首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 139 毫秒
1.
One of the most important aims of blasting in open pit mines is to reach desirable size of fragmentation. Prediction of fragmentation has great importance in an attempt to prevent economic drawbacks. In this study, blasting data from Meydook mine were used to study the effect of different parameters on fragmentation; 30 blast cycles performed in Meydook mine were selected to predict fragmentation where six more blast cycles are used to validate the results of developed models. In this research, mutual information (MI) method was employed to predict fragmentation. Ten parameters were considered as primary ones in the model. For the sake of comparison, Kuz-Ram empirical model and statistical modeling were also used. Coefficient of determination (R 2), root mean square error (RMSE), and mean absolute error (MAE) were then used to compare the models. Results show that MI model with values of R 2, RMSE, and MAE equals 0.81, 10.71, and 9.02, respectively, is found to have more accuracy with better performance comparing to Kuz-Ram and statistical models.  相似文献   

2.
Accurate laboratory measurement of geo-engineering properties of intact rock including uniaxial compressive strength (UCS) and modulus of elasticity (E) involves high costs and a substantial amount of time. For this reason, it is of great necessity to develop some relationships and models for estimating these parameters in rock engineering. The present study was conducted to forecast UCS and E in the sedimentary rocks using artificial neural networks (ANNs) and multivariable regression analysis (MLR). For this purpose, a total of 196 rock samples from four rock types (i.e., sandstone, conglomerate, limestone, and marl) were cored and subjected to comprehensive laboratory tests. To develop the predictive models, physical properties of studied rocks such as P wave velocity (Vp), dry density (γd), porosity, and water absorption (Ab) were considered as model inputs, while UCS and E were the output parameters. We evaluated the performance of MLR and ANN models by calculating correlation coefficient (R), mean absolute error (MAE), and root-mean-square error (RMSE) indices. The comparison of the obtained results revealed that ANN outperforms MLR when predicting the UCS and E.  相似文献   

3.
Regional drought frequency analysis was carried out in the Poyang Lake basin (PLB) from 1960–2014 based on three standardized drought indices: the standardized precipitation index (SPI), the standardized precipitation evapotranspiration index (SPEI) and the standardized Palmer drought index (SPDI). Drought events and characteristics were extracted. A Gumbel–Hougaard (GH) copula was selected to construct the bivariate probability distribution of drought duration and severity, and the joint return periods (T a ) were calculated. Results showed that there were 50 (50 and 40) drought events in the past 55 years based on the SPI (SPEI and SPDI), and 9 (8 and 10) of them were severe with T a more than 10 years, occurred in the 1960s, the 1970s and the 2000s. Overall, the three drought indices could detect the onset of droughts and performed similarly with regard to drought identification. However, for the SPDI, moisture scarcity was less frequent, but it showed more severe droughts with substantially higher severity and longer duration droughts. The conditional return period (Ts|d) was calculated for the spring drought in 2011, and it was 66a and 54a, respectively, based on the SPI and SPDI, which was consistent with the record. Overall, the SPI, only considering the precipitation, can as effectively as the SPEI and SPDI identify the drought process over the PLB under the present changing climate. However, drought is affected by climate and land-cover changes; thus, it is necessary to integrate the results of drought frequency analysis based on different drought indices to improve the drought risk management.  相似文献   

4.
Artificial neural networks (ANNs) are used by hydrologists and engineers to forecast flows at the outlet of a watershed. They are employed in particular where hydrological data are limited. Despite these developments, practitioners still prefer conventional hydrological models. This study applied the standard conceptual HEC-HMS’s soil moisture accounting (SMA) algorithm and the multi layer perceptron (MLP) for forecasting daily outflows at the outlet of Khosrow Shirin watershed in Iran. The MLP [optimized with the scaled conjugate gradient] used the logistic and tangent sigmoid activation functions resulting into 12 ANNs. The R 2 and RMSE values for the best trained MPLs using the tangent and logistic sigmoid transfer function were 0.87, 1.875 m3 s?1 and 0.81, 2.297 m3 s?1, respectively. The results showed that MLPs optimized with the tangent sigmoid predicted peak flows and annual flood volumes more accurately than the HEC-HMS model with the SMA algorithm, with R 2 and RMSE values equal to 0.87, 0.84 and 1.875 and 2.1 m3 s?1, respectively. Also, an MLP is easier to develop due to using a simple trial and error procedure. Practitioners of hydrologic modeling and flood flow forecasting may consider this study as an example of the capability of the ANN for real world flow forecasting.  相似文献   

