首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
我国多山,崩塌灾害频繁发生,相应的风险评价也得到了越来越多的关注。由于崩塌发生和运移过程的高度不确定性以及历史数据的不完备,往往很难进行相应的定量风险评价。四川罗家青杠岭的崩塌现场非常典型,而且现场资料较全、历史数据较多并且明确,是开展崩塌风险定量研究的很好实例。通过现场工程地质调查、测绘和统计分析,确定了历史崩塌的物源区、堆积区、最大运移距离、年发生概率以及坡体上的4块典型危岩体A-D。基于历史崩塌堆积区的块石统计特征以及物源区危岩体失稳启动位置的不确定性,利用二维Rockfall模拟软件对所在坡面的恢复系数及摩擦系数进行了反演。在此基础上,对危岩体A-D失稳后的运动特征进行了随机性数值模拟和统计分析,从而确定了崩塌的到达概率。基于崩塌发生概率、到达概率、承灾体时空分布概率和易损性的乘积,作者对罗家青杠岭崩塌进行了定量风险评价。评价结果表明,危岩体A和D的风险值处于不可接受的风险区间,块石B和C的风险值处于警告的风险区间,严重威胁着坡脚附近居民的生命财产安全,有必要采取相应的防灾减灾措施。  相似文献   

2.
S210线芦山-宝兴段崩塌灾害危险性分析及防治对策建议   总被引:3,自引:0,他引:3  
"4·20"芦山地震发生后,作为进出地震灾区的生命线工程省道S210芦山-宝兴段多处发生崩塌滚石等次生地质灾害,堵断交通,威胁来往群众的生命安全,严重影响了抗震救灾和灾后的恢复重建。通过对此路段进行崩塌灾害现场考察,得出此路段的崩塌灾害多发生在大于40°的坡体上,坡向为SW、W和NW,易发岩性为灰岩、砂岩、白云岩和砾岩,切割深度多大于16m。通过GIS进行因子叠加分析,将此路段划分为3级危险度区域,并根据芦山地震灾区崩塌滚石灾害成因机制、分布与活动特征、成灾方式与危害对象,提出了相应的防治对策与建议。  相似文献   

3.
西藏拉萨—羊八井段建有青藏铁路、京拉公路(G109)、京藏高速(G6)三大重要交通工程和大量输电线路。然而,该区段山高坡陡,崩塌灾害频发,给交通和输电的安全运营带来极大的威胁。现阶段对崩塌灾害的分析与预测多是基于地形剖面的二维方法,限制了崩塌块石的运动方向,难以对崩塌的影响范围进行有效的评估。鉴于此,作者借助现场调查、基于无人机航摄的高精度三维地表形貌建模、崩塌运动的三维数值模拟等方法,以青藏铁路设兴村段崩塌为例,分析了历史崩塌块石分布、岩体结构面产状和危岩区特征,并进行了崩塌块石的运动学模拟。通过模拟获得了崩塌的影响范围和到达概率、优势运动路径以及优势运动路径下危岩区块石距坡面的高度和动能,结果表明危岩区的崩塌块石主要威胁输电线路和京拉公路,对青藏铁路和京藏高速无影响。相关模拟结果还对于崩塌防护范围、高度和强度的确定具有指导意义。  相似文献   

4.
汶川地震崩塌滚石坡面运动特征   总被引:1,自引:0,他引:1  
程强  苏生瑞 《岩土力学》2014,35(3):772-776
滚石坡面运动影响因素众多,分析预测困难,确定崩塌滚石危害范围,对崩塌灾害防治具有重要意义。在实测汶川地震399条崩塌滚石剖面基础上,通过统计分析研究了滚石运动特征和危害范围参数,得出如下结论:(1) 滚石坡面运动可划分为启动阶段、运动阶段和堆积阶段;56º为启动区滚石自由坠落模式和滑动、滚动模式界限,堆积区最大角度为39.6º,26º以下区域为减速带。(2) 滚石运动距离与高度的比值,随着地震烈度以及边坡岩石强度的增高而增大,并给出了统计公式。(3) 滚石最大运动距离与坡高之间以及陡坡段坡度与滚石运动扩散角之间有较好的线性关系,根据堆积区在边坡高度上所占比例,划分了两种坡面形态,给出了两种坡面形态边坡陡坡段坡度与滚石运动扩散角之间的统计关系图,可作为崩塌滚石危害范围判定的参考。  相似文献   

