocrysts analyzed by Fourier-transform infrared spectroscopy and electron probe microanalysis are dacitic to rhyolitic and have water contents ranging from <1 to ∼7 wt%. Matrix glass compositions are rhyolitic and remarkably similar (∼75.9–76.6 wt% SiO2) in all samples. All samples have ∼25% phenocrysts, but lower-silica samples have much higher microlite contents than higher-silica samples. Continuous ranges in temperature and whole-rock composition, as well as linear trends in Harker diagrams and disequilibrium mineral textures, indicate that the 1986 magmas are the product of mixing between dacitic magma and a hotter, more mafic magma. The dacitic endmember is probably residual magma from the previous (1976) eruption of Augustine, and we interpret the mafic endmember to have been intruded from depth. Mixing appears to have continued as magmas ascended towards the vent. We suggest that the physical structure of the magma storage system beneath Augustine contributed to the sustained compositional heterogeneity of this eruption, which is best explained by magma storage and interaction in a vertically extensive system of interconnected dikes rather than a single coherent magma chamber and/or conduit. The typically short repose period (∼10 years) between Augustine's recent eruptive pulses may also inhibit homogenization, as short repose periods and chemically heterogeneous magmas are observed at several volcanoes in the Cook Inlet region of Alaska.  相似文献   

11.
We describe a magma mingling episode from Ruapehu volcano between two andesite magmas, one very much minor in volume relative to the other. The event acted to trigger eruption of the andesitic Pourahu pyroclastic flow which is preserved in a thick sequence of tephras and laharic deposits in the southeastern ring plain of the volcano. The predominant andesite is pale brown coloured and porphyritic containing phenocrysts of plagioclase-clinopyroxene-orthopyroxene-Fe-Ti oxides. Rare clasts of a darker andesite are different texturally, less vesicular, and contain distinctive microphenocrysts of plagioclase and quench olivine. Equally rare clasts, of streaky pumice consisting of interbanded ‘dark’ and ‘light’ andesite attest to mingling between these two andesite components.Chemical analyses of discrete clasts demonstrate that the Pourahu pyroclastic flow andesites span much of the compositional spectrum of Ruapehu andesites. This observation demonstrates heterogeneity in the products of a relatively small eruption. The darker clast analyses and those from associated distal fall deposits lie within the fields defined by the dominant light coloured clasts. Phenocryst and microphenocryst geothermometry suggest slightly higher temperatures in the dark component. However, glasses from groundmass and phenocryst inclusions in the same specimen may differ considerably, leading us to conclude that many phenocrysts are in fact xenocrystic and were incorporated in the melts as they migrated towards the surface.We prefer a model in which a small volume of hot andesite magma injects a vent-feeding magma chamber, triggering vesiculation and eruption. We infer that the process of magma withdrawal extended downward into the magma body causing the dark component to intermingle with the lighter (dominant) component, ‘sucking’ more dark magma into the chamber. Our observations are entirely consistent with the existence of a plexus of small, possibly interlinked magma chambers beneath Ruapehu.  相似文献   

12.
The basaltic to trachydacitic (50–65 wt.% SiO2) upper Diliman Tuff is the youngest deposit of a sequence of tuffaceous deposits in Metro Manila. The deposit is located north of Taal Caldera and northwest of Laguna Caldera, which are both within the Southwest Luzon Volcanic Field. Chemical variations in the pumice fragments within the upper Diliman Tuff include medium-K basalt to basaltic andesite, high-K basaltic andesite to andesite and trachyandesite to trachydacite. Magma mixing/mingling is ubiquitous and is shown by banding textures in some pumice fragments, considerable range in groundmass glass composition (54 to 65 wt.% SiO2) in a single pumice fragment, and zoning in plagioclase phenocrysts. Simple binary mixing modeling and polytopic vector analysis were used to further evaluate magma mixing. Trace-element variations are inconsistent with the medium-K and high-K magmas being related by crystal fractionation. The medium-K basalts represent hotter intrusions, which induced small degrees of partial melting in older crystallized medium-K basaltic material within the crust to produce the high-K magmas. All melts likely differentiated in the crust but the emplaced and new basaltic intrusions originated from the mantle wedge and were generated by subduction zone processes. The volcanic source vent for the upper Diliman Tuff has not been identified. In comparisons with the deposits from adjacent Taal and Laguna Calderas it is chemically distinct with respect to both major- and trace-element concentrations.  相似文献   