5.
Deep excavation during the construction of underground systems can cause movement on the ground, especially in soft clay layers. At high levels, excessive ground movements can lead to severe damage to adjacent structures. In this study, finite element analyses (FEM) and the hardening small strain (HSS) model were performed to investigate the deflection of the diaphragm wall in the soft clay layer induced by braced excavations. Different geometric and mechanical properties of the wall were investigated to study the deflection behavior of the wall in soft clays. Accordingly, 1090 hypothetical cases were surveyed and simulated based on the HSS model and FEM to evaluate the wall deflection behavior. The results were then used to develop an intelligent model for predicting wall deflection using the functional linked neural network (FLNN) with different functional expansions and activation functions. Although the FLNN is a novel approach to predict wall deflection; however, in order to improve the accuracy of the FLNN model in predicting wall deflection, three swarm-based optimization algorithms, such as artificial bee colony (ABC), Harris’s hawk’s optimization (HHO), and hunger games search (HGS), were hybridized to the FLNN model to generate three novel intelligent models, namely ABC-FLNN, HHO-FLNN, HGS-FLNN. The results of the hybrid models were then compared with the basic FLNN and MLP models. They revealed that FLNN is a good solution for predicting wall deflection, and the application of different functional expansions and activation functions has a significant effect on the outcome predictions of the wall deflection. It is remarkably interesting that the performance of the FLNN model was better than the MLP model with a mean absolute error (MAE) of 19.971, root-mean-squared error (RMSE) of 24.574, and determination coefficient (R2) of 0.878. Meanwhile, the performance of the MLP model only obtained an MAE of 20.321, RMSE of 27.091, and R2 of 0.851. Furthermore, the results also indicated that the proposed hybrid models, i.e., ABC-FLNN, HHO-FLNN, HGS-FLNN, yielded more superior performances than those of the FLNN and MLP models in terms of the prediction of deflection behavior of diaphragm walls with an MAE in the range of 11.877 to 12.239, RMSE in the range of 15.821 to 16.045, and R2 in the range of 0.949 to 0.951. They can be used as an alternative tool to simulate diaphragm wall deflections under different conditions with a high degree of accuracy.  相似文献   

6.
Forest stand biomass serves as an effective indicator for monitoring REDD (reducing emissions from deforestation and forest degradation). Optical remote sensing data have been widely used to derive forest biophysical parameters inspite of their poor sensitivity towards the forest properties. Microwave remote sensing provides a better alternative owing to its inherent ability to penetrate the forest vegetation. This study aims at developing optimal regression models for retrieving forest above-ground bole biomass (AGBB) utilising optical data from Landsat TM and microwave data from L-band of ALOS PALSAR data over Indian subcontinental tropical deciduous mixed forests located in Munger (Bihar, India). Spatial biomass models were developed. The results using Landsat TM showed poor correlation (R2 = 0.295 and RMSE = 35 t/ha) when compared to HH polarized L-band SAR (R2 = 0.868 and RMSE = 16.06 t/ha). However, the prediction model performed even better when both the optical and SAR were used simultaneously (R2 = 0.892 and RMSE = 14.08 t/ha). The addition of TM metrics has positively contributed in improving PALSAR estimates of forest biomass. Hence, the study recommends the combined use of both optical and SAR sensors for better assessment of stand biomass with significant contribution towards operational forestry.  相似文献   