5.
石崎材 《地下水》2023,(2):111-112+144
崩塌是边坡常见的地质灾害现象,突发性强且危害性大,是工程边坡防灾减灾的重点。文章对藏东南宗坝地区某边坡开展了现场勘查,分析危岩体的发育特征,利用PFC3D软件模拟了危岩体发生失稳后的运动过程。计算结果表明:危岩体失稳后运动特征受地形条件影响较大,落石在坡表滚动、碰撞和跳跃,沿斜坡表面呈散射状向下运动。数值模拟结果初步确定危岩体失稳后的堆积特征,主要威胁范围为坡脚前缘居民区、318公路及帕隆藏布,为防灾减灾工程设计提供参考。  相似文献   

6.
斜坡滚石运动速度特征与坡表覆盖层特征、滚石形状、坡面角度、滚石质量等主要因素有关,选择不同坡表覆盖层,对不同形状、质量的滚石,采用低角度直线坡段设计正交试验(L27(34)),研究斜坡滚石滚动状态下速度特征。分析得到滚石斜坡运动影响因子排序:坡表特性X1、坡角X3、滚石形状X2、滚石质量X4。回归分析得出斜坡滚石运动估算速度公式:vc=-7.85X10.50+0.47X23.22+2.97X30.24,与试验实测值进行对比,得出相对误差为8.2%,相关系数为r=0.92。利用回归方程分析单因素的影响趋势,结果表明:坡表特征与速度有明显线性负相关关系、滚石形状与速度呈上凹型曲线、坡角与速度呈下凹型曲线的数学关系。通过现场试验,实测得到斜坡滚石速度计算简化修正公式v=v0+(L/2.45) vc,对比验证与实测结果吻合较好,证明了本文计算公式对于总体平直、角度局部变化的直线型斜坡的适用性和有效性。所得成果可估算斜坡滚石的速度与冲击能量,对滚石防治措施的选择有参考价值。  相似文献   

7.
九寨沟7.0级地震诱发公路沿线大量地质灾害,通过对公路沿线地震地质灾害的遥感解译和现场调查,表明地质灾害以中小型崩滑灾害为主,高陡斜坡路段岩土体失稳灾害突出,地震诱发岩土体失稳部位坡度一般在36°以上,树木对坡面滚石拦挡作用显著。地震诱发地质灾害主要分布在地震烈度为VIII度和IX度的区域,在川主寺至九寨沟公路的上四寨至九寨天堂段、九寨沟景区公路的五花海至箭竹海段形成2个地质灾害密集发育区。震后边坡上残留崩滑堆积物、拉裂变形岩土体、植被丧失,易于产生坡面滚石、泥石流、溯源侵蚀等次生灾害,对公路造成危害,应采取绕避、被动及主动防护、生态修复等措施。  相似文献   

8.
在反倾层状边坡内,开挖边坡并修筑隧道洞口后,出现岩体从隧道掌子面整体挤出和洞顶塌方现象,并导致边坡出现后缘拉裂、坡体内出现多处裂缝和岩块崩塌等坡体失稳迹象。通过对该边坡失稳和隧道塌方的勘察和机制分析,确定该坡体的变形破坏模式,提出针对性治理方案。  相似文献   