13.
The November 13, 1985 eruption of Nevado del Ruiz produced a series of pyroclastic flows and surges that eroded channels on the surface of the summit glacier and generated lahars which descended down most of the rivers that drain the volcano. The stratigraphy of the proximal pyroclastic deposits indicates that there were at least four episodes to the eruption. Episode I, deposited an unusual surge consisting of small pieces of ice mixed with ash and exhibiting planar stratification. Ballistically emplaced fragments are also intercalated with this unit. During Episode II, at least two pyroclastic flows were erupted. Their deposits contain the most evolved pumice of the entire eruption; SiO2 content of matrix glass ranges between 74.5 and 74.9%. Episode III is marked by the emplacement of a welded tuff with an average SiO2 content of about 66% in the matrix glass. The final Episode IV was characterized by the development of a high-altitude eruption column and the emplacement of several nonwelded pyroclastic flows. Banded pumice are common in the pyroclastic flow as well as in the pumice fall deposits. Co-existing dark and light pumice bands differ in SiO2 content by 3.5% and in general are similar to the composition of the welded pumice from Episode III.The compositional zonation of the pyroclastic deposits from Episode I to IV suggests that a nearsurface compositionally-stratified portion of the magma body was tapped during Episode II. During Episodes III and IV the main body of magma was involved although the coexistence of the compositionally distinct pumice clasts at similar stratigraphic levels argues for mixing of magma from different levels in the chamber during the eruptive process.  相似文献   

14.
Peak eruption column heights for the B1, B2, B3 and B4 units of the May 18, 1980 fall deposit from Mount St. Helens have been determined from pumice and lithic clast sizes and models of tephra dispersal. Column heights determined from the fall deposit agree well with those determined by radar measurements. B1 and B2 units were derived from plinian activity between 0900 and about 1215 hrs. B3 was formed by fallout of tephra from plumes that rose off pyroclastic flows from about 1215 to 1630 hrs. A brief return to plinian activity between 1630 and 1715 hrs was marked by a maximum in column height (19 km) during deposition of B4.Variations in magma discharge during the eruption have been reconstructed from modelling of column height during plinian discharge and mass-balance calculations based on the volume of pyroclastic flows and coignimbrite ash. Peak magma discharge occurred during the period 1215–1630 hrs, when pyroclastic flows were generated by collapse of low fountains through the crater breach. Pyroclastic flow deposits and the widely dispersed co-ignimbrite ash account for 77% of the total erupted mass, with only 23% derived from plinian discharge.A shift in eruptive style at noon on May 18 may have been associated with increase in magma discharge and the eruption of silicic andesite mingled with the dominant mafic dacite. Increasing abundance of the silicic andesite during the period of highest magma discharge is consistent with the draw-up and tapping of deeper levels in the magma reservoir, as predicted by theoretical models of magma withdrawal. Return to plinian activity late in the afternoon, when magma discharge decreased, is consistent with theoretical predictions of eruption column behavior. The dominant generation of pyroclastic flows during the May 18 eruption can be attributed to the low bulk volatile content of the magma and the increasing magma discharge that resulted in the transition from a stable, convective eruption column to a collapsing one.  相似文献   

15.
We estimated time scales of magma-mixing processes just prior to the 2011 sub-Plinian eruptions of Shinmoedake volcano to investigate the mechanisms of the triggering processes of these eruptions. The sequence of these eruptions serves as an ideal example to investigate eruption mechanisms because the available geophysical and petrological observations can be combined for interpretation of magmatic processes. The eruptive products were mainly phenocryst-rich (28 vol%) andesitic pumice (SiO2 57 wt%) with a small amount of more silicic pumice (SiO2 62–63 wt%) and banded pumice. These pumices were formed by mixing of low-temperature mushy silicic magma (dacite) and high-temperature mafic magma (basalt or basaltic andesite). We calculated the time scales on the basis of zoning analysis of magnetite phenocrysts and diffusion calculations, and we compared the derived time scales with those of volcanic inflation/deflation observations. The magnetite data revealed that a significant mixing process (mixing I) occurred 0.4 to 3 days before the eruptions (pre-eruptive mixing) and likely triggered the eruptions. This mixing process was not accompanied by significant crustal deformation, indicating that the process was not accompanied by a significant change in volume of the magma chamber. We propose magmatic overturn or melt accumulation within the magma chamber as a possible process. A subordinate mixing process (mixing II) also occurred only several hours before the eruptions, likely during magma ascent (syn-eruptive mixing). However, we interpret mafic injection to have begun more than several tens of days prior to mixing I, likely occurring with the beginning of the inflation (December 2009). The injection did not instantaneously cause an eruption but could have resulted in stable stratified magma layers to form a hybrid andesitic magma (mobile layer). This hybrid andesite then formed the main eruptive component of the 2011 eruptions of Shinmoedake.  相似文献   