7.
In the present study, four different heuristic techniques viz. multi-layer perceptron (MLP), radial basis function (RBF), self-organizing maps (SOM), and co-active neuro-fuzzy inference system (CANFIS) with hyperbolic tangent and sigmoid transfer functions and two regression-based techniques, i.e., multiple linear regression (MLR) and sediment-rating curve (SRC), were used for suspended sediment modeling. Gamma test (GT), correlation function (CF), M test, and trail–error procedure were applied for estimation of appropriate input variables as well as training data length. The results of the GT and CF suggested the five input variables (Qt, Qt?1, Qt?2, St?1, and St?2, where Qt?1 and St?1 indicate the discharge and sediment values of one previous day) as the best combination. The optimal training data length (75% of total data) was estimated by M test and trail–error procedure for development of the applied models. The MLP with sigmoid transfer function (M-2) performed better than the all other models. The results of sensitivity analysis indicated that the present-day discharge (Qt), 1-day lag discharge (Qt?1) and 1-day lag suspended sediment (St?1) are the most influenced parameters in modeling current day suspended sediment (St).  相似文献   

8.
In this paper, analytical methods, artificial neural network (ANN) and multivariate adaptive regression splines (MARS) techniques were utilised to estimate the discharge capacity of compound open channels (COC). To this end, related datasets were collected from literature. The results showed that the divided channel method with a coefficient of determination (R 2) value of 0.76 and root mean square error (RMSE) value of 0.162 has the best performance, among the various analytical methods tested. The performance of applied soft computing models with R 2=0.97 and RMSE = 0.03 was found to be more accurate than analytical approaches. Comparison of MARS with the ANN model, in terms of developed discrepancy ratio (DDR) index, showed that the accuracy of MARS model was better than that of MLP model. Reviewing the structure of the derived MARS model showed that the longitudinal slope of the channel (S), relative flow depth (H r ) and relative area (A r ) have a high impact on modelling and forecasting the discharge capacity of COCs.  相似文献   

9.
Forecasting reservoir inflow is one of the most important components of water resources and hydroelectric systems operation management. Seasonal autoregressive integrated moving average (SARIMA) models have been frequently used for predicting river flow. SARIMA models are linear and do not consider the random component of statistical data. To overcome this shortcoming, monthly inflow is predicted in this study based on a combination of seasonal autoregressive integrated moving average (SARIMA) and gene expression programming (GEP) models, which is a new hybrid method (SARIMA–GEP). To this end, a four-step process is employed. First, the monthly inflow datasets are pre-processed. Second, the datasets are modelled linearly with SARIMA and in the third stage, the non-linearity of residual series caused by linear modelling is evaluated. After confirming the non-linearity, the residuals are modelled in the fourth step using a gene expression programming (GEP) method. The proposed hybrid model is employed to predict the monthly inflow to the Jamishan Dam in west Iran. Thirty years’ worth of site measurements of monthly reservoir dam inflow with extreme seasonal variations are used. The results of this hybrid model (SARIMA–GEP) are compared with SARIMA, GEP, artificial neural network (ANN) and SARIMA–ANN models. The results indicate that the SARIMA–GEP model (R 2=78.8, VAF =78.8, RMSE =0.89, MAPE =43.4, CRM =0.053) outperforms SARIMA and GEP and SARIMA–ANN (R 2=68.3, VAF =66.4, RMSE =1.12, MAPE =56.6, CRM =0.032) displays better performance than the SARIMA and ANN models. A comparison of the two hybrid models indicates the superiority of SARIMA–GEP over the SARIMA–ANN model.  相似文献   

10.
Drought is one of the most important natural hazards in Iran. It is especially more prevalent in arid and hyper arid regions where there are serious limitations in regard to providing sufficient water resources. On the other hand, drought modeling and particularly its prediction can play important role in water resources management under conditions of lack of sufficient water resources. Therefore, in this study, drought prediction in a hyper arid location of Iran (Ardakan region) has been surveyed based on the abilities of artificial neural. Standardized Precipitation Index (SPI) in different time scales (3, 6, 9, 12, and 24 monthly time series) computed based on the data gathered from four rain gauge stations. After evaluation and testing of different artificial neural networks (ANN) structures, gradient descent back propagation (traingd) network showed higher abilities than others. Then, the predictions of SPI time series with different monthly lag times (1:12 months) were tested. Generally, drought prediction by ANNs in the Ardakan region has shown considerable results with the correlation coefficient (R) more than 0.79 and in the most cases and it rises more than 0.90, which indicates the ANN’s ability of drought prediction.  相似文献   