9.
巨石作为一种大体积、大质量的滚石,其崩塌失稳及高速、高能远程运动往往导致沿途建筑物和交通线路的毁灭性灾难。以西藏自治区G318国道K4580典型滑坡为工程背景,基于三维非连续变形分析(three-dimensional discontinuous deformation analysis,简称3D-DDA)方法研究巨石崩塌失稳及运动全过程的特征与现象。分别建立该边坡未滑坡、浅层滑坡后和深层滑坡后3种坡形的巨石崩塌3D-DDA数值模型。采用滚石运动横向偏移经验模型,验证3D-DDA巨石运动模拟的准确性。在此基础上,分析巨石崩塌失稳机制及破坏后沿3种不同坡形边坡的运动轨迹和动能演进等运动特征。结果表明,3D-DDA能够有效模拟巨石崩塌失稳、运动发展、剧烈冲击碰撞直至最终静止等整个动力学过程。巨石崩塌表现为滑动→倾倒?滑动→倾倒→翻转?下落的失稳模式转换;巨石运动表现为碰撞、弹跳、飞跃、滚动、滑动等多种运动形式以及横向偏移、侧向偏转等三维空间运动特征,经过道路并与高架桥发生碰撞,引发巨石灾害。不同坡面几何特征下的巨石运动偏移量、弹跳高度、运动至坡底碰撞时间、最终稳定时间等均随着未滑坡、浅层滑坡后、深层滑坡后3种坡形变化而减小。通过3D-DDA巨石崩塌运动分析,预测巨石运动全过程、影响范围、冲击能量、停积位置等,可为巨石防灾减灾对策或措施制定提供依据。  相似文献   

10.
在蓄水库区,伴随着水库蓄水及可能发生的暴雨天气,往往容易触发库岸坡岩土体失稳,这不仅影响工程建设的实施,还对拦河大坝和周围人民群众的生命财产安全造成严重威胁。本文以溪洛渡水电站黄坪滑坡为例,在野外现场调查的基础上,分析了其滑动的成因和机制,并利用离散元法对其三维滑动过程进行模拟,深入分析了滑坡失稳后的运动状态及规律。结果表明:滑坡体运动过程中,其表面会发生较大变化,且滑坡体会呈现出中间失稳体积较大,两侧失稳体积较小的特征;滑坡内部颗粒分布会发生改变,存在大颗粒运动至滑坡体表面,小颗粒运动到滑坡体底面的现象;滑坡体颗粒的速度和压力在不同位置也会发生改变,存在不同颗粒间速度相差很大,滑坡体内压力分布不均匀的情况;滑坡体颗粒的运动速度、运动距离表现出从后缘到前缘,同一横剖面中表层至底层由大到小分布的规律。  相似文献   

11.
12.
Vishal  V.  Siddique  T.  Purohit  Rohan  Phophliya  Mohit K.  Pradhan  S. P. 《Natural Hazards》2017,85(1):487-503

A massive disaster occurred in June 2013 in Kedarnath, India, due to cloudburst and extremely heavy rain along the Chorabari glacier. The resulting flash floods further aggravated the instability of natural and hill cut slopes at different places on the downstream side. The village Rambara that existed in close proximity of Kedarnath was swept away under flow of debris and water. The immediate surrounding area, which housed over a hundred and fifty shops and hotels, was completely washed away leaving no trace of civilization. This calamity in Uttarakhand is considered as India’s worst natural disasters after the tsunami in December 2004. On the downstream of the affected areas lie other pilgrim destinations that witness innumerable footfalls every year. Investigation of the health of the slopes on the routes to these destinations is therefore very important to ensure minimal damage to humans and machinery. The Himalayan terrain is a tectonically active mountain belt, having a large number of unstable natural and road cut slopes. Such slopes with rugged topography lie in the high seismic vulnerability zone. Further, the instability is aggravated by natural and anthropogenic activities increasing at a rapid and uncontrollable rate. In the light of the Kedarnath tragedy, more advanced research is being conducted along the National Highways to monitor and prevent slope/structure failures. This study was conducted to evaluate the hazard potential along National Highway-58, near Saknidhar village of Devprayag district by analysing rockfall using hazard rating systems and numerical simulation. Rockfall hazard rating systems were applied to evaluate the conditions of the slopes and to identify the associated risks. Based on the field and laboratory analyses, the parameters required for numerical models were determined. The bounce height, roll-out distance, kinetic energy and speed of the detached blocks were determined by using a competent rockfall simulator. The results obtained were used to identify rockfall risk in the region. Optimization strategies were applied during investigation by modifying the slope angle, ditch width and ditch angle to assess the possibility of a hazard to occur in different scenarios. The simulation studies revealed that an increasing slope angle could significantly increase the kinetic energy of the rock blocks. However, an increase in the ditch angle and the ditch width reduces the energy of moving blocks. The maximum bounce height above the slope varied from 0.003 m to 0.8 m for 10-kg blocks, whereas the maximum velocity and the maximum kinetic energy under such circumstances were 7.882 m/s and 379.89 J, respectively. The barrier capacity was found to be 233.18 J for 10-kg falling blocks at a height of 10.02 m. From the optimization studies, it was found that the risk can be reduced by up to 13 % if the slope of 70° has a ditch angle of 15° while on a flat ditch, the maximum risk will be at an angle of 65°. If the ditch angle is increased, the vertical component of the falling blocks is more effective than that in case of a flat ditch. These optimization studies lay foundation for advanced research for mitigation of rockfall hazards in similar potential areas.