16.
The August 1991 eruptions of Hudson volcano produced ~2.7 km3 (dense rock equivalent, DRE) of basaltic to trachyandesitic pyroclastic deposits, making it one of the largest historical eruptions in South America. Phase 1 of the eruption (P1, April 8) involved both lava flows and a phreatomagmatic eruption from a fissure located in the NW corner of the caldera. The paroxysmal phase (P2) began several days later (April 12) with a Plinian-style eruption from a different vent 4 km to the south-southeast. Tephra from the 1991 eruption ranges in composition from basalt (phase 1) to trachyandesite (phase 2), with a distinct gap between the two erupted phases from 54–60 wt% SiO2. A trend of decreasing SiO2 is evident from the earliest part of the phase 2 eruption (unit A, 63–65 wt% SiO2) to the end (unit D, 60–63 wt% SiO2). Melt inclusion data and textures suggest that mixing occurred in magmas from both eruptive phases. The basaltic and trachyandesitic magmas can be genetically related through both magma mixing and fractional crystallization processes. A combination of observed phase assemblages, inferred water content, crystallinity, and geothermometry estimates suggest pre-eruptive storage of the phase 2 trachyandesite at pressures between ~50–100 megapascal (MPa) at 972 ± 26°C under water-saturated conditions (log fO2 –10.33 (±0.2)). It is proposed that rising P1 basaltic magma intersected the lower part of the P2 magma storage region between 2 and 3 km depth. Subsequent mixing between the two magmas preferentially hybridized the lower part of the chamber. Basaltic magma continued advancing towards the surface as a dyke to eventually be erupted in the northwestern part of the Hudson caldera. The presence of tachylite in the P1 products suggests that some of the magma was stalled close to the surface (<0.5 km) prior to eruption. Seismicity related to magma movement and the P1 eruption, combined with chamber overpressure associated with basalt injection, may have created a pathway to the surface for the trachyandesite magma and subsequent P2 eruption at a different vent 4 km to the south-southeast. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Twenty-three volcanic rocks from the Setouchi volcanic belt, southwest Japan, were analyzed for Nd and Sr isotopic compositions for the purpose of examining the genetic relationships among the basalt, high-magnesium andesite (HMA) and evolved porphyritic andesite. The andesites have higher87Sr/86Sr (0.70487–0.70537) and lower143Nd/144Nd (0.512509–0.512731) than the basalts, i.e., 0.70408–0.70468 and 0.512691–0.512830, respectively. This result confirms earlier conclusions obtained from petrologic study that the andesites cannot be fractionation products of basaltic magma but that the andesitic and basaltic magmas were generated independently. On the basis of melting experiments for HMA and basalt, it is inferred that there is an isotopically stratified mantle beneath southwest Japan. Evolved porphyritic andesites have essentially identical Sr and Nd isotopic ratios to HMA and can be derived by fractionation of primary andesitic magma. A model to produce orogenic andesite is proposed on petrologic, experimental and isotopic bases.  相似文献   