11.
Accurate and reliable prediction of shallow groundwater level is a critical component in water resources management. Two nonlinear models, WA–ANN method based on discrete wavelet transform (WA) and artificial neural network (ANN) and integrated time series (ITS) model, were developed to predict groundwater level fluctuations of a shallow coastal aquifer (Fujian Province, China). The two models were testified with the monitored groundwater level from 2000 to 2011. Two representative wells are selected with different locations within the study area. The error criteria were estimated using the coefficient of determination (R 2), Nash–Sutcliffe model efficiency coefficient (E), and root-mean-square error (RMSE). The best model was determined based on the RMSE of prediction using independent test data set. The WA–ANN models were found to provide more accurate monthly average groundwater level forecasts compared to the ITS models. The results of the study indicate the potential of WA–ANN models in forecasting groundwater levels. It is recommended that additional studies explore this proposed method, which can be used in turn to facilitate the development and implementation of more effective and sustainable groundwater management strategies.  相似文献   

12.
Ground vibration is one of the common environmental effects of blasting operation in mining industry, and it may cause damage to the nearby structures and the surrounding residents. So, precise estimation of blast-produced ground vibration is necessary to identify blast-safety area and also to minimize environmental effects. In this research, a hybrid of adaptive neuro-fuzzy inference system (ANFIS) optimized by particle swarm optimization (PSO) was proposed to predict blast-produced ground vibration in Pengerang granite quarry, Malaysia. For this goal, 81 blasting were investigated, and the values of peak particle velocity, distance from the blast-face and maximum charge per delay were precisely measured. To demonstrate the performance of the hybrid PSO–ANFIS, ANFIS, and United States Bureau of Mines empirical models were also developed. Comparison of the predictive models was demonstrated that the PSO–ANFIS model [with root-mean-square error (RMSE) 0.48 and coefficient of determination (R 2) of 0.984] performed better than the ANFIS with RMSE of?1.61 and R 2 of 0.965. The mentioned results prove the superiority of the newly developed PSO–ANFIS model in estimating blast-produced ground vibrations.  相似文献   

13.
The improvement in the capabilities of Landsat-8 imagery to retrieve bathymetric information in shallow coastal waters was examined. Landsat-8 images have an additional band named coastal/aerosol, Band 1: 435–451 nm in comparison with former generation of Landsat imagery. The selected Landsat-8 operational land image (OLI) was of Chabahar Bay, located in the southern part of Iran (acquired on February 22, 2014 in calm weather and relatively low turbidity). Accurate and high resolution bathymetric data from the study area, produced by field surveys using a single beam echo-sounder, were selected for calibrating the models and validating the results. Three methods, including traditional linear and ratio transform techniques, as well as a novel proposed integrated method, were used to determine depth values. All possible combinations of the three bands [coastal/aerosol (CB), blue (B), and green (G)] have been considered (11 options) using the traditional linear and ratio transform techniques, together with five model options for the integrated method. The accuracy of each model was assessed by comparing the determined bathymetric information with field measured values. The standard error of the estimates, correlation coefficients (R 2 ) for both calibration and validation points, and root mean square errors (RMSE) were calculated for all cases. When compared with the ratio transform method, the method employing linear transformation with a combination of CB, B, and G bands yielded more accurate results (standard error = 1.712 m, R 2 calibration = 0.594, R 2 validation = 0.551, and RMSE =1.80 m). Adding the CB band to the ratio transform methodology also dramatically increased the accuracy of the estimated depths, whereas this increment was not statistically significant when using the linear transform methodology. The integrated transform method in form of Depth = b 0  + b 1 X CB  + b 2 X B  + b 5 ln(R CB )/ln(R G ) + b 6 ln(R B )/ln(R G ) yielded the highest accuracy (standard error = 1.634 m, R 2 calibration = 0.634, R 2 validation = 0.595, and RMSE = 1.71 m), where R i (i = CB, B, or G) refers to atmospherically corrected reflectance values in the i th band [X i  = ln(R i -R deep water)].  相似文献   