  相似文献   

13.
Rockfall hazard analysis for an historical Castle in Kastamonu (Turkey)   总被引:2,自引:0,他引:2  
The Kastamonu Castle located on a sandstone hill with Eocene age is one of the most historical and touristic places in Kastamonu city center. The settlement of the city expanded towards the hill of the Kastamonu Castle and adversely affected by rockfalls in the past. The rockfall problems around the castle could be related to jointing, weathering, freezing-thawing and earthquake effects or a combination. In this study, the rockfall hazard at the castle is evaluated by two-dimensional rockfall analyses along 17 profiles selected in different orientations. Different size of rock blocks and various types of movements are taken into consideration in the analyses. Fall-out distance, bounce height, kinetic energy and velocity of the sandstone blocks are separately evaluated. The obtained data are used to define the possible rockfall hazard zones. Finally, the areas having potential rockfall risks are distinguished. Based on the evaluation of the data, rock bolting after removing of unstable blocks and supporting the area with the protective fences are suggested.  相似文献   

14.
The Saptashrungi gad temple (SGT) situated on basaltic hills belongs to Deccan volcanic of Upper Cretaceous to Lower Eocene, is one among the 51 Shakti Peeths and most holy place for pilgrims. Rockfall is a major problem in the past and causing danger to the lives of the villagers settled at the toe of the SGT hill as well as the pilgrims who perform parikrama along the tracks. On the evening of 16 April 2011, an old woman died due to rockfall at SGT hill when she was performing parikrama, moreover, two persons got injured during the deliverance process of this old woman from the continuous rockfall activity. The problem of rockfall could be linked to rainfall, jointing, weathering, man-made or the compounding of all. In this research, the rockfall hazard analysis at SGT hill is assessed using both 2D and 3D rockfall programs along the two parikrama paths: Parikrama Path 1 (or the Badi Parikrama Path ‘BPP’), and Parikrama Path 2 (or the Chhoti Parikrama Path ‘CPP’). Also, the study area of the SGT hill has been divided into eight zones (Zone#01 to Zone#08), based on field observations, orientations of joint sets and hill slope faces and eighteen topographic profiles (AA' to RR') have been taken from these eight zones for rockfall analysis. A detailed topographic survey along with field investigation has been carried out along the temple for ascertaining the nature of rock, discontinuity orientations, and slope geometry. DEM has been generated using topographic profile in ArcGIS to facilitate the 3D rockfall analysis. Maximum rock block sizes are taken into the analysis and run-out distance, bounce height, kinetic energy and velocity of the basaltic blocks are evaluated separately. Based on the analyzed data, the rockfall hazard zone map has been prepared and site having potential rockfall risks have been identified. Finally, wire/net meshing has been proposed after removal of unstable blocks as a stabilization and protection measures.It is worth mentioning here that for the first time rockfall hazard assessment was made in such detail for a site. Suggestions made are implemented by the State Government for the protection of the temple as well as the life of pilgrims performing the parikrama from the rockfall.  相似文献   