18.
Magma plumbing system of the 2000 eruption of Miyakejima Volcano, Japan   总被引:1,自引:0,他引:1  
During the 2000 eruption at Miyakejima Volcano, two magmas with different compositions erupted successively from different craters. Magma erupted as spatter from the submarine craters on 27 June is aphyric basaltic andesite (<5 vol% phenocrysts, 51.4–52.2 wt% SiO2), whereas magma issued as volcanic bombs from the summit caldera on 18 August is plagioclase-phyric basalt (20 vol% phenocrysts, 50.8–51.3 wt% SiO2). The submarine spatter contains two types of crystal-clots, A-type and A-type (andesitic type). The phenocryst assemblages (plagioclase, pyroxenes and magnetite) and compositions of clinopyroxene in these clots are nearly the same, but only A-type clots contain Ca-poor plagioclase (An < 70). We consider that the A-type clots could have crystallized from a more differentiated andesitic magma than the A-type clots, because FeO*/MgO is not strongly influenced during shallow andesitic differentiation. The summit bombs contain only B-type (basaltic type) crystal-clots of Ca-rich plagioclase, olivine and clinopyroxene. The A-type and B-type clots have often coexisted in Miyakejima lavas of the period 1469–1983, suggesting that the magma storage system consists of independent batches of andesitic and basaltic magmas. According to the temporal variations of mineral compositions in crystal-clots, the andesitic magma became less evolved, and the basaltic magma more evolved, over the past 500 years. We conclude that gradually differentiating basaltic magma has been repeatedly injected into the shallower andesitic magma over this period, causing the andesitic magma to become less evolved with time. The mineral chemistries in crystal-clots of the submarine spatter and 18 August summit bombs of the 2000 eruption fall on the evolution trends of the A-type and B-type clots respectively, suggesting that the shallow andesitic and deeper basaltic magmas existing since 1469 had successively erupted from different craters. The 2000 summit collapse occurred due to drainage of the andesitic magma from the shallower chamber; as the collapse occurred, it may have caused disruption of crustal cumulates which then contaminated the ascending, deeper basalt. Thus, porphyritic basaltic magma could erupt alone without mixing with the andesitic magma from the summit caldera. The historical magma plumbing system of Miyakejima was probably destroyed during the 2000 eruption, and a new one may now form.Editorial responsibility: S Nakada, T Druitt  相似文献   

19.
Syn-eruptive degassing of volcanoes may lead to syn-eruptive crystallization of groundmass phases. We have investigated this process using textural and compositional analysis of dome material from Merapi volcano, Central Java, Indonesia. Samples included dome lavas from the 1986–88, 1992–93, 1994 and 1995 effusive periods as well as pyroclastic material deposited by the November 1994 dome collapse. With total crystallinities commonly in excess of 70% (phenocrysts+microlites), the liquids present in Merapi andesites are highly evolved (rhyolitic) at the time of eruption. Feldspar microlites in dome rocks consist of plagioclase cores (Ab63An29Or8) surrounded by alkali feldspar rims (Ab53An5Or42), compositional pairs which are not in equilibrium. A change in the phase relations of the ternary feldspar system caused by degassing best explains the observed transition in feldspar composition. A small proportion of highly vesicular airfall tephra grains from the 1994 collapse have less evolved glass compositions than typical dome material and contain rimless plagioclase microlites, suggesting that the 1994 collapse event incorporated less-degassed, partially liquid magma in addition to fully solidified dome rock.As decompression drives volatile exsolution, rates of degassing and resultant microlite crystallization may be governed by magma ascent rate. Microlite crystallinity is nearly identical among the 1995 dome samples, an indication that similar microlite growth conditions (PH2O and temperature) were achieved throughout this extrusive period. However, microlite number density varied by more than a factor of four in these samples, and generally increased with distance from the vent. Low vent-ward microlite number densities and greater microlite concentrations down-flow probably reflect progressively decreasing rates of undercooling at the time of crystal nucleation during extrusion of the 1995 dome. Comparison between dome extrusion episodes indicates a correlation between lava effusion rate and microlite number density, suggesting that extrusion slowed during 1995. Crystal textures and compositions in the 1992–93 and 1994 domes share the range exhibited by the 1995 dome, suggesting that transitions in crystallization conditions (i.e., rates of undercooling determined by effusion rate) are cyclic.  相似文献   

20.
High-magnesium andesites associated with basalts erupted after the opening of the Sea of Japan are present at Saga–Futagoyama in northwest Kyushu, southwest Japan. High Mg/(Mg + Fe) [=0.84] of orthopyroxene phenocrysts and bulk rock Mg–Fe–Ni compositions suggest that these high-magnesium andesites were originally primitive melts insignificantly modified in crustal magma chambers. KDCa–Na [= (Ca/Na)pl/(Ca/Na)bulk rock] ranges from 1.21 to 0.97 and suggests that the high-magnesium andesite magmas would originally have contained H2O less than 1.8 wt.%. Nb/La does not show a negative correlation with respect to SiO2. These lines of evidence indicate that hydrous components derived from the subducting slab would not have played a significant role in the genesis of the high-magnesium andesite magmas. Instead, the normative olivine − quartz − [CaTs + Jd] compositions and a negative correlation between Sr/Nd and SiO2 indicate that the basalt-high-magnesium andesite association would have been formed by multi-stage partial melting of relatively anhydrous source at pressure ranging from 1.5 to 0.5 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号