14.
Soil erodibility is one of the most important factors used in spatial soil erosion risk assessment. Soil information derived from soil map is used to generate soil erodibility factor map. Soil maps are not available at appropriate scale. In general, soil maps at small scale are used in deriving soil erodibility map that largely generalized spatial variability and it largely ignores the spatial variability since soil map units are discrete polygons. The present study was attempted to generate soil erodibilty map using terrain indices derived from DTM and surface soil sample data. Soil variability in the hilly landscape is largely controlled by topography represented by DTM. The CartoDEM (30 m) was used to derive terrain indices such as terrain wetness index (TWI), stream power index (SPI), sediment transport index (STI) and slope parameters. A total of 95 surface soil samples were collected to compute soil erodibility factor (K) values. The K values ranged from 0.23 to 0.81 t ha?1R?1 in the watershed. Correlation analysis among K-factor and terrain parameters showed highest correlation of soil erodibilty with TWI (r 2= 0.561) followed by slope (r 2= 0.33). A multiple linear regression model was developed to derive soil erodibilty using terrain parameters. A set of 20 soil sample points were used to assess the accuracy of the model. The coefficient of determination (r 2) and RMSE were computed to be 0.76 and 0.07 t ha?1R?1 respectively. The proposed methodology is quite useful in generating soil erodibilty factor map using digital elevation model (DEM) for any hilly terrain areas. The equation/model need to be established for the particular hilly terrain under the study. The developed model was used to generate spatial soil erodibility factor (K) map of the watershed in the lower Himalayan range.  相似文献   

15.
Meteorological drought during the southwest monsoon season and for the northeast monsoon season over five meteorological subdivisions of India for the period 1901–2015 has been examined using district and all India standardized precipitation index (SPI). Whenever all India southwest monsoon rainfall was less than ?10% or below normal, for those years all India SPI was found as ?1 or less. Composite analysis of SPI for the below normal years, viz., less than ?15% and ?20% of normal rainfall years indicate that during those years more than 30% of country’s area was under drought condition, whenever all India southwest monsoon rainfall was –15% or less than normal. Trend analysis of monthly SPI for the monsoon months identified the districts experiencing significant increase in drought occurrences. Significant positive correlation has been found with the meteorological drought over most of the districts of central, northern and peninsular India, while negative correlation was seen over the districts of eastern India with NINO 3.4 SST. For the first time, meteorological drought analysis over districts and its association with equatorial pacific SST and probability analysis has been done for the northeast monsoon over the affected regions of south peninsular India. Temporal correlation of all India southwest monsoon SPI and south peninsular India northeast monsoon SPI has been done with the global SST to identify the teleconnection of drought in India with global parameters.  相似文献   

16.
In this study, the preprocessing of the gamma test was used to select the appropriate input combination into two models including the support vector regression (SVR) model and artificial neural networks (ANNs) to predict the stream flow drought index (SDI) of different timescales (i.e., 3, 6, 9, 12, and 24 months) in Latian watershed, Iran, which is one of the most important sources of water for the large metropolitan Tehran. The variables used included SDI t , SDI t ? 1, SDI t ? 2, SDI t ? 3, and SDI t ? 4 monthly delays. Two variables including SDI t and SDI t ? 1 with lower gamma values were identified as the most optimal combination of variables in all drought timescales. The results showed that the gamma test was able to correctly identify the right combination for the forecasting of 6, 9, and 12 months SDI using the ANN model. Also, the gamma test was considered in selecting the appropriate inputs for identifying the values of 9, 12, and 24 months SDI in SVR. The support vector machine approach showed a better efficiency in the forecast of long-term droughts compared to the artificial neural network. In total, among forecasts made for 30 scenarios, the support vector machine model only in scenario 3 of SDI3, scenario 1 of SDI6, and scenarios 2 and 3 of SDI24 represented poorer efficiency compared to the artificial neural network (MLP layer), but in other scenarios, the results of SVR had better efficiency.  相似文献   