15.
Assessment of rockfall hazard around Afyon Castle,Turkey   总被引:2,自引:0,他引:2  
The Afyon Castle is a tourist destination and a historical site in the City of Afyon in Turkey. The Castle is located on a steep hill, with a height of 226 m. In close proximity to the Castle there are settlements. The hill consists of trachitic andesite. The rock contains columnar joints and flow layering. Owing to these discontinuities, blocks of varying sizes had fallen down. The settlement areas near the Castle are now in danger because of the rockfall risk. In this study, rockfall analysis was carried out along nine profiles of the hill. Fall-out distance, bounce height, kinetic energy and velocity of the rocks along each profile were investigated. The results of the analyses were evaluated, and the areas delineated as susceptible to rockfall risk are highlighted. Remedial measures including rock bolts and protective fences were suggested on the basis of the field observations and the rockfall risk evaluation.  相似文献   

16.
17.
The Ajanta caves are situated in Deccan Trap basalt and declared as one of the World Heritage Sites by UNESCO. The present study aims to investigate and understand the damage of caves and to protect the life of the visitors from the rockfall phenomenon at and around the caves. Information related to the detached rock mass/block was acquired by using Barton–Bandis model in Universal Distinct Element Code. Parameters for rockfall simulation were determined by rigorous field study and laboratory experiment and then calibrated some of the parameters by back analysis. RocFall 4.0 program has been used to calculate maximum bounce heights, total kinetic energies, and translational velocities of the falling blocks of different weights. The maximum bounce height varies from 14.0 to 19.0 m for the weight of the block size ranging from 500 to 2,000 kg, whereas the maximum velocity and maximum kinetic energy are 30.0 m/s and 917.66 kJ, respectively. Finally, the results of simulation have been used to find out the position of the barrier and its capacity to design the protection barrier. The barrier capacity was found to be 325 kJ for 2,000 kg of falling blocks at a height of 50.0 m.  相似文献   

18.
Disasters caused by events such as earthquake, flooding, rock falls, landslides are often encountered. However, generally, the reasons for the destructive and devastating effects of these nature events are that settlement locations were chosen without site investigation studies, or that available studies were inadequate. Such inadequacies in the field are related to inappropriate settlement location and the resulting damage caused by rock falls. This study evaluated rockfall risk in a settlement that developed in a similar manner. The study was carried out in Bo?aziçi village of Kemah (Erzincan/Turkey), which is located in a very important tectonic zone. The study site is located on the lower sections of an area with very steep cliffs and 50–75° slopes. This cliff, which is the source of rockfalls, has a slope dip of approximately 90°. The cliff comprises 25–30 m high, fractured and cracked basaltic volcanic mass. To determine block size in the study area, scanline survey measurements and block size measurements were performed on blocks that loosened and fell from the cliff face. It was found that block sizes reached 6 m3. Rockfall analyses were performed along the selected profiles using the Rockfall V.4.0 software. Kinetic energy, bounce height, horizontal location of rock end-points, and velocity of the rocks along each section were evaluated separately for each profile. This data were used to produce distribution maps for each profile and the settlement was evaluated in terms of rockfall risk. The results indicate that the study area was at risk of future rockfalls and that it would be appropriate to relocate one part of the settlement.  相似文献   

19.
因暴雨、地震和岩羊踩踏等不确定因素,贺兰口沟口至“水关”处发育的34处孤石极易失稳滚落形成落石对岩画和游人安全构成严重威胁。通过对34处孤石数量、成因、分布、岩性和几何特征全面调查与分析的基础上,运用Rocfall软件分析其失稳后的运动过程和能量变化进行分析,得出如下结论:(1)薄层状变质砂岩风化内凹的临空面、岩层层面与两组节理组合切割巨厚层砂岩失稳后堆积于坡面;(2)将落石划分为基岩裸露型、孤石带型和坡面泥石流型3种不同类型;(3)数值模拟结果显示,失稳后弹跳落点有52%~95%的概率在岩画赋存区,所具有能量为301~8412 kJ;最终落点有51%~95%的概率在游客栈道,所具有能量为299~7698 kJ;(4)监测结果表明,水剂比为0.32、平行布孔、间排距20 cm和抵抗线20 cm布置方案为最优,静态破碎结合人工搬运为岩画保护区落石源头治理的最佳方案。为贺兰口岩画保护区落石灾害的源头治理提供了新的途径与参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号