17.
In this paper, we have utilized ANN (artificial neural network) modeling for the prediction of monthly rainfall in Mashhad synoptic station which is located in Iran. To achieve this black-box model, we have used monthly rainfall data from 1953 to 2003 for this synoptic station. First, the Hurst rescaled range statistical (R/S) analysis is used to evaluate the predictability of the collected data. Then, to extract the rainfall dynamic of this station using ANN modeling, a three-layer feed-forward perceptron network with back propagation algorithm is utilized. Using this ANN structure as a black-box model, we have realized the complex dynamics of rainfall through the past information of the system. The approach employs the gradient decent algorithm to train the network. Trying different parameters, two structures, M531 and M741, have been selected which give the best estimation performance. The performance statistical analysis of the obtained models shows with the best tuning of the developed monthly prediction model the correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE) are 0.93, 0.99, and 6.02 mm, respectively, which confirms the effectiveness of the developed models.  相似文献   

18.
Characterization of soil water retention, e.g., water content at field capacity (FC) and permanent wilting point (PWP) over a landscape plays a key role in efficient utilization of available scarce water resources in dry land agriculture; however, direct measurement thereof for multiple locations in the field is not always feasible. Therefore, pedotransfer functions (PTFs) were developed to estimate soil water retention at FC and PWP for dryland soils of India. A soil database available for Arid Western India (N=370) was used to develop PTFs. The developed PTFs were tested in two independent datasets from arid regions of India (N=36) and an arid region of USA (N=1789). While testing these PTFs using independent data from India, root mean square error (RMSE) was found to be 2.65 and 1.08 for FC and PWP, respectively, whereas for most of the tested ‘established’ PTFs, the RMSE was >3.41 and >1.15, respectively. Performance of the developed PTFs from the independent dataset from USA was comparable with estimates derived from ‘established’ PTFs. For wide applicability of the developed PTFs, a user-friendly soil moisture calculator was developed. The PTFs developed in this study may be quite useful to farmers for scheduling irrigation water as per soil type.  相似文献   

19.
A reliable prediction of dispersion coefficient can provide valuable information for environmental scientists and river engineers as well. The main objective of this study is to apply intelligence techniques for predicting longitudinal dispersion coefficient in rivers. In this regard, artificial neural network (ANN) models were developed. Four different metaheuristic algorithms including genetic algorithm (GA), imperialist competitive algorithm (ICA), bee algorithm (BA) and cuckoo search (CS) algorithm were employed to train the ANN models. The results obtained through the optimization algorithms were compared with the Levenberg–Marquardt (LM) algorithm (conventional algorithm for training ANN). Overall, a relatively high correlation between measured and predicted values of dispersion coefficient was observed when the ANN models trained with the optimization algorithms. This study demonstrates that the metaheuristic algorithms can be successfully applied to make an improvement on the performance of the conventional ANN models. Also, the CS, ICA and BA algorithms remarkably outperform the GA and LM algorithms to train the ANN model. The results show superiority of the performance of the proposed model over the previous equations in terms of DR, R 2 and RMSE.  相似文献   

20.
Ground vibration resulting from blasting is one of the most important environmental problems at open-cast mines. Therefore, accurately approximating the blast-induced ground vibration is very significant. By reviewing the previous investigations, many attempts have been done to create the empirical models for estimating ground vibration. Nevertheless, the performance of the empirical models is not good enough. In this research work, a new hybrid model of fuzzy system (FS) designed by imperialistic competitive algorithm (ICA) is proposed for approximating ground vibration resulting from blasting at Miduk copper mine, Iran. For comparison aims, various empirical models were also utilized. Results from different predictor models were compared by using coefficient of multiple determination (R 2), variance account for and root-mean-square error between measured and predicted values of the PPVs. Results prove that the FS–ICA model outperforms the other empirical models in terms of the prediction accuracy. In other words, the FS–ICA model with R 2 of 0.942 can forecast PPV better than the USBM with R 2 of 0.634, Ambraseys–Hendron with R 2 of 0.638, Langefors–Kihlstrom with R 2 of 0.637 and Indian Standard with R 2 of 0.519.